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The Knight shift and spin-lattice relaxation time of ' Te in tellurium single crystals have been

measured between room temperature and the melting point (724 K) using pulsed-NMR

methods. Over the entire temperature range, the temperature dependence of the Knight shift is

found to be determined completely by the intrinsic conductivity associated with thermally creat-

ed conduction electrons in the conduction band, and the band-gap energy is determined. The

spin-lattice relaxation time shows different temperature variations in two different regions:

below 420 K ("low-temperature region"), spin-lattice relaxation is due to the conduction elec-

trons (thus yielding information on the gap energy), while above 420 K ("high-temperature re-

gion") the relaxation process is due to the self-diffusion of Te atoms. Our Knight-shift results

are found to agree quantitatively with a modified Knight-Korringa relation valid for semiconduc-

tors, which was originally derived by Bloembergen and which is reconsidered in the theoretical

part of this article, The electronic contribution to spin-lattice relaxation is analyzed in terms of
Hebel and Slichter's single spih-temperature theory as applied to semiconductors. The same gap

energy, E„=0.30 eV, is found from both our Knight-shift and spin-lattice relaxation data. The

self-diffusion properties of tellurium as extracted from our high-temperature relaxation studies

'will be the subject of a subsequent article.

I. INTRODUCTION

Tellurium is a semiconductor with very unusual
properties. ' In contrast to the "classical" semiconduc-
tors germanium and silicon, tellurium has a charac-
teristically low crystal symmetry (see below), melting
temperature (T =724 K), Debye temperature
(Oo =129 K), and small energy gap (see below).

Its NMR properties are also unique. The low na-
tural abundance of the NMR isotopes ' Te and ' Te
(0.85% and 6.98%, respectively) complicates the ex-
perimental investigation of NMR properties, but, on
the other hand, simplifies the interpretation of exper-
imental results in some cases, since direct and pseu-
dodipolar nuclear-spin interactions play only a minor
role in the very dilute spin system. Both isotopes
have spin I = 2. Therefore, quadrupolar interac-

tions, which would otherwise be expected to be con-
siderable in the noncubic crystal lattice, do not exist.
The high number of core electrons is responsible for
the very large chemical-shift interactions observed
which, in more "normal" materials, are orders of
magnitude smaller than the dipolar and quadrupolar
interactions. For these reasons, tellurium offers a

rather simple and convenient nuclear-spin system
which may be used to investigate electronic and dif-
fusional properties in the rather wide temperature
range between room temperature and the melting
point.

The hexagonal crystal structure of tellurium (trigo-
nal system) consists of spiral chains. Every fourth
atom sits directly above another atom in the same
chain. The chains are centered around the (0001)
direction (c axis). Neighboring atoms on the same
chain ar'e rotated by 120' with respect to one anoth-
er. Therefore, each chain appears triangular when
viewed along the c direction (see Fig. 1). The dis-

tance between the two nearest neighbors in any chain
is 2.86 A, and that between adjacent chains (four
such neighbors per atom) is 3.46 A. While the bonds
between different chains are of the Van der %aals
type (with binding energies between atoms on neigh-
boring chains ranging between 0.22 and 0.05 eV), '

the bonds between neighboring atoms on the same
chain are covalent (with a binding energy of about
0.68 eV). '

The intrinsic electronic properties of tellurium may
be characterized by the energy gap E„between the
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FIG, 1. Crystal structure of tellurium consisting of spiral
chains arranged in a hexagonal lattice (top). The three
nonequivalent atom sites lead to a three-line NMR spectrum
of '25Te due to chemical-shift interaction. The lattice

0 0 0
parameters are a =4.45 A, c =5.95 A, and r =1.19 A. In
the bottom half, a view along the c axis illustrates the hex-
agonal arrangement. of the triangular spiral chains.

valence band and the conduction band. ' Optical ab-
sorption measurements show a decrease of E„ from
about 0.34 eV at 100 K to about 0.32 eV at 450 K.
Optical-emission studies yield slightly smaller values
of Eg (Ref. 2).

