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Remanent magnetization in spin-glasses
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A spin-glass model consisting of a kinetic Ising model with random nearest-neighbor interac-

tions is studied by Monte Carlo methods. As in real experiments the system is cooled, and a

magnetic field is applied and then switched off. Below a freezing temperature Tf both an ir-

reversible and a reversible magnetic susceptibility are observed. A remanent magnetization M
occurs which decays very slowly with time t with a power law M —t ' to the equilibrium value

M =0. For different cooling procedures different remanent magnetizations are discussed as a

function of temperature and previously applied field. A characteristic difference between field

cooled (TRM) and isothermal (IRM) remanent magnetization is observed in the field depen-

dence of the exponent a. Many of the predictions resemble experimental results, In the second

part an exactly solvable spin-glass model incorporating a symmetric distribution of random in-

teractions and frustration is introduced. Since the range of the interactions is infinite there exist

no local clusters in this model. A phase transition with a cusp in the susceptibility, a remanent

magnetization, and a ferromagnet —spin-glass transition are found.

I. INTRODUCTION

Spin-glasses are random magnetic systems with a
puzzling magnetic ordering at low temperatures. '

Experimentally the susceptibility shows a sharply de-
fined temperature Tf indicating a sudden freezing of
the spins. On the other hand the specific heat does
not indicate any phase transition at Tf, ' and neutron
scattering shows no long-range periodic order. How-
ever, all the experimental results depend on the time
scale of the measurements. For instance, neutron
scattering' and Mossbauer experiments with mea-
surement times of about 10 " and 10 sec give evi-
dence for the gradual formation of correlated regions
or clusters of spins with decreasing temperature. For
times of about 10 ' sec the cusp of the ac susceptibil-
ity depends logarithmically on the frequency in some
but not in all of the spin-glasses. " On the time
scale of minutes, hours or even longer spin-glasses
show remarkable properties such as an irreversible
susceptibility, a remanent magnetization, or a time-
dependent specific heat. ' " Such detailed studies of
time-dependent properties are necessary to under-
stand the nature of magnetic ordering in spin-glasses.

In many spin-glasses the magnetic moments in-
teract via the oscillating RKKY [Ruderman-Kittel-
Kasuya-Yosida] interaction. ' 3 For the ideal RKKY
coupling the nearest-neighbor interaction, say
in AuFe, is about 100 times larger than the freez-
ing temperature k~Tf. Thus it is evident that at
T = Tf many spins are coupled to clusters of strongly
correlated but presumably randomly orientated spins.

The coupling between such clusters is of the order
kqTf, and because of the random orientation of the
spins it has a short range. At temperatures much
larger than T& it may be a useful approximation to
describe spin-glasses by a spectrum of isolated clus-
ters with effective moments S; and relaxation times
v; due to an anisotropy caused by the internal dipolar
interaction. """ But for temperatures lower than
or equal to Tf the collective behavior due to the in-

teraction between the clusters should be considered,
and an appropriate model for this situation is a sys-
tem of localized spins on a regular lattice with an in-

teraction with random sign and random absolute
value. 2

This model, first proposed by Edwards and Ander-
son, ' has been investigated very extensively in the
last years. ' Using the so-called "replica trick", which
is still under discussion' ' the mean-field solution
of this model gives a cusp in the susceptibility at a
temperature Tf but also a cusp in the specific
heat. " ' More powerful methods have been used
to study the freezing process of this model, for in-

stance, computer simulations, high-temperature ex-
pansion, and renormalization-group methods, but the
existence of a phase transition is still unclear. " '6

One characteristic property of spin-glasses is the
existence of conflicting bonds (or "frustration"'7). In
a simple mean-field approach it has been shown that
the nonzero low-temperature susceptibility x(T =0),
the shape of the cusp of X(T) at Tf, the dependence
of T~ on the impurity concentration and on the finite
mean free path of the conduction electrons depend
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strongly on the degree of frustration. ' As a conse-
quence of the random sign of the interaction all ex-
tended modes contribute to the dynamic and static
homogeneous susceptibility leading to unusual critical
behavior.

