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Interaction energy of superconducting vortices
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By means of a constrained variational calculation we determine the interaction energy of two-

vortex configurations in the Ginzburg-Landau theory or, equivalently, in the Abelian Higgs

model. The energy is evaluated as a function of the separation between vortices and of the

parameter A. , which measures the relative strength of the matter self-coupling and the elec-

tromagnetic coupling. Our results provide a precise determination of the inter-vortex potential,

attractive for X & 1 and repulsive for P ) 1. They also show that for A. =1 the lower bound on

the energy which can be then derived is actually reached at all separations and, therefore, that in

this case vortices do not interact.

I. INTRODUCTION

It has been known for a long time that the
Ginzburg-Landau equations admit localized solutions
of the vortex type. 2 More recently it has been ob-
served that vortices of essentially the same structure
appear as solutions to model field theories for strong-
ly interacting particles. ' A typical model, known as
the Abelian Higgs model, describes the interaction of
a matter (Higgs) field (analogous to an order parame-
ter) with an Abelian gauge field, the electromagnetic
potential in the Ginzburg-Landau theory, in a
minimal gauge-invariant fashion. The energy func-
tional, and the field equations which folio~ from its
minimization, are mathematically identical to those in
the Ginzburg-Landau theory.

The purpose of this paper is to present a highly ac-
curate variational computation of the interaction of
vortices for arbitrary separation. Our starting point is
a trial configuration where the matter field $ van-
ishes at two points, the locations of the vortices, and
which reduces, for large separation, to two single-
vortex configurations. The trial field is then modi-
fied in the interaction region, constraining the zeros
of $, until the energy is minimized. The minimum
can be interpreted as the energy of two vortices
kept at a fixed separation. The main relevance of our
results lies in a complete description of the behavior
of the interaction energy as a function of the separa-
tion and of the coupling constant which measures
the relative strength of the matter self-coupling and
the electromagnetic coupling. The energy functional
contains three coupling constants, but two inessential
ones may be eliminated by straightforward rescaling
of the fields. The remaining coupling constant X (re-
lated to the Ginzburg-Landau parameter) is physically
significant. With our normalization convention, in

the sector where A. & 1 the range of the matter self-
interaction exceeds that of the electromagnetic one,
whereas for X ) 1 the opposite is true. Materials with
X ( I(h. & I) exhibit Type I (Type II) superconduc-
tivity. The interaction between widely separated vor-
tices has been studied and it has been found that,
asymptotically, vortices attract (repel) each other for
1, ( 1(h. & I).' Also, the stability of a rotationally
symmetric configuration of many superimposed vor-
tices has been investigated: it is found that for A. ) 1

the system is unstable against decay into separated
vortices. ' In the case where A. =1, it is possible to
derive a lower bound on the energy. 6 The bound is
saturated if the fields satisfy a set of first-order (non-
linear) partial differential equations and the energy is
then proportional to the number of vortices. These
first-order equations have been solved for two vor-
tices at zero separation' and, of course, are solved by
a configuration of infinitely separated vortices. Since
the bound is additive in the number of vortices, the
existence of solutions to the first-order equations for
arbitrary separations implies that A. =1 vortices do not
interact. Ho~ever, solutions with finite separation
between vortices have not been constructed nor ex-
istence proofs been given, and therefore one can not
infer the absence of interaction from the bound.

Our results show that two vortices attract each oth-
er for A. ( 1 and repel for A. ) 1 at all separations.
Moreover, for A. =1 we find that the energy of a
two-vortex field configuration is constant as a func-
tion of the separation within an error of less than two
parts in 10, attributable to the method of approxima-
tion. We thus obtain a very strong indication that
A. =1 vortices do not interact, implying a high degen-
eracy of the solutions of the Ginzburg-Landau equa-
tions for this value of the coupling constant.