The relatively low lattice energy suggests that the
thermal creation of point defects may play an impor-
tant part in both the electronic conductivity and the
self-diffusion properties. Thus, for example, if a
bond within a chain is broken by the formation of a
vacancy, an electronic acceptor state may be created,
since the free Te bonds at the chain ends tend to be
saturated by free electrons. By measuring the Hall
coefficient after quenching and annealing of Te single
crystals, Horstel and Kretzschmar investigated the
temperature dependence of the acceptor concentra-
tion. They concluded that thermally created vacan-
cies with an enthalpy of formation of about 0.8 eV

are, indeed, the origin of the acceptor states.
The NMR spectrum of single-crystalline tellurium

was first observed by Bensoussan' and Koma. ' They
found three well-separated absorption lines, each of
which showed a highly anisotropic chemical shift.
More recently, Selbach and Kanert sho~ed that even
up to the melting point, these characteristics of the
NMR spectrum do not change. The observed
chemical-shift tensors have been related to the types
of Te positions within each trigonal chain on which
the orientations of the electronic bonds differ. 4' lt
was found that in their respective principal-axes sys-
tems, the three chemical-shift tensors on the three
positions are identical. 4'

The three different chemical shifts observed, there-
fore, are the result of the different orientations of the
tensor ellipsoids on the three types of. Te positions
within a chain. By varying the crystallographic orien-
tation of the Zeeman field Ho, it is therefore possible
to vary the relative positions of the three NMR lines.
Through an appropriate choice of orientations, two or
even all three lines may be forced to coincide. The
observed chemical-shift tensors have been interpreted
theoretically in terms of the sp hybridization of the
valence-electron wave functions. Initial nuclear-
spin-relaxation measurements of the low-temperature
T~ properties of tellurium ( 4 —300 K) were reported
by Koma et al. Neither electronic nor diffusional
effects on T~ are found at these low temperatures,
and T~'appears to be determined by the phonon-
induced time variation of the three chemical-shift
tensors.

More recently, Selbach and Kanert extended the
temperature range considerably by measuring Tt up
to the melting temperature. Their measurements
clearly demonstrate that in addition to the low-
temperature region, two temperature regimes, in
which T~ is determined by different microscopic
processes, may be distinguished: (a) At medium
temperatures (300,—420 K), T~ is determined by
thermally mobilized conduction electrons, (b)
Above 420 K ("high-temperature region"), T~ is
dominated by diffusion-induced chemical-shift flu-
ctuation.

In the present article and its sequel, a comprehen-
sive experimental and theoretical investigation of the
NMR behavior in these temperature regions is
presented for high-purity tellurium single crystals.
While the high-temperature (diffusion-induced) pro-
perties will be the subject of the second article, in the
present paper the following three questions wi11 be in-
vestigated: (a) Does tellurium exhibit a Knight shift
of the NMR spectrum? If a Knight shift is found,
how is its magnitude related to what is presently
known about the electronic properties of tellurium?'
(b) Can we detect an electronic contribution to T~

which arises from the intrinsic conductivity of telluri-
um? (c) How large is the band gap (for intrinsic
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conductivity) between the valence and the conduction
band~

To answer these questions we have performe'd the
first measurements, to our knowledge, of the spin-
lattice relaxation and Knight-shift effects associated
with the intrinsic conductivity of a semiconductor.
The extrinsic conductivity of semiconductors has been
the subject of earlier investigations (which do not,
however, permit measurement of the gap energy).
As a starting point for the interpretation of our
Knight-shift and T~ measurements, the early theory
of Bloembergen' will be reconsidered from a more
general theoretical point of view.

II. THEORY OF NUCLEAR SPIN-LATTICE
RELAXATION CAUSED BY CONDUCTION

ELECTRONS IN SEMICONDUCTORS

A. Application of Hebel-Slichter 'theory

Among the first-order magnetic hyperfine interac-
tions, the Fermi-contact interaction usually dom-
inates the nuclear spin-lattice relaxation caused by
conduction electrons in metals and semiconductors.
For a crystal containing N, conduction electrons and
N identical nuclei, the Fermi-contact interaction
Hamiltonian may be written as follows:

N

y, yq g $ lj S 5(rj ),
J lm 1

(2.1)

where y, and yi denote, respectively, the electronic
and nuclear gyromagnetic ratios while AI& and AS

represent the angular-momentum operators of nu-
cleus j and electron m, respectively. r& =r, —r is
the vector joining some electron m with some nucleus
j. For the purpose of investigating spin-lattice relaxa-
tion processes, the Hamiltonian of the entire crystal
may be subdivided into the Harniltonians of the iso-
lated nuclear-spin system Xs, of the "lattice" 3CL (in-
cluding all nonnuclear-spin degrees of freedom), and
the interaction Hamiltonian 3CsL between these two
reservoirs, according to