Although many approximations have been pro-
posed to study the Edwards-Anderson model" up to
now the analytic methods have not given any con-
clusive answers. Therefore computer simulations are
very useful in deciding whether this model can
describe real spin-glasses. ' In fact the Monte Carlo
simulations show a rather sharp peak in the suscepti-
bility, a broad specific-heat maximum, remanent
magnetization, and nonexponential relaxation
processes in qualitative agreement with experi-
ments. 2 Although simulations of a finite system
of about 10' spins cannot prove the existence of a

phase transition, ' fluctuations of a suitable order
parameter, which cannot be observed in real experi-
ments but seem to diverge at Tf in computer experi-
ments, and the observation of critical exponents
seem to indicate a phase transition. '

In this paper we study irreversible processes of
spin-glasses. In Sec. II using Monte Carlo simula-
tions of the Edwards-Anderson model we calculate
different remanent magnetizations as a function of
field and temperature and we investigate the time
dependence of relaxation in detail. All the simula-
tions are closely related to experimental methods. 35

In Sec. III we introduce an exactly solvable model of
spin-glasses which shows an irreversible susceptibili-

ty, a remanent magnetization and a ferromagnet-
spin-glass transition. Section IV contains some con-
clusions.

II. COMPUTER SIMULATIONS OF A TWO-

DIMENSIONAL ISING SPIN-GLASS MODEL

A. The model

We consider the Ising model on a square lattice
with Hamiltonian

// = —$ J;,S;S —8 $S,
(i j) i

where S; C (+1, —I j and the nearest-neighbor interac-
tion Ji is randomly distributed according to a sym-

metric Gaussian
1

P(J&) =exp-
J2

2 AJ'
I

with width 4J.
The dynamics are simulated by a master equation

for the probability of a given spin configuration at a

given time t. The Monte Carlo simulations closely

follow the earlier work of Binder et al. For a
detailed description of the Monte Carlo method see
Ref. 36. We simulate pure relaxational processes
without any conserved quantities. Thus our model
cannot account for propagating collective excitations
which become important far below Tf." The time
scale of the kinetic Ising model is the. microscopic
time v which corresponds to the relaxation time of a
single spin in an external heat bath. In the simula-
tions we measure the time in units of Monte Carlo
steps per spin (MCS/spin). All energies are given in
units of the width 4J of the random interactions.
From earlier work we know that hJ has the same
order of magnitude as the freezing temperature k~Tf
(in the square lattice32). We have treated a 50 x 50
system with periodic boundary conditions using com-
puter runs of about 4000 MCS/spin.

8. Reversible and irreversible susceptibility

Figure 1 shows a typical computer run. We start
from a random spin configuration, that is with infin-
ite temperature. The system is suddenly cooled to
T =35J/ks and then slowly cooled to the final tem-
perature, here T = hJ/2ks. If a magnetic field is ap-
plied during the cooling [TRM (thermo remanent
magnetization) curves] a magnetization develops un-
til the field is suddenly switched off. Then the mag-
netization drops within a few MCS/spin to a
remanence value which decays very slowly to zero.

The points in Fig. 2(a) show the field cooled mag-
netization for 8 =0.26J as a function of temperature.
The 8 dependence as 8 0 determines the irreversi-
ble susceptibility X;„, which is nearly constant below
T~= hJ/ks and follows a Curie law above T~. (Note
that due to the nonzero field there are deviations
from the Curie law above Tf). A measure for the
fluctuations of the system is the jump AM between
the magnetization in an external field and the
remanent magnetization shortly after the field is
switched off. This jump AM is shown as a function
of temperature in Fig. 2(a) by the crosses. There is a

steep increase with temperature up to T~. Then the
points approach the values of the irreversible magnet-
ization indicating the absence of remanent magnetiza-
tion. The behavior as 8 0 determines the reversi-
ble susceptibility of the metastable state.

The results for hM(T) agree with the susceptibility
calculated from the fluctuations of the magnetization
in earlier computer simulations. The M(8) values
agree with the slope of the magnetization as a func-
tion of field obtained by slowly lowering the field
from infinity to zero" (again note the rounding due
to a nonzero field). Although all these susceptibili-
ties were calculated in different ways, there is a
unique temperature T~= hJ/ka indicating the onset
of some collective behavior.
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FIG. 1. Magnetization M as a function of time t for cooling in an external field B (TRM) or for cooling in zero field and
short application of the field (IRM). Temperature T and field 8 are shown in units of the width AJ = (JJz),t„z of the interac-

tions, time t is shown in units of Monte Carlo steps per spin.