The paper is organized as follows: In Sec. II we
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II. THE ENERGY FUNCTIONAL
AND ITS MINIMUM VALUE

The expression for the free energy in the
Ginzburg-Landau theory (or equivalently the poten-
tial energy in the Abelian Higgs model) is

E =
J d'x [ —, l(8; —ieA;)@I'+ —,FzF"

+ c4(I@I'-co)'j (2.1)

P is a complex scalar field, A; is the gauge potential,
and FJ = 8;AJ —BJA; is the field strength. ' The
minimum of the energy density is reached when

I/I = eo &0. Rescaling lengths and fields as follows:

discuss the asymptotic behavior of the fields, derive
the bound on the energy, and summarize our results.
In Sec. III we construct the variational Ansatz and
explain the procedure followed to minimize the ener-

gy functional. Section IV contains a discussion of the
results.

x(e+2~) = x(e) +2~n, (2.9)

with integer n. The local behavior of the phase X as
a function of 8 is immaterial because it can be
changed at will through a gauge transformation. But
the integer n has physical significance. Indeed, finite-
ness of 5 also requires

lim (8 —iA) @=0
lz I— (2.10)

In this last equation 8, 8 stand for

6 1 9 . 88 1 $ . 9(. — ~ ~ +
z 2 Bx& Bx2 9z 2 9x& Qx

and the factor 1/rr has been introduced for later con-
venience. The tilde over @ will be omitted hence-
forth.

For 8 to be finite, I@I must tend to 1 as Izl goes
to infinity. Hence tt must approach the value e'"'"'
as z ~ with fixed argument 8. Continuity
demands that we have e" '+' = e'" ' and therefore

~ 1x'= x, @=co@, A;=caA;
eco

the energy functional is written

(2.2)
or

A = i Bing—+ o = Bx + o
1 1

, Izl zl
(2.1 1)

E =—'
)~i d'x [-,' l(8; —iA;) @I'+—,

'
F~qF'& as lz I

~. The total magnetic flux through the
plane then follows from .the Gauss theorem:

where

'x= cg/ 4'e.

(2.3)

(2.4)

4(8) =
J~ dz dz (BA —BA )

e

lim ~& (Adz+Adz) =—
& dx=1 ~ 2mn

e lzl- 8 e

(2.12)
We shall be interested in field configurations in-

variant under translations along a definite axis. Tak-
ing this one to be the third- axis, the fields depend
only on the coordinates x~, x2, and A3 =0. It is then
convenient to introduce complex coordinates

z =x~+(x2, z =xj —ix2 (2.5)

and a complex potential

]
A = —(A) —iAz), A = —,'(A, +iA, ) . (2.6)

with

e
(2.7)

dz«l [&(- »ill' +I (&- iAi)l'
2m

In terms of these variables the energy per unit length
along the third axis is

Thus, finite-energy field configurations are divided
into classes, labelled by n. Each class contains all
field configurations (with finite 8) which can be con-
tinuously distorted into each other (for this reason n

is called a topological invariant) and within each class
the total magnetic flux is 2m n/e

Continuity also imposes a relation between n and
the number of zeros of @. The integral

n~=
tlat

d In/ (2.13)

along any closed contour y, takes an integer value
which can change under continuous deformations of
the contour only when it goes through a zero of @.
Assuming that there are n+ points z;+, where $ van-
ishes as z —z + and n points z where it vanishes
as z —z; ' ', taking for y, first, a circle which encloses
all the points z; and letting then the radius of y de-
crease to zero, one readily verifies that

n =n+ —n (2.1&)

(2.8) W'e shall say that the field configuration exhibits a
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40» —46'A —i $0/ +i $f)$ —. 2A $P = 0 (2.16)

One can insert into these equations a rotationally
symmetric A nsatz

4=e'""f(r), A = (ni/2—z)a(r), '
r =—lzl (2.17)

with f(~) =a(~) =1. The symmetry ts compatible
with the Euler-Lagrange equations, which reduce to
the following ordinary nonlinear differential equa-
tions for f (r) and a (r):

d2f 1 df n (a —1)+ ——— f )'./(f —1—) =—0,
r2 r dr r2 2

(2.18)

d'a 1 da —(a —1)fz =0
r dr

From the asymptotic behavior of the fields one
recognizes that the configuration has vorticity n.