3C =DCs +hCL +XsL . (2.2)

ering XsL =3CFc as a weak perturbation which acts on
BCs, and performing a calculation outlined in detail in
Ref. 12, we obtain

Ho' + Sea'= —~'&,'y,'a4 J&'&(n), (2.4)
T ' ' '' H'+H'

where HD and Hg" denote, respectively, the secular
and nonsecular contributions to HD. As discussed in
more detail in Ref. 12, in powders with only direct di-
polar interactions between nuclear spins, we have

((H'"')') =4 ((H"')') = —'(H') (2.7)

Here the parentheses symbolize a solid-angle average.
Combining Eqs. (2.7) and (2.6), we thus find that in

powders we have 5 =1.8, while in a single-crystal 6 is
expected to be anisotropic. In the high-field limit the
fraction in Eq. . (2.4) involving magnetic fields be-
comes unity, and the relaxation rate of the Zeeman
reservoir becomes

2 2 2g4J(l)(f))
, e

(2.8)

where 0 represents the nuclear precession frequency
associated with the combined effect of Zeeman and

'

local-field precession. The spectral densities associat-
ed with the fluctuations of XFc which are experi-
enced by the nuclear spins,

N N

1
hf e e

J,&"( ) = X X XJ dr Tr, [S.~ &(r)S„&-&j
NTr, (1)»~,„ i

x8(r (r) —p, (r))

x & (r„(0)—rj(0)) e'"',

(2.S)

may be shown" to be independent of the nuclear
precession frequency (which is much smaller than the
precession frequency of the conduction electrons).
Therefore, the field dependence of (T& '), in Eq.
(2.4) is entirely determined by the magnitude of the
factor 5 defined by

2H &'~H ~"&

v=1+ (2.6)
H2

3'.s =3Cz +DC' (2.3)

An isolated nuclear spin- —, system experiences main-

ly Zeeman, and rigid-lattice (RL) dipolar (and, for
atoms with large electron cores, pseudodipolar) in-
teractions; hence

Equation (2.8) agrees completely with Winter' s
result. "Combining Eqs. (2.8) and (2.4) we may
write

H02 + SIID

H0 +HD
(2.9)

The spin-lattice relaxation rate (7'~ ), arising from
conduction electrons in a Zeeman field Ho of arbi-
trary strength with respect to the dipolar local field
HD, is most conveniently deduced from the Hebel-
Slichter equation. " Hence, by assigning a single spin
temperature to the nuclear-spin reservoir and consid-

In most cases in which 5 has been determined experi-
mentally, values between 2 and 3 have been found
(see, for example, Refs. 15—17). As discussed in
Ref. 12, values of 5 in excess of 1.8 are expected for
nuclei with quadrupolar moments only. Interestingly,
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xf(E) [I -f(E)) dE, (2.10)

where (l u-„(0) l') e denotes the density of electrons
with average energy E and wave-vector k at the nu-
clear positions averaged over the energy surface.
p(E) represents the electronic density of states, while

f(E) symbolizes the probability that a state of energy
E is occupied by an electron.

Before Eq. (2.10) is evaluated for the intrinsic and
extrinsic conductivity of semiconductors, its applica-
tion to conduction electrons in metals will be re-
viewed briefly.

all metals in which 5 has been determined so far
have quadrupolar moments.

The spectral densities (2.5) have been calculated by
Hebel and Slichter" (see also Ref. 13), When all but
the Zeeman and kinetic energies of the electrons are
neglected and the complete wave functions are

decomposed into products of Bloch functions and
nuclear-spin wave functions, a lengthy calculation'3
leads to

Jt' =—jt (lu-(0)l')'p'(E)

(lu-„(0) l')&, J p'(E) f(E) dE . (2.13)

Here E, denotes the gap energy of the semiconduc-
tor. (Note that in the usual way the top of the
valence band has been chosen to represent E =0.)
Substitution of the density of states for a parabolic
band into Eq. (2.13) yields

rzi, e

2 2128 vPvl
(l (()) l2) 2 ( y)3

bution function may be replaced by a Boltzmann dis-
tribution function. Electrons in the conduction band
and holes in the valence band [the latter with distri-
bution function I —f(E)) may therefore be treated
according to classical statistics.