To compare our results with experiments we con-
sider the reversible susceptibility (short applications
of a dc field) and irreversible susceptibility (field-
cooled magnetization) of AuFe taken from Ref. 13.
These experimental data shown in Fig. 2(b) are in re-
markable agreement with the Monte Carlo data of
Fig. 2(a) and Ref. 32.

C. Field-cooled and isothermal
remanent magnetization

Figure 1 shows that the remanent magnetization
has been produced by different ways: (a) TRM
(thermo remanent magnetization): The system is

slowly cooled in an external field and then the field is

switched off. (b) IRM (Isothermal remanent mag-
netization): The system is slowly cooled in zero

external field. Then the field is applied for a short
time (20 MCS/spin) and switched off. Afterwards a

slowly decaying remanent magnetization appears. It
was measured by taking its average over 1000
MCS/spin.

Because of the slow cooling (slow means that we

could not see any differences on enlarging the cooling
time internal by a factor IO) we expect to start from
thermal equilibrium in an external field in the TRM
case and from the equilibrium in zero field in the
IRM case. We have also investigated a nonequilibri-

um start position, IRM (fc) (fc: fast cooled). First
the system was cooled very rapidly within 20
MCS/spin. Then the field was applied as in the usual
IRM for 20 MCS/spin and then switched off.

The remanent magnetization depends qn the final
temperature and the field which was appl&ed initially.
Figure 3(a) shows the remanence as a function of
field. Since in the TRM case the system starts from
a high magnetization in a stable state we expect the
TRM values to be higher than the IRM ones. In the
IRM (fc) case the system can relax for a while in the
applied field. Therefore we expect the IRM (fc)
values to be larger than IRM ones. For the IRM in
Fig. 3(a) we cannot exclude the existence of a critical
field below which no IRM occurs, but the TRM
grows linearly with the field. The TRM has a max-
imum for field energies of the order of the interac-
tion energy (= ktt Tf)

The IRM and TRM results are in qualitative agree-
ment with experiments on AuFe, ' CuMn, and
EuSrS. The experimental data of AuFe taken from
Ref. 12 are shown in Fig. 3(b). The ratio of the
remanence at its maximum to the remanence for
very large fields seems to be somewhat smaller for
the metallic spin-glasses AuFe and CuMn than the ra-
tio calculated here, whereas the nonmetallic spin
glass EuSrS has a much larger ratio. However, it
should be noted that this ratio depends on the
measuring time (see Sec. I D).
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FIG. 3. (a) Remanent magnetization M obtained by cool-

ing in a field (TRM) or shortly applying a field at constant
temperature (IRM) is shown as a function of the initially ap-

plied field. IRM (fc) is obtained by some mixed cooling

procedure (see text). M was measured at the temperature
T = b,J/4k&. (b) The same kinds of remanent rnagnetiza-

tions as in Fig. 3(a) but for AuFe (O. S at. %). The data are

taken from Ref. 12.

FIG. 2, (a) Magnetization M (dots) obtained by cooling

in an external field 8 =0.25J. It corresponds to the irrever-

sible susceptibility. The crosses show M minus the TRM,
which corresponds to the reversible or short-time suscepti-

bility. The dashed line follows the Curie law M =8/k& T.

(b) For AuFe (4 at. "i(I) the magnetization obtained by cool-

ing in a field of 20 Oe (dots) and by applying a field of 20

Oe for a short time (crosses) is shown as a function of tem-

perature, The data are taken from Ref. 13.

Each metastable state may be characterized by its
energy and magnetization. Figure 4 shows the states
of Fig. 3(a) in the energy-magnetization. plane. With
increasing time all points approach the equilibrium
value M =0 and F. = —1.294J. Thus all points within
the region surrounded by the outer states are meta-
stable states. Of course we cannot rule out other me-
tastable states produced by different cooling pro-
cedures than those considered here.

Figures 3(a) and 4 were measured at temperature
1T =
4 Tf. e now discuss the temperature depen-

dence. Figure 5 shows the field-cooled remanent

E/kJ3T
w6e (3)

where F. is some mean anisotropy energy due to the

internal dipolar energy of a cluster. 15, 16

The IRM depends on the length of the time inter-

val d, t/r over which the magnetic field was applied.

This is shown in Fig. 6. Of course, for 4t =0 we

have no remanence whereas for 4t = ~ we expect
the IRM to approach the TRM marked by an arrow.