Correspondingly P must have n zeros, which, be-
cause of the symmetry, must be degenerate at z =0.
Hence we have f(r) =O(r") for r 0. Regularity of
A (z, z) requires a(r) = O(r') for r —0.

vortex (an antivortex) located at z;, if P has there a
zero of the type z —z;(z —z;). The topological invari-
ant n is then equal to the number of vortices minus .

the number of antivortices.
Fields which make 8 stationary obey the Euler-

Lagrange equations,

(0-iA)(6 iA )-P+(5 iA )—(d iA)—g

(2.15)

Equations (2.18) are not amenable to an analytic
solution, but one can easily see that the asymptotic
values f =a =1 are approached exponentially as

f(r) —1 = 0 (e "")

a(r) —1 = O(e ") (2.19)

t dzdz [(8—iA)@(9 i+A ) $)

= Jl dz dz [(0—iA )g(B+iA)&

i (BA —5A) y@I (2.20)

to obtain an alternative expression for 5, i.e.,

for r ~. The coupling constant A. thus determines
the spatial rate of decay of the perturbation of the
matter field, relative to the rate of decay of the elec-
tromagnetic perturbation. For intermediate values of
r the equations must be solved numerically. Alterna-
tively, one can insert the Ansatz into the expression
for b and search for stationary points. Using a varia-
tional procedure, which will be described in Sec. III,
we have found the minimum of 8 for various values
of A. and for ri =1 and 2; The results are given in

Table 1 and displayed in Fig. 1, where 6 (X,n =2) and
2 8(h, n =1) are plotted. One notes a crossover at
A. =1. A configuration of two superimposed vortices
has a lower (greater) energy than the energy of two

widely separated vortices for i ( 1(X ) 1).
The value A. =1 is of particular interest. One can

derive a lower bound on the energy functional as fol-
lows: we use an integration by parts,

b= —
Jl d d,'l($ —iA )@l +[- (eA -aA)+ —,'(ill'-»j'[ — '

J d d (» -»)
'7r 2m

(2.21)

(8 —iA )y=0 (2.22)

and

BA —jA + —i(l@l —1) =0 (2.23)

are satisfied. The second term is e/2rr times the to-
tal magnetic flux, i.e. , n. Thus for A. = 1, 5 is bound-
ed below by n, the bound being saturated when Eqs.
(2.22) and (2.23) are satisfied. For negative n an
analogous procedure shows that 6 is bounded by —n

and that we have 8 = -n if

(8 —iA) P =0, BA —BA — i (l$l lz) =0—
From the work of Ref. '7 one knows that the first-
order Eqs. (2.22) and (2.23) can be solved for arbi-
trary (positive) n in a radially symmetric configura-

The first term on the right-hand side of Eq. (2.21) is

the integral of two positive semidefinite quantities. It
vanishes if the equations

tion, This means that n vortices occupying the same
position are in equilibrium, with zero interaction en-
ergy, for x =1. The values 8 (h. =1,n) = n are repro-
duced to high precision by our va.riational procedure.
This can be used as a test of the accuracy of the nu-
merical method.

Since no analytical solutions of Eqs. (2.22) and
(2.23) are known for two (or more) vortices at arbi-
trary separation, one cannot conclude that A. =1 vor-
tices do not interact. Our numerical analysis, howev-
er, shows that the lower bound on the energy is
reached for A. = 1, n = 2- to within a relative error of
order 2 & 10 —equal to the expected accuracy of
the approximation. Thus our results indicate that
Eqs. (2.22) and (2.23) do indeed have solutions for
arbitrary locations of the two vortices, implying that
the interaction energy vanishes in this case.

