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Linear and derivative nuclear operators in single-hmo,
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The known nuclear factors for the rates of transitions driven by the z and 8/Bz operators in

one coordinate are generalized to two and then to any number of coordinates. In the notation

0+=z, 0 =9/9z, the nuclear. factors N'&0 for one and M~~ for multiple coordinates are

related by M~0 = (1—y) ~~0 +yL~, The functions &~0 and L~ are combinations of

Huang-Rhys-Pekar 8' (S, (m)) functions. The parameter y lies between 0 and 1. The factor

M~ @» agrees with factors derived for the Bj&z operator in 10 coordinates by Huang and Rhys

and by Perlin. The largest differences between W 0 and M 0 are in the region p near S for
S large.

I. INTRODUCTION

This paper describes the nuclear factor in the tran-
sition rate between two electronic. states for single-
h~o models, namely, models in whi~h all nuclear
coordinates are independent and have the same pho-
non energy A~0.

Nuclear factors in single-h~o models are expressible
in Huang-Rhys-Pekar (HRP) ' 3 W, (S, (m') ) func-

tions. These functions are defined as the normalized

(g;"„W,=1) solution of the three-term recursion

formula

where jo is the larger of 0 and —p, as may be verified
by entering Eq. (2) in Eq. (1) and in the norntaliza-
tion condition. In nuclear factors, the index p is the
number of phonons generated in the transition, and
the arguments Sand (m) are, respectively, the HRP
measure of Franck-Condon offset and the Planck
average-thermal-occupancy measure of the tempera-
ture.

The following W, -function combinations are useful
in stating the nuclear factors compactly:

Lv =
2 ((1+m) Wv t + (m) Wv+t),

S(m) Wv+, +pWv —S(1+m) W t
——0

and are given by

8', (S, (m)) =exp (—S (1+2m))

x , (2)(S (m))~(S (1+m))v+~

J '(p+J)

Wv, = (p —S)'W, ,2S

Wv sos, = Wv, —2$ (1+m) (m)
x(Wv t

—2 Wv+ Wp+t) .

The rate of the transition. in which p phonons are
generated is, in N coordinates,
I

mt+m2+ ' ' ' +my
Rv ——X(1 r)ur ' ' u~ (u—„,u„u„~0~v, v v ) )',

n, m

(4)

where 0 is the nuclear operator that results following
integration over the electronic coordinates. In Eq.
(4), the v and u„are the initial and final vibrational
wave functions, the n, m indices are constrained to
satisfy X, (n; —m;) = p, and r is the Boltzmann factor

exp ( tcoa/kT) related to —(m) by

(m) —= gm(1 r)r—
0 1 —r

= [exp (hrva/kT) —1]
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Rv, =Az[(1-y) Wv, + yL»] =A2Mp, , —

R, gs, = A'[(1 —y) W, ys, + yL, ]

Mp ~/„,2

(6)

where the nuclear factors Mp and Mp@q, use the
8'p-function combinations Lp, Wp„and N~ Q/Q in Eq.
(3), and the electronic factor A2 and the parameters
S and y are given by

For the Condon-approximation operator
0 =A =constant, Rv in Eq. (4) is, in any number of
coordinates, A'8'p, where A arid 8'p are the transi-
tion electronic and nuclear factors, respectively. S~
is the HRP Wv function for the offset S = $,S;,
where Si is the offset between the initial and the final
states in the ith coordinate. This nuclear factor has
been derived for one coordinate, "for the HRP lat-
tice model (which we arbitrarily characterize as -10"
coordinates, the number of modes in a 1-cm' cry-
stal), ' ""' and for an arbitrary number of coordi-
nates. 5 9'5

For the linear (z) and derivative (8/Bz) operators
in one coordinate, Rv in Eq. (4) is A' Wv, and
A 8p Q/Q respectively, where A is the electronic
factor and the nuclear factors 8'p, and 8'p@q, -are the
W, combinations in Eq. (3). The nuclear factor for z

was derived by Wagner and Koide' and the factors
for z and 8/Bz by Struck and Fonger. '6

In multiple coordinates N «2, the linear and
derivative operators are 0, = X,. A;z; and

Oars, = X, AIB/Bz;, and R, in Eq. (4) is

N

(7)
. (g 2s) —

1) Xg s 1/2) 2

i 1

The constant y needed for multiple coordinates lies
between 0 and +1. For one coordinate, y =0, and
Af~, and Mv ys ln Eq. (6) reduce to the one-
coordinate z and 8/Bz nuclear factors W, , and
8'p, @~„respectively.

The multiple-coordinate rates (6) are derived for
any N ~2 in this paper. Rv@s, in Eq, (6) had been
derived for 10 2 coordinates by Huang and Rhys' and
Perlin. "'" The present work bridges the gap
between the one-coordinate formulas and the
Huang-Rhys-Perlin formulas for 1}/Bz in lozz coordi-
nates.