If we apply the field for a constant time ht, the ratio

magnetization (TRM) as a function of temperature.
As for infinite fields the remanence decays nearly
linearly and only occurs for temperatures below Tf.
The same holds for the isothermal remanent magnet-
ization (IRM). However, in comparing the IRM with
experiments, we have to take the temperature depen-
dence of the microscopic time ~ into account. As
noted above, our time scale is the single spin relaxa-
tion time 7. If we interpret each Ising spin as the ef-
fective spin of a rigid cluster, '

v should have the
temperature dependence
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FIG. 4. Energy-magnetization plane for the metastable
states of Fig. 3(a). The stars show the results for an initially

applied field B =1.55J.

FIG. 6, Isothermal remanent magnetization (IRM) as a
function of the time interval t over which the field B has
been applied (T =0.256 J, B =26J). The arrow marks the
field-cooled remanent mignetization which should
correspond to IRM (I = ~).

b, t/r increases with temperature according to Eq. (3).
This effect combines with the linear temperature
dependence to yield the results of Fig. 7. The IRM
has a maximum as a function of temperature, the lo--
cation of which seems to depend only on the aniso-
tropy F., %e stress that this maximum is not due to
the interaction between the clusters but due to the
variation of the single cluster relaxation time with

temperature.
The temperature dependence of IRM and TRM has

also been investigated in experiments on AuFe and
EuSrS. In AuFe with weak fields a linear decay in
TRM vs T below T~ and a maximum in IRM vs T
was found, " in agreement with our computer simula-
tions. For larger fields a nearly exponential decrease
of the TRM with temperature was observed.
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FIG. 5. Therrnoremanent magnetization (TRM) as a
function of temperature for two values of the initially ap-
plied field B.
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FIG. 7. Isothermal remanent magnetization (IRM) as a
function of temperature. The single-spin relaxation time ~

E/k~ T
changes with temperature as 7 —e ~ . The parameters
for the anisotropy energy F. and initially applied field B are
(F/4J, B/b, J) = a: (0.5,2); b' (2.08,2); c: (0.5, 1).
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FIG. 8. Remanent magnetization as a function of time on
a log-log plot showing a power-law decay M —t '. .The
squares (TRM, 8 =AJ) and dots (IRM, 8 =1.5d J) have
the same initial energy, the dots and crosses (TRM, 8 = ~)
have the same initial magnetization (T =0.55@.
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FIG. 9. Temperature dependence of the exponent a of
the power law M —I ' for the thermoremanent magnetiza-
tion with initially applied field 8 =1.26J.

D. Relaxation of the remanent magnetization

In the preceding sections we discussed the
remanent magnetization averaged over a fixed time
interval. Now we consider the relaxation process it-
self. From earlier computer simulations of the same
model we know that the infinite field remanence
decays with a time dependence which can be fitted to
the power law

M~t '

with the exponent a increasing linearly with tempera-
ture. %e found this type of power law for all the
temperatures, fields, and. different kinds of
remanence we have investigated. But now the ex-
ponent a also depends on the history of the system.
One might guess that a depends on the initial energy
of the metastable state, but Fig. 8 shows that
E(t =20 MCS/spin) does not determine a uniquely.
The squares and dots denote systems with the same
initial energy, the crosses and dots systems with the
same initial remanent magnetization M (t = 20

4-
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FIG. 10. Field dependence of the exponent a of the power law M —I 'which describes the relaxation of different remanent
magnetizations (IRM and TRM). The energy difference to the equilibrium value Ea has the same relaxation law ~E —Ea~ —t

'
with a given by the squares (T =0.56J).
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FIG. 11. Thermoremanent magnetization (TRM) as a
function of initially applied field. The TRM +as measured
over three different time intervals (T -0.56J).

MCS/spin). All curves have different slopes a.
Thus a depends on both the initial energy and mag-
netization. We have also investigated the relaxation
of two systems with the same initial E and M but
produced in different ways, In Fig. . 4 ont: has such
initial conditions for IRM and IRM (fc) where both
curves intersect in the E-M plane. We found the
same exponent a, but this, of course, does not ex-
clude other parameters determining a.

Since F. and M depend on temperature and previ-
ously applied field, a is a function of both T and B.
Figure 9 shows that for the TRM at its maximum
(8 = 1.25J) a increases linearly with temperature like
a (8 = ~). But more interesting than the tempera-

ture dependence is the field dependence, which is
shown in Fig. 10. There is a qualitative difference in
IRM and TRM. The IRM decays faster than the
TRM and faster for small fields, whereas the TRM is
slower for small fields. . In the conclusion we try to
give an explanation for this difference.