%hen A. & 1, the method outlined above can still
be used to derive a lower bound on the energy, albeit
less strong: in particular, it can not be a minimum.
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For A. &1 we simply note that the last term in the
energy functional can be written

TABLE I. Energies for a single vortex and two super-

imposed vortices as functions of X. (Units are explained in

the text. }

where the notation (f& = J 2(dzdz. )f= J dzxf is

used. The first term in-the right-hand side of Eq.
(2.24) can be combined with the other two terms in
8,and a bound derived as for A. =1. %e thus obtain

g' —1h(i «1) «lnl+: ' «I@I'-1)'& -lnl .
8m

For A. & 1, we rewrite, the first. term of the. energy,
functional,

g, = J dzdz [I(8—iA)yl'+(8 —iA )yl']-2~

(2.26)

0.5
0.6
0.7
0,8

0.9
.
1..0

1.2
1.3
1.4
1.5

E(A, , n =1)

0.757 42

0.81305
0.86440
0.91230

0;957 36

1.00000
1.04053
1.07921
1.11625
1.151 81

1.18639

E{X,n =2)

1.391 29

1.526 27

1.653 37

1.77407

1.88936
2.00000
2.106 55

2.20945
2.30905
2.405 67

2.499 53

St=(1 —))8)+ZS) . (2.27)

A, St can be combined with the other two terms in 8
and a bound can be derived following a procedure
analogous to the one used for X =1, but this time we
add and subtract a 'term

(Xi/2m) ~
dz dz (8A —5A)

The final result is

&(~ ~ 1& -) Inl +(1 ),)/~

x (I(8 iA)d I' +—l(8 —iA ) yl2&

(2.2g)

These:lower bounds are indicated in Fig. l.
Using a variational method which we shall describe

in-detail in Sec. III, we have determined the con-
strained minimum of 8 with two vortices kept at a
fixed'separation for X =0.7, A. -1, and A.

——1.3. The
results are presented in Table II and an interpolation
of the energy curves is displayed in Fig. 2. One notes
that the t~o vortices attract each other at all separa-
tions for X =0.'7,

'

repel each other for ) =1.3, and as
mentioned before, do not interact for A. = l.

functions of the V; and minimizes the ensuing ex-
pression. We have performed this computation both
for a rotationally symmetric configuration of fields
with vorticity one and two, and for a configuration of
two vortices kept at a finite separation. The results
of the first computation are used in the second.

To find numerically the minimum of 5 in a rota-
tionally symmetric configuration we start from the
Ansatz of'Eq. (2, 17) and further approximate the
functions f(r) and a(r) a. s follows:

2.5-

2.0—

III. VARIATIONAL METHOD

I.o
0.4 0.6

I

0.8
I

I.2
I

l.4 I.6

The Euler-Lagrange equations (2.15) and (2.16)
are solved by fields which minimize the energy func-
tional. In a variational approximation, one introduces
a set of field configurations depending on a number
of variational parameters V;, i =1,%, evaluates 8 as

FKJ. 1. Energy of two superimposed vortices, 8{k,n =2),
and twice the energy of a single vortex, 25 {4., n =1), as
functions of X. The dashed lir. e. represents the bound
derived in the text. At X =1 a crossover occurs, at which

point the bound is saturated.
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n

a(r) =1+e " $ (aip'/I!)
l=0

(3.2)

fp, ap, and a) are set equal to —1, f) is set equal to
for vorticity two, and other expansion coefficients

are the variational'parameters. Expressions (3.1) and
(3.2) are chosen so as to reproduce the correct
behavior of the fields at the origin and the correct ap-
proach to their asymptotic values. Otherwise, the
choice of the expansion is guided by the convenience
of the numerical analysis. Insertion of the A nsatz
into the formula for the energy produces a polynomi-
al of the fourth order in the variational parameters
with coefficients which can be all evaluated analytical-
ly. In the actual computation we have set n = 10.
The coefficients of the polynomial (taking into ac-