In the limit in which E EF »—kT, f(E) is rather
small and 1 f(E)—practically equals unity. To a good
approximation, the average electron density

(l u-„(0) l') e is a slowly varying function of E. Its
value inside the conduction band is therefore approx-
imately equal to its value near the bottom Eo of the
conduction band (for electrons) or near the top of
the valence band (for holes). Equation (2.10) then
simplifies as follows:

8. Correlation functions for metals
( ) 2

(E —EF)/kr—
(2.14)

Since electrons in metals follow the laws of Fermi-
Dirac statistics, f(E) in Eq. (2.10) is to be identified
with the corresponding distribution function. As
shown by Hebel and Slichter, Eq. (2.10) then yields

(l~(0) l')' p'(E, ) kT (2.1 I)

vr3t3y~2yr2(luk—(0)l )e p (Er:)kT-
i

= —,—y,'yr'(lu-„(0) l')e (m, ')'n''kT

(2.12)

where EF denotes the Fermi energy. By inserting the
density of states for the quasi-free electron gas" and
combining Eqs. (2.11) and (2.9), the following well-

known relationship is obtained:

The s part of the electron-nucleus interaction not
only gives rise to spin-lattice relaxation but also to a
Knight-shift EC = hH/Ho of the NMR line, As
shown by Bloembergen, ' this shift is proportional to
the number n, of electrons in the valence band (per
unit volume), and'0

K = =
7

2t2 (lu-„(0) I2)e (2.15)

For pure or doped semiconductors, n, may be calcu-
lated as follows. is

n, = J~, p(E) f(E) dE

=2 —(F. —FF)/k T= —(2vrm, 'kT) e
h3

(2.16)

This expression may be introduced into Eq. (2.14) in
order to eliminate Eq., we thus obtain

where m, 'is the effective mass of electrons and n,
their density, and C& represents a constant first
derived by Korringa.

1 Ti/2
TZ B e

1

(2.17)

C. Correlation functions
for semiconductors

As is well known, inside the conduction band of a
semiconductor (E EF » kT) the Fermi-Dirac d—istri-

0 '3/2

~2 2 2k i/2,
,

m,
(l~(0)I')e, . (2.18)

Equations (2.17) and (2.18) were first derived by

with the practically temperature-independent "Bloem-
bergen constant" given by .
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Bloernbergen' in a rather intuitive manner. For
comparison with Bloembergen's results, it is useful to
remember that in Bloembergen's expression for X~~,
the hyperfine constant A (in units of the atomic
volume Vq) is given by

lurium the average g factor of the conduction elec-
trons has a value of 9 instead of the free-electron
value of 2 (Ref. 1).

III. EXPERIMENTAL DETAILS
A Vg = t y, yl (( u-„(0)

~ ) s (2.19)

Comparing these results with those derived for a
Fermi-Dirac gas, we observe that for conduction elec-
trons, (Tzt), ' is proportional to (m, ")'n,t"T [see Eq.
(2.12)], while for a semiconductor (Tf), ' is propor-
tional to (m, ")3~~n, T'~~ [see Eqs. (2.17) and (2.18)1.
A simple qualitative physical picture accounting for
these features was discussed by Bloembergen. '0

The above results are valid for any (doped or pure)
semiconductor. In doped semiconductors, n, is usu-
ally temperature independent and constant. Equation
(2.17) may then be used directly to predict the
explicit temperature variation of the spin-lattice relax-
ation rate. In pure semiconductors, however, the
concentration of electrons and holes, n, and n&, in-
creases strongly with increasing temperature, accord-
ing to"

np=ni, = —,(27rkT)''(mp "m/, ')' e
2 —E /2kT

(2.20)

and the Fermi energy lies approximately in the center
of the band gap (i.e., Eq =

2 E,). Equations (2.17)
and (2.15) then become, respectively,

Tf&, e

2 2128 y~yl
(~& (0)~2)

~ ~3/C

x „(kT)2exp ( E~/2kT), —(2.21a)

x(m, "mz') (kT)' 'exp( E„/2kT) . —

(2.21b)

Therefore, by measuring the temperature variation of
the spin-lattice relaxation rate or the Knight-shift, the
gap energy E„may be determined.