We have also investigated the relaxation of the
internal energy of the metastable states. The energy
difference AE = Eo —E(t), where Eo is the energy of
the thermal equilibrium, also relaxes with a po~er
law t '. The exponent for the TRM states is shown
in Fig. 10 by the squares. One secs that the energy
decays much faster than the. magnetization.

The field and temperature dependence of the relax-
ation of the remanent magnetization M must be con-
sidered if one investigates M(T, 8). For instance, if
one considers the TRM as a function of the previous-
ly applied field B, the quantitative results change as i
function of the measuring time. This is shown in
Fig. 11, where the TRM as a function of applied field
is calculated for three averaging intervals. According
to Fig. 10 the values for higher fields decay faster
than those for smaller fields. Thus the maximum
shifts toward lower fields and the ratio of the max-
imum to the saturated TRM increases with increasing
time.

This suggests the following question: Is the max-
imum of TRM vs (8) entirely due to the increase of
the exponent a with field? - An answer is furnished
by the exponent b defined by lnM = —b —a lnt. b is
shown as a function of the previously applied field in
Fig. 12. For the TRM one has a clear minimum for
field energies of roughly 1.5 kerf, whereas in the
IRM case the statistical fluctuations do not allow a
clear answer. Thus TRM vs (8) would have a max-
imum even if there were no field dependence of

R

1.0- —~—
X

3 BIBJ

FIG. 12. Exponent b of the fit InM = —b —a lnt for TRM and IRM as a function of initially applied fie)d B. The minimum ot'

b(B) corresponds to a maximum in TRM vs B as in Fig. 11 (T =0.55J).
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FIG. 13. Same exponent b as in Fig. 12 but for the ener-
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the exponent a.
The corresponding exponent b of the energy relax-

ation is shown in Fig. 13. There b seems to be
monotonically decreasing function of 8, meaning that
the energy of the metastable state is larger when
larger fields are applied.

Up to now only a few experiments dealing with the
relaxation of remarience states in spin-glasses have
been performed. The heat flow from or to a sample
of AuFe (4 at. %) shows a 1/t dependence. '4 For the
relaxation of the remanent magnetization a loga-
rithmic decay M = —S lnt/r has been observed. '3 "
The prefactor S has a maximum as a function of tem-
perature. '

It should be noted that a power law M a t ' with a
small exponent a (Figs. 9 and 10) can be fitted rea-

sonably well within a limited time interval by a loga-
rithmic decay. Then one has

S= dM d
tX e

—a lnl at
—a

d lnt d lnt

With a(T) =cT (Fig. 9) Eq. (5) implies

FIG. 14. Relaxation of the magnetization in an external
field B = AJ for T =0.5b,J. The difference to the field-
cooled value which should correspond to M(t = ~) is shown
in a log-log and a linear-log plot. The dashed line shows
6, M —lnt.

small fields since the statistical fluctuations due to
the finite sample would be much larger than the
mean values. For larger fields, the relaxation of the
magnetization is shown in Fig. 14. %e have plotted
the difference AM between the magnetization at time
t and the magnetization for the field-cooled system
which should correspond to the t = ~ magnetization.
The log-log plot shows that the relaxation cannot be
described by a power law. At best it seems to follow
a logarithmic law

AM=b —a lnt

as shown by the dashed line in Fig. 14. Figure 15
shows the results for different applied fields. The
bars indicate the field-cooled magnetizations. The
prefactor a of the fit Eq. (7) is shown as a function

S~Tt c (6)

One sees that S has a maximum as a function of tem-
perature which depends on the measurement time t.

Thus the experimental results may not be in

disagreement with the present computer simulations.
A detailed experimental study of the field depen-
dence of the relaxation, which according to Fig. 10
gives qualitative differences between IRM and TRM,
has not yet been carried out as far as we know.