count the symmetry of the indices) then form a set
of less than 10 numbers, which can be handled very
easily by a large computer. The search for a
minimum has been carried out approximating the
quartic S by a quadric tangent to it at the current
values of the variational parameters. The minimum
of the quadric is then chosen as the new value of the
variational parameters. The process converges ex-
tremely rapidly (typically in four or five iterations, in

spite of the large, dimensionality of parameter space)
to the minimum of &. Clearly, it is the physical na-
ture of the problem which makes the surface h (f;,a;)
concave and well behaved, and allows for a very effi-
cient variational procedure. The steps for the minim-
ization are expressed by the following equations,
where V/ stand for the collection of variational
parameters:

b ( v, ) = ~, + X~,(') v, + $ s,,(» v, v,. + $ b,,(„') v, v, v„+ g b, („'/ v, v, v„v,

Qb
v. = v.~

(m) I

/ /

/ ~j ~k

(3.4)

/ ~j~k ~l

The conformal transformation

(3.3)

~ (m)
Q2 h

II
=

pygmy
ly y( )m (3.5)

=-2 d
2 =z

2
(3.9)

&(m) (y) b(y(m)) +$g™(y y™)

y SC ™(yy™)

x (v, —v™)

y(m+)) y(m) ~ (sc (m) ) 9 (m)
I / IJ Jj

(3.6)

(3.7)

defines a 1 to 2 mapping between points in the z
plane and points in the z, with the properties that the
origin in the z plane has for images the points

1
z = +—d and that, as the argument of z varies by 2m

at large distance ()—,d) from the origin, the argu-

ment of z undergoes a rotation by 4m-. For the two-
vortex configuration we choose then the phase factor
of $ to be the transform of expression (3.8) and set

eii) = (z/z) )I2 (3.8)

The results of this numerical computation are exhi-

bited in Table I and Fig. 1. We shall comment on

the error in the approximation in Sec. IV and here
only anticipate that we believe the numbers quoted in

the tables to be accurate to all decimal figures.
%e turn now to the major goal of this work, the

computation of the energy of two vortices kept at a

separation d. It is crucial to use a variational A nsatz

capable of reproducing the expected physical features
of the system; in particular, the field configuration
should reduce to that of two rotationally symmetric
vortices if the separation parameter becomes large

with respect to (twice) the range of a single vortex.
To formulate an A nsatz we first fix the phase of the

matter field: this amounts to a choice of gauge. . In
the single-vortex configuration the phase factor of $
1S

it(zz) = z
d
2

'2 '1/2

z —— f(z,z)
2 (3.10)

with real f. f must vanish at z = +—d, behaving
there as

1/2

f=0 z+ — z y—
2 2

(3.11)

This guarantees that i/ has two zeros of the appropri-
ate type at the location of the vortices,

Further specializing the Ansatz we demand that f
consists of an asymptotic term capable of reproducing
a configuration of separated vortices, plus a correc-
tion, containing the variational parameters. Also, we
want to take advantage of the information already ob-
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I

TABLE II. The energy of two vortices at a separation d

for ) =0.7, 1.0 and 1.3. (Units are explained in the text. )

2.52
I I I I I I I I I

z =0.7 x =1.0 z =1.3 2.28—

0

1

2

3

4

5

6

7

8

1.653

1.653

1.656

1.665 .

1.680

1.696

1.710
1.718
1.723

1.728

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.000

2.309
2.308

2.299

2.276

2.254

2.242

2.236

2.234

2.233

2.232

2.24—

2.04—

2.0

l.96—
I .76'—

X=I.O

I.72—

tained for vanishing separation. We set therefore
I.68—

I.64
0

I

2
I

6 IO

x f'"(Izl)+hf(zz) (3.12)
FIG. 2. Energy of a two-vortex field configuration for

X =0.7, 1.0 and 1.3 as a function of the inter-vortex separa-
tion. The dashed lines correspond to asymptotic values.