To eliminate the electron density at the nuclear po-
sitions, by analogy with the Korringa relation for me-
tals'3 expressions (2.21a) and (2.21b) may be com-
bined to yield

The NMR measurements on '"Te were performed
at magnetic fields of 14 and 63 kG, respectively, us-

ing a Bruker pulse spectrometer SXP 4-100 including
a transient recorder (Data Lab DL 905). The NMR
system was connected to a ovarian 620 1 on-line com-
puter in order to generate the pulse sequence, and
store and analyze the data. The re)axation time T~~

was measured by applying a m-pulse or a saturation-
pulse sequence at a time 7 prior to the —,m "reading"

pulse, whereas the relaxation measurements at zero
field were carried out by means of the ADRF (adia-
batic demagnetization in the rotating frame) tech-
nique. The spectrum, as well as the Knight shift, of

Te were obtained from Fourier transformation of
the off-resonance free-induction decay following a

2
n pulse. The shift measurements have been re-I

ferred to the ' Te signai of solid TeC12.
Cylindrical samples, 4 mm in diameter and 10 mm

in length, were prepared from tellurium single cry-
stals, with the cylinder axis along the crystalline c
direction. Two types of single crystals were used,
namely Czochralski-grown crystals with a natural iso-
topic abundance of '25Te (obtained from Wacker
Chemitronic/Frankfurt, Germany and self-grown sin-

gle crystals prepared from enriched (94% '"Te) ultra-

pure tellurium by the zone-melting method described
by Tao-I Chiang. '

The sample was mounted on a goniometer inside a
high-temperature probe which was capable of operat-
ing at temperatures up to 700' C and could be tem-
perature controlled with an accuracy of about +1' C.
The single platinum NMR coil was fitted into a

quartz tube that was noninductively wound with a
heater coil. The heater coil was driven by a power

supply that was continuously controlled by a
thermocouple-actuated temperature controller.

The entire probe assembly was mounted in a
water-cooled copper container. The temperature of
the sample was determined by means of a Philips
Chromel-Alumel thermocouple placed in contact with
the sample.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
2 ~ '3/4

2( z) k 'Ye my E ~2kr

4k y( m, ' (2.22) A. Shift measurements

It should be noted at this point that y„ the gyromag-
netic ratio of the conduction electrons, differs in gen-
eral from that of free electrons. In particular, for tel-

As mentioned in Sec. III, the temperature depen-
dence of the position of the measured '"Te spectrum
was referred to ' Te in solid TeC12. The evaluation
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K/T' =3 t exp ( E,/2kT—), (4.1)

where A ~ is a temperature-independent constant. An
expression for 3 ~ may be derived by comparing Eqs.
(4.1) and (2.2lb). The straight line in Fig. 2 indi-
cates a uniform shift mechanism over the entire tem-
perature range (room temperature to melting point)
caused by the conduction electrons. The data points
were found to be independent of the crystal orienta-
tion relative to the external field and of the concen-
tration of the '"Te isotope. The slope of the straight
line in Fig. 2 leads to a gap energy E, of 0.30 eV, in
agreement with the gap energy of tellurium at higher

tkK
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FIG. 2. Knight-shift K times the square root of the in-

verse temperature of '25Te in tellurium, plotted against the
inverse absolute temperature. The straight line fitting the
data confirms the validity of the temperature dependence of
K as predicted by Eq. (2.21b).

of the experimental data shows that within the exper-
imental error limit of +10%, the chemical-shift tensor
is independent of temperature over the entire tem-
perature range (300—740 K). Due to the increasing
number of conduction electrons, the center of mass
of the rotation pattern of the three-line spectrum
scales with temperature as described by Eq. (2.21b).
Since the chemical-shift tensor is determined by the
orbital electrons and hence by the crystal structure, it
can be concluded that the crystal structure of telluri-
um remains practically unchanged up to the melting
point. This is in agreement with the data of Arnold
and Grosse, '0 who measured the relative temperature
dependence of the lattice constants by x-ray methods.