104'—e—o

i l~J ~

~~ae~

B/h, J
10

~~~

~~aae

—o—a-e-~ 1.6

E. Relaxation in an external field

il»' ~
i i~y~O
ii- —— —

I I I

20 40 100 200

g~O
0.2

~~~Q

1OOO t
In AuFe, with small fields, Guy has observed the

same type of the relaxation for the remanent magnet-
ization and the magnetization in an external field. '

In our computer simulations we cannot simulate such

FIG. 15. Relaxation of the magnetization for different ap-

plied fields (T =0.55J ). The bars show the field-cooled
values which should correspond to M(T = ~).
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FIG. 16. Coefficient a of the fit M —a lnt for the relaxa-
tion of the magnetization in an applied field B (T =0.55J ).

distributed over the spin site i, Ji and J2.are interac-
tion energies, and N is the number of spins. Thus
rather than the bonds J& some site parameters a/, y, ,
5; are distributed at random. The definition (9)
should hold for all pairs S;S&. For this reason the fac-
tor 1/N is introduced to make the energy extensive.
Thus Eqs. (8) and (9) describe a model with infinite
range interactions and the structure of the sites (lat-
tice, space dimension) plays no role. With J~ =0 one
recovers a model investigated by Mattis, ' which,
without field, is equivalent to a pure ferromagnet
since it has no frustration. " With Ji, J2 & 0 and

y; =1, 5; =0 for all i and randomly distributed
a; = +1, the model has been considered by Lut-
tinger. (In Ref. 40 a coupling between the two
modes was also introduced).

We need three modes to include the spin-glass pro-
perties (a) and (b). We consider the model defined
by Eqs. (8) and (9) with the restrictions

of the applied field in Fig. 16. For small fields the
relaxation is slow. For high field the system can
reach its saturation value instantly. Thus a is also
small. Fields of the order of kerf cannot yet destroy
the energy barriers between remanence state and
thermal equilibrium but the relaxation is fast. As far
as we know such relaxation processes in large fields
have not yet been investigated experimentally.

and

a= —$n;=0,1

N

1 & y= —$y;= —$5; &0,1 1

W I

'
W

(loa)

— (10b)

which will be explained later. By averaging the bonds

J& over all pairs i,j we obtain

III. METASTABLE STATES IN AN EXACTLY
SOLVABLE SPIN-GLASS MODEL

(J,q),.=0,
5J = (JJ'),'„i'=—[J2 +2Ji'(1 —y )i'i'2 in

A. Definition of the model

H = —
2 $JJS;SJ —b $S; (8)

with

JJ = (1/N) (J(y;yI —J~5~5J+ J2nlnj) (9)

where each of the n;, y;, 5; C I+1, —1) are randomly

In this section we want to discuss metastable states
in spin-glasses in terms of a simple, but exactly solv-
able model. Two elements are thought to be essen-
tial in a model for spin-glasses". (a) a symmetric
statistical distribution of interactions", (b) the ex-
istence of conflicting bonds called frustration. "
The Edwards-Anderson model discussed in Sec. II
has these properties, but up to now no analytic
description of metastable states has been found.
Therefore we restrict ourselves to a mean-field theory
which has the properties (a) and (b).

Consider Ising spins with the Hamiltonian

Thus the bonds are distributed symmetrically.

B. Ground state and frustration

The energy Eq. (8) can be written in terms of four
order' parameters

q„=—gxIS(, m =—XS(
1 1

l I

with x E {a,y, 5). With these definitions one has

(14)

H/N = Jiq —J~q—r, + J2q +bm (13)

Thus H is a quadratic form of the vectors (x;S;); and
(S;);. With (a;S,), orthogonal to all other modes and
with the restriction Eq. (10b) one finds that J2 is the
largest eigenvalue (for b =0). Thus the ground state
is given by

S,'= a, ,

with energy H /N = J2 and order —parameters

q~ =
q&

= m =0. With this ground state one can cal-



culate the number of frustrated bonds pfN which is
defined as the number of bonds with J&S; SJ & 0.
With Eq. (9) this is the case if for n;a& =.+1 the signs
of —p;» and 5;5& are +1. Then one has by defini-
tion Eq. (10b) JJS;S&=J2 —2Ji (0. This occurs with

probability

pf=-,'(1-y') . (i5)
Thus for y A 1 the model has competing bonds. It
should be noted that despite the frustration there is
only one ground state.