where cu is a weight factor and ft'~,
,
ft~~ are the func-

tions given by Eq. (3.1) with the variational parame-
ters previously determined for a single vortex and
two superimposed vortices. The function f"' ap-

proaches one exponentially when its argument be-
comes larger than I/X. For d » 2/X, the product

parameters, and is expanded as follows:

5f(z z ) = Iz ——
I (cosh )I lz I)

2

f(1)
I I

f(1) Iz +

then reduces to the function

r

~ f (zz )' z z

I=Qg=Q 2 z z
(3.13)

in the right- (ieft-) half plane and the first term on
the right-hand side of Eq. (3.12), with ~ = I, repro-
duces an asymptotic configuration of separated vor-
tices. In the second term the factor lz' —(d/2)zl/Iz'I
has the effect of replacing the double zero of ft'~ at
the origin with two zeros at z = +—,d; for d =0 and
co =0 this second term reproduces the field of two su-
perimposed vortices. 5f contains the variational

The first factor on the right-hand side of Eq. (3.13)
ensures that @ vanishes at z = +—d; the second factor

I

introduces an exponential cut-off, consistent with the
analytic behavior of $ at the origin; the double sum-
mation is an expansion into powers of Iz I and
cosines of arg z, which takes into account the sym-
metry of the field configuration.

To formulate an Ansatz for A we add the potentials
of a single vortex at z = —d and a single vortex at
z = —

~ d, with weight factor ~, and of two vortices
superimposed at the origin with weight factor (1 —co)
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plus a correction term. We have IU; DISCUSSION

I ~
'

A =co — a z —— — a ' z+—I (]) d i (]) d
2z —d 2 2z+d 2

—(1 —a)) —'a"'(l z l) + ga (z,z )
Z

(3.14)

where a") and a(" are the a functions [see Eq. (3.2)]
previously determined for the symmetric configura-
tions with n =1,2. ha is given by

ga(z, z) = [za'(z, z) +za"(z,z)]
coshl z I

(3.15)

where the real functions a' and a",contain the varia-
tional parameters and are expanded as follows:

aI(II) g g a l(II) I
[(zz )I']

i =Oj=O Z Z
(3.16)

Asymptotically A behaves as A =0(—i/z), which agrees
with the behavior A =0(—iz/[zz —(2 d)2]) inferred

from Eq. (2.10). There are no further constraints on A,
other than it should be regular. In particular,
whereas the potential vanishes at the location of the
vortices in the rotationally symmetric configuration, it

does not have to vanish at z = +
2

d in the nonsym-

metric configuration.
Once the Ansatze for @ and A are formulated, the

variational search for a minimum of 6 is performed
following the same procedure outlined for the sym-
metric vortices. 0) is in a sense also a variational
parameter, but we have chosen for it the value that
minimizes the energy obtained from the Ansatz
without variationa1 corrections (i.e. , with

hf =Sa =0). As expected, this optimal co is small

for small separations but quickly approaches 1 as d
increases past a value of = 2. In the actual computa-
tion we have truncated the expansions of hf, a', and
a" at a power lz l6, thus keeping 18 variational
parameters, apart for a few tegts performed with a

larger number of parameters. Whenever possible,
the coefficients of the polynomial expansion of b
were evaluated analytically, being otherwise obtained
by numerical integration. The results for the
minimum energies as function of the inter-vortex
separation are given in Table II for A. =0;7, 1, and 1.3
and shown, interpolated, in Fig. 2. The profiles of
three gauge-invariant quantities —the energy densi-

ty, the magnitude of the matter field and the magnet-
ic field —are displayed in Fig. 3 for X =1, and four
values of the separation between the vortices.