Figure 2 shows the measured Knight shift of '"Te
in tellurium as a function of temperature in a

representation suggested by Eq. (2.21b), with

temperatures. ' The experimental value of the coeffi-
cient A ~ in Eq. (4.1) is determined from Fig. 2 to be

I.38 x IO~K '~2

B. Zeeman spiri-lattice

relaxation measurements

Figure 3 shows a semilogarithmic plot of the Zee-
man spin-lattice relaxation rate 1/Tf of '25Te as a
function of inverse temperature. The measurements
were carried out in tellurium single crystals with ei-
ther a natural abundance of '25Te (7%) or a high con-
centration of ' 'Te (94/o). To avoid problems associ-
ated with the establishment of a single spin tempera-
ture, the orientation of the crystals relative to the
field Ho was chosen in such a way that the three lines
of the ' Te spectrum coincide (c axis parallel to Ho).
As demonstrated in Fig. 3, the relaxation rate is in-
dependent of the concentration of '"Te. As shown
in a previous paper, the relaxation rate is also in-
dependent of the strength of the field Ho.

Contrary to the Knight-shift data presented in Fig.
2, two regions of the Ttz vs 1/T curve may be dis-
tinguished. The temperature variation of the relaxa-
tion rate below 420 K is determined by the interac-
tion of the nuclear spins with phonons and conduc-
tion electrons. Above 420 K, the slope is markedly
higher, indicating that an additional relaxation
mechanism is activated. As we sha11 discuss in detail
in a subsequent article, atomic translational diffusion,
which modulates the chemical-shift interactions, is
responsible for the relaxation process in this region.
In our case, in which the three NMR lines coincide,
only a diffusion process involving interstitial sites is
capable of causing fluctuations in the chemical-shift
interactions. Therefore, the energy of 0.58 eV deter-
mined from the slope of the high-temperature data in
Fig. 3 is found to be associated with the activation
energy (formation and migration) of interstitials in
tellurium. To obtain the conduction-electron induced
part of the relaxation rate from the low-temperature
data of Fig. 3, one has to subtract the relaxation rate
caused by phonon-spin interactions. As shown by
Koma et al. , in the case of tellurium, the phonon-
induced contribution to the relaxation rate is a Ra-
man two-phonon process. By analogy with the
phonon-induced quadrupolar relaxation first calculat-
ed by Van Kranendonk, " phonons cause the
chemical-shift tensor to fluctuate, and this causes
fluctuating magnetic fields at the nuclear positions.
These fluctuating fields, in turn, give rise to the nu-
clear magnetic relaxation. Koma et aI. have shown
that this relaxation mechanism is dominant for tellu-
rium in the low-temperature region (20—200 K).
From their data, the phonon-induced part of the re-
laxation rate (1/T~)~h can be calculated as



NMR INVESTIGATION OF THE DIFFUSION AND. . . I. . .

400 35Q 300

0 Relaxation via
tfansiationai diffusion

Eoct = 0,58 eY

Relaxation via
phonons pnd conduction

electrons
o~g

of Te'")

—", ~' T[K]
700 600 500 450

(sec-')-
100.-

'e

I

I

I

I

I

I 0
I

l"

I

I Melting point
I

I

I

I
10-'"-- - —i—~—Tellurium single crystal

{7%natural abundance

10 -'

" -o—o—o—Tellurium single crystal
{94% enriched Te' )

Ho= 63,3 KG
Is +-- s

1,4 1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4 )10-~.K-~]
'}

T

FIG. 3. Zeernan spin-lattice relaxation rate 1/T& of ' Te in tellurium single crystals, as a function of inverse temperature.
The c axis of the crystal was aligned parallel to the direction of Ho, an orientation for which the three lines of the ' Te spec-
trum coincide.

t
l

Tj T, T{K)
t106sec'K ) =

tO- o$
8,0--

6,0"

450 4gQ

4,0"

2,0-.