C. Critical temperature and susceptibility

Since the Hamiltonian can be expressed in terms of
just a few order parameters Eq. (13), the modei can
be solved exactly within the usual mean-field theory
as in Ref. 40. Since we are also interested in the re-
laxation behavior, we give the equations for the
time-dependent modes q, q„q&, and m within the
corresponding kinetic Ising model. '

q„(r) =—g x, tanh (pfy; Jiqv(t) —8;Jiqa(t) + ia;J2qa(t) + bm (t)]]
dt

(16a)

with x E (a, y, 8] and

1+r—m(t) = —gtanh(p[y;J~q, (t) —5;Jiq„(t) +a;J2q (t) +brn(r)]]
d 1

I
(16b)

(~; y;&av (~i&av(yi) av =0

(y 5&-= (y, &., (5&-=y' .

etc.) one obtains

q =PJqq

=PJi(q

qa= PJi( qa+y'q )—
Thus Eq. (16a) has a nonzero solution below

Tr = J2/ks (18)

and because of the restriction Eq. (10b) the system
has a second-order phase transition below Tf. Just
below T~ or at T =0 one has q~ = q&=0 and since

q. =tanhpq, q, =qa=0 (19)

is a solution for all temperatures we expect Eq. (19)
to describe the thermal equilibrium for all tempera-
tures. From Eq. (16b) one has zero magnetization in
equilibrium. The normalized transition temperature
T&/hJN decreases with increasing frustration pr Eq.
(15) as one would expect,

The stationary solutions of these equations are local
extrema of the free energy. Thermal equilibrium
corresponds to the solution with the lowest free ener-
gy. Let us consider the stationary solutions of Eq.
(16a) for small q„. With the definitions [Eqs. (10)]
(note that

Since the distribution of interactions J» is sym-
metric the susceptibility is 'given by"

X = = p(1 —((S,) ),„)= p(1 —q')

which of course can also be readily derived from Eqs.
(16). Thus X(T) has a cusp at the transition tem-
perature Tf.

It should be noted that q is just the spin-glass
parameter

i(i =
N X (S &

1

I

where (S;) r=0 is one of the ground states. This ord-
er parameter has been introduced and numerically in-
vestigated by Binder. The fluctuations of p seem to
diverge at Tf, and the time dependence shows a criti-
cal slowing down at the critical temperature. In the
present model we- find similar behavior. If we apply
the staggered field h 0, ; varying at each site i, and cal-
culate the staggered susceptibility X = Bq /Bh from
Eqs. (16), we find the usual Curie-Weiss divergence at
Tf Jp/Ics. This is due to the fact that the staggered
field does not influence the modes q, and q&. Thus
the equations are identical to the mean-field equa-
tions for a pure ferromagnet. The same holds for the
relaxation of q . From Eqs. (16) one finds an ex-
ponential relaxation for small perturbation of q with
time constant Y„given by

Tf/AJ = J2/(J2 +8Ji2pg)'~ (20)
—=i —pJ, (1 -q.') . (22)
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Thus r diverges like
~
T —Tf~, which is the usual

mean-field behavior. '

D. Remanent magnetization and

magnetic-spin-glass transition

is thc ground state if

J2 ) J)(1 —y~)

On the other side if

ksT/ J/(I y ) ).J2 ksTf

(27)

By diagonalizing Eq. (17) for q =0 and from Eqs.
(16) we find that below the temperature T~ given by

ksTi Ji(I y ) 2J/(pf) (23)

the system has a solution q =0 and q~ )0, q& & 0.
For T =0 we find q„=1 and q& = y . Thus the ener-

gy at T =0 is given by

= J)(1 —y )
ei 2 (24)

This state does not correspond to thermal equilibri-
um, but within the present mean-field theory it is
stable [see Eqs. (16)].The state has nonzero magnet-
ization

ftt = y tanh[J)(q, —qf)] (25)

—=1 —pJq I ——Xtanh [pJ~(y, q, —5,q8)], (26)
A N

t

where (q~, q„) AO is the stationary solution of Eqs.
(16). Therefore for sufficiently low temperature r is

positive and the remanence state is indeed stable
against small perturbations. Thus we have shown
that the system can really relax from the ferromag-
netic ordered state into a metastable state (which is
stable within mean-field theory) with remanent mag-
netization.