In this last section we shall comment briefly on the
accuracy of the numerical computation and on. some
of the physical implications of the results. The
evaluation of the minimum energy can be in error
because of the limitation in the space of trial func-
tions, inherent to the method, and of possible nu-
merical approximations in the calculation of the ener-

gy functional. In the rotationally symmetric confi-
guration all of the coefficients in the polyomial ex-
pansion of I5'( V;) are evaluated analytically and only
the first source of error can be relevant. We then es-
timate the accuracy of the computation comparing the
numerical results

b()(=1, n =1) =1.00000013

b()(.=1, n =2) =2.00000435

with the values 8 = 1 and 2, which can be derived
analytically for A. -1. We see that in both cases the
first five decimals are correct and, extrapolating to all

values of A. considered, we estimate the error to be in
the sixth decimal figure.

In the computation for nonsymmetric configura-
tions, some of the coefficients in the polynomial ex-
pansion of 6' are evaluated by numerical integration.
We have checked the accuracy of the procedure by
doubling the number of points in the grid and have
found the results stable up to the fourth. decimal di-

git.
The error attributable to the truncation of the

number of variational parameters is then estimated
assuming that the lower bound 8 =2 for A. =1, n =2
is actually reached by the true minimum. The nu-
merical computation gives 2.000 212, 2.000922,
2.000459, 2.000102, and 2.000082, for A. =1 and
separations d =1, 2, 3, 4, and 5, respectively. If the
correct value is 8 =2, the rnaxirnum error is encoun-
tered for d =2, and is less than b =5 && 10 4 in rela-
tive magnitude. Since 8 =2 is a lower bound for the
energy, the error cannot exceed 4. To check wheth-
er the deviation from = 2 is consistent with the
variational approximation we have repeated the varia-
tional search for A =1, d =2 with an enlarged space
of test functions: terms in lzl6 have been included in

the expansion of Eqs. (3.13) and (3.16), for a total of
24 variational parameters. The minimization then
produces the value 6 =2.000 576 (versus 2.000922
with 18 variational parameters). This makes it plau-
sible that the deviation from 2 is due entirely to the
truncation.

Our results for X =0.7 and A. =1.3 show quite
clearly how vortices attract and repel each other for
values of the coupling constant, which are, respective-
ly, less and greater than the critical value A. =1. As
mentioned in the Introduction, such a behavior has
been found asymptotically4 and also at zero separa-
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3 =i(j@

A =—if' (4.I)

(This is equivalent to a choice of gauge, as it implies
BA +BA =0, or 8„Ai"=0, for the electromagnetic
potential. ). Eq. (2.22) then becomes

( 8 —r) P) g = e ~ t) (e ~@) =0 (4.2)

and reduces to the statement that the function

tion from stability studies. 5 The numerical computa-
tion presented here interpolates nicely between these
extreme cases.

We find most interesting the results obtained for
A. = l. With this value of the coupling constant one
can derive the first-order Eqs. (2.22)'and (2.23).6 If
the fields solve these equations, then the energy
equals the lo~er bound, additive in the vorticity, and
vortices do not interact. However, the. existence of
solutions with arbitrary inter-vortex separation is nei-
ther obvious nor straightforward to establish. Our
work for A. = I is tantamount to a numerical determi-
nation of the solutions. We observe that, following a

procedure already used in different context, ' Eqs.
(2.22) and (2.23)'cin be reduced to a single second-
order equation for a superpotential function X. To
this end, we set

f = e &Q is analytic. Inserting

g(z, z ) = e~ " f(z)

into Eq. (2.23) we obtain

say = —,
' (e'~fJ—I),

and by the further substitution,

(4.3)

(4.4)

(4.5)

we arrive at the final equation for X

(4.6)

The boundary conditions follow fram-the expression
for the matter field,

(4.7)

X should go to zero at infinity and should behave as
In~z —z;~ at the position of, the vortices, where f(z)
vanishes like z —z;. Our results indicate that Eq.
(4.6) has solutions with two singularities (vortices) at
arbitrary separation, and one may conjecture more
generally that solutions will exist with any number of
vortices at arbitrary locations in the plane. The ana-
lytic verification of this conjecture. is left, however, as
an interesting, open problem.
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