1fj-
08.-

06.-

EG = 0,30

0,4"
H =633KG

—~--- Tellurium single crystal
0,2-. {7%naturpl abundpnce of Te' )

015" -o—o—o- Tellurium single crystal
{94%enriched Te~» )

Q1 s s

1,4 1,6 1,8 2,0 2,2 2,4 26 28

T

s

3,0 3,2 3,4 (10-3. K-& ]

FIG. 4. Arrhenius representation of the phonon-corrected Zeeman relaxation rate 1/7&'times the square of the inverse tem-

perature for ' Te in tellurium, as obtained from Fig. 2. Below 420 K, the data are in agreement with the theoretical relation-

ship (2.21a).
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(I/T~), „=0.25 x10 T (sec ') (4.2)

where T is the temperature in degrees Kelvin.
As shown by Eq. (2.21a), the temperature depen-

dence of the relaxation rate caused by conduction
electrons is governed by the relation

z 2
=A2exp ( —E~/2kT),1 (4.3)

K (T~ ),T=Ce px
0.30 eV (4.4)

where A2 is a temperature-independent constant.
Figure 4 shows an Arrhenius representation of the
experimental data of Fig. 3 suggested by the above
relationship. The relaxation rate I/Tt in Fig. 4 is

defined as I/T~ ' = I/Tz~ —(I/T~)». The slope of the
low-temperature (300—420 K) data leads to a gap en-
ergy of 0.30 eV, in agreement with the value ob-
tained from our Knight-shift measurements (see Sec.
IV A). Furthermore, the data of Fig. 4 yields a value
of the coefficient A2 of

32=69.7x10 6sec 'K

Combining Eqs. (4.1) and (4.3), the modified Kor-
ringa relationship [Eq. (2.22)] can be written as fol-
lows:

measurements in the rotating frame were performed
on ' 'Te belo~ 450 K by means of the ADRF tech-
nique, as described in Sec. III. The measurements
were carried out on a tellurium single crystal with a
natural abundance of ' Te. As in all of our T~ ex-
periments, the e axis of the crystal was parallel to the
direction of the magnetic field Hp. Figure 5 shows
I/T~ obtained by ADRF in comparison with the Zee-
man relaxation rates obtained in the same single cry-
stal (see Fig. 3). As proposed by Eq. (2.9), the ratio
of the two relaxation rates is equal to the coefficient
5. From the low-temperature data presented in Fig.
5, one obtains a value of 5 = 1.5, in rough agreement
with the theoretical value of 1.8 for a powdered sam-
ple as discussed in Sec. II. It should be noted at this
point that a value of 1.8 is expected only in cases
with direct dipolar interactions between the nuclear
spins. In tellurium, the indirect (pseudo-) dipolar in-

teractions cannot be completely neglected, however.
The fact that 5 is less than two is nevertheless re-
markable in that no other 5 value this low has been
reported for metals in which T& is also governed by
Fermi-contact interactions. This may support the ar-
gument, promoted in Ref. 12, that values of 5 in ex-
cess of 1.8 are due to quadrupolar effects.

C
'

p 2.7x10 sec K

On the other hand, the pre-exponential factor C can
be calculated theoretically by means of Eq. (2.22)

l 2 '3/4
ye mi

4k y
(4.5)

With mi, =0.5mo and m, ' =0.27mo (where mo is the
mass of the free electron)' and taking into account
that the average g factor of conduction electrons in
tellurium has a value of 9 (instead of 2, as for free
electrons' ), Eq. (4.5) yields

C,h„,„=2.63 x10 sec K .

where the pre-exponential factor C = A ~'/A2 has been
determined experimentally as

ii T(K]
450 400

1,0-- 0
0,8"
0,6"

04"
0,3"

~ 02.
0
0
& 0,1 "

0.08"

0,06"

0,04"

0,03"

350 300

Obviously, the theoretical value of C agrees quite
well with the experimentally determined value. This
indicates that the assumption of a Fermi-contact in-

teraction between s-type conduction electrons and nu-
clear spins (see Sec. II), represents a valid description
of the electronic properties of the semiconductor tel-
lurium.

C. Relaxation measurements
in the rotating frame

To obtain an experimental value of the coefficient
5 in tellurium as introduced by Eq. (2.9), relaxation

0,02"

I

2, 2 2,4 2,6 2,8 3,0 3,2 3,4

T

tio 3K ']

FIG. 5. Comparison between the relaxation rate of ' Te
in the rotating frame at zero field (ADRF) 1/T~, and the
Zeernan relaxation rate 1/T~, plotted semilogarithmically vs
the inverse temperature. The measurements were carried
out on a tellurium single crystal with a natural abundance of

Te (7%); the e axis was aligned parallel to the direction of
Hp.
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