We now show that for certain values of parameters
J~, J2, and y when lowering the temperature the sys-
tem undergoes a second-order phase transition into a
magnetic state and then a first-order transition into
the spin-glass state. From Eqs. (12) and (14) we
know that the spin-glass phase q =1 and q~ = q& =0

In particular m =y at T =0. q~=1 means that
S; =y;. Therefore for nonzero magnetic field b one
has an additional field energy by, whereas the
ground state S; = n; has zero-field energy. Thus for
sufficiently large field b, the thermal equilibrium is

given by q =0 and q~, q& )0.
Now let us consider. infinite fields b = ~. Then

one clearly has S; =1 for all i and according to Eqs.
(16) q =0 and q, = qt, = y in the stationary case. If
we now switch off the field, we see from Eqs. (16)
that q =0 is a solution for all times t. Therefore
below Ti the system relaxes into the solution

(q~, q„) &0 which has nonzero magnetization Eq.
(25). One can easily linearize Eqs. (16) for small per-
turbation Sq . One obtains the exponential relaxa-
tion gq. (t) —exp( —t/r ) with r given by

we know from Eqs. (17), (18), and (23) that just
below T~ there is a unique solution (q, , q„) &0 and

q =0. Since both Eqs. (27) and (28) can be fulfilled
simultaneously, at T = T] we have a transition into a
state with nonzero magnetization Eq. (25), and at
T =0 we have a spin-glass state S; = o.; with zero
magnetization. Since both of the states are solutions
of Eqs. (16) for all temperatures below T~ there must
be a first-order transition from the magnetic state to
a spin-glass state with decreasing temperature. Such
a transition has recently been observed experimental-

42, 43

III. SUMMARY AND CONCLUSIONS

In the first part of the paper we described numeri-
cal simulations of a spin-glass model consisting of the
two-dimensional Ising model with random nearest-
neighbor interactions. We found that below a charac-
teristic temperature Tf there are reversible and ir-
reversible susceptibilities which deviate from the Cu-
rie Law above Tf. Below Tf a remanent magnetiza-
tion appears which differs for different ways of
preparation such as field cooling (TRM) or shortly
applying the field for constant temperature (IRM).
The TRM increases steeply with the previously ap-
plied field and has a well defined maximum while the
IRM increases slowly with the field and is smaller
than the TRM. The TRM decreases with tempera-
ture, whereas the IRM has a maximum. Both the
IRM and the TRM decay with a power law as a func-
tion of time, but the IRM decay faster than the TRM
and is slower the larger the field, whereas the relaxa-
tion exponent of the TRM increases with increasing
field. Many of these details are in qualitative agree-
ment with experiments. Thus from our results and
previous Monte Carlo simulations we can conclude
that the investigated model describes many static and
dynamic properties of spin-glasses very well. Howev-
er, in addition to static equilibrium properties and
linear response near equilibrium, it is important to
consider nonlinear relaxation phenomena after field
and temperature changes, just as in the experiments.
In general it is difficult to obtain analytic results, but
numerical results can be obtained conveniently with
Monte Carlo methods.

In the second part of this paper we tried to obtain
some understanding of metastable states in spin-
glasses with the mean-field analysis of a simple
model. We have introduced a model including two
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important spin-glass properties such as a symmetric
distribution of interactions and frustration. Even
with additional simple relaxation processes we could
solve this model exactly. We have found a phase
transition with a cusp in the susceptibility. For suffi-
ciently low temperatures the system relaxes from a
magnetically ordered state into a state with remanent
magnetization (for zero field). For a certain range of
model parameters the system undergoes a
magnetic —spin-glass transition with decreasing tem-
perature even though the distribution of interactions
is symmetric.

Our model has infinite range interactions. Thus
the remanence states are obtained by a global reord-
ering of spins and not by local turning of the clusters.
These states are due to a collective effect. In our
mean-field theory these remanence states are stable.
In a more realistic model one should include thermal
fluctuations which enable the system to reach the
state with lowest free energy. In addition, one
should treat an infinite number of modes instead of
the three considered here. Thus even in the limit of
zero field there may exist states which have magneti-
zation for zero field and correspond to thermal equili-
brium for small fields. This may be the reason that
one observes a reversible susceptibility which meas-
ures the fluctuations of the ground state [Eq. (21)),

and an irreversible susceptibility, which measures the
fluctuation of the remanence states, plus an addition-
al magnetization of these states [Eq. (25)).

Even the different relaxational behavior of TRM
and IRM can be qualitatively explained by such con-
siderations. In the IRM case the field energy is

larger than the energy barrier Vbetween the ground
state and the remanence state. Thus V decreases
with decreasing field, and since the relaxation grows
faster with decreasing barrier V, the system is faster
for smaller fields. In the TRM (field-cooled) case
the system starts from T ) Tf where there are no en-

ergy barriers. Thus even for small fields it can reach
remanence states with high-energy barriers to the
ground state. Therefore the TRM relaxes much
slower than the IRM. This is what was observed in

the computer simulations described in the first part
of the paper.
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