II Mp, s AND Mp. y/ys FORMULAS

Formulas (6) for M, , and M, ys will be derived
first for two coordinates. ' The notation
0;+=z, , 0; =8/BzI will be used. This notation re-
flects well-known formulas for the linear and deriva-
tive matrix elements and allows these matrix ele-
ments to be written in a single equation,

(u„) 0+) v„& = (—m)'i2(u„) v

+ [—,
' (m+1)]'"(u. l v +i& .

See Sec. II of Ref. 16 for a sketch of the derivation
of Eq. (8). Both M,,o+ formulas can now be ob-

tained in a single development

3 Mvo = g ) (u„u„)AlO~++A20z+) v, v &)2(1—r)2r '

n&m&n2m2

[I& I'(u, .-)o+I». &'(u. ..Iv. &'+I&2)'(u, +. Iv. &'(u. ..)02+)». &'
p&p2m]m&

+(A(A2" +A2A)') (uv +~ ) v
& (uv +„)0)+)v~ ) (uv „~ ) v~ &

x (uv, )0,+)v &] (1—r)'r '

= X [I~ & I Wj
& o&+ Wv +

I ~2)' Wv& Wvz o + + (~ t~ 2" +~ 2~ t
')

&»& o +&v o +]
P)

(9)

1n the last form of Eq. (9), the W's are single-coordinate nuclear factors described in Sec. I, and the X's in the
cross term are the single-coordinate quantities

+OO

Xvo —= X (uv+ ) v ) (u + )0+) v &(1 r)r™—
=(—,

' S)'~'[ (m)(W» —Wv~)) + (1+m&(W» )
—Wv)],
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where mo is the larger of 0 and —p. This evaluation
of Xpo is derived in Appendix A using Eq. (8) and

the Manneback recursion formulas"" for the over-
lap integrals (u„~v ).

In the last form of Eq. (9) and in the equations
below, the 8"s and X's are written without their ar-
guments S, (m). It should be understood that, if the
Wor X subscript is p~ (or p2), the arguments are
S~, (m) (or S2, (m)). In the first form of Eq. (9),
n», n2, m~, m2 are constrained by

(n, —m~) + (nq —m2) =p. In the last two forms of Eq.
(9) and in the equations below, p~ is summed from
—~ to +~, and p~, p2 are constrained by p~+p2= p.
In the second form of Eq. (9), m~ is summed from
m~ 0 to ~, ~here m~ 0 is the larger of 0 and —p~, and
m2 similarly.

The formulas for Wpo+ ln Eqs. (3) are the sim-

plest for these nuclear factors but are not the most
convenient for summing over p~ in Eq. (9). In Ap-
pendix B, it is sho~n through the Wp recursion for-
mula (1) that Wpo can be written

+2

Wpo =Lp+S X aio Wp+;,
l=—2

where Lp is the Wp combination in Eq. (3) and the
o.;0, given in Appendix 8, are "temperature coeffi-

cients" depending only on (m).
With Wpo+ given by Eq. (11) and X, o by Eq.

(10), all terrris in Eq. (9) are of the form
K 8p +' 8p +j where K is independent of p ~,p2.

These terms can be summed over p~ through applica-
tion of the reproductive formula for HRP Wp func-

+oo I

X KW, Wp i=KW; i(S)+S2, (m)),
p ~ oo

1

(13)

where W~+'+j has for its S argument the sum of
S» and S2.

Making use of Eq. (13), expression (9) becomes

A'Mpo =IAil2 L,+S) $ a;o Wp+
I= 2

+2

+ ~A, ~' L,+S, g
l= 2

+ (A )A2'+ A2A ) ')

+2

x(S)S2)'i' $ a;o Wp~,
2

(14)

In Eq. (14), the arguments of all Wp's, including
those underlying l.p, are S, (m), where S =S~ +S2.
The (A~(~ and ~Aq~ terms in Eq. (14) are evident
from Eq. (11), but the A~A 2+A A2~'cr ssoterm is
not evident from Eq. (10). The computation of this
cross term is given in Appendix C.

Formula (14) can now be developed as

tions, namely, '
+oo

Wp (St r (m ) ) Wp (S2, (m ) )
p ~ oo

»

= Wp(S(+S2, (m)), (12)

where p» +p2 =p. Such an application gives

+2

A Mpo =&IAil Si+IA2I'S2+(AtA2'+A2Ai')(SiS2)» $ a,o+Wp+ +(IAil +IA2I )Lp
I= 2

t I

= IA iSi'" +A2S2" I'S '«po+ - Lp) +(IA il'+ IA21') Lp -A'~(I-y) W, ,o++ yLp»,

where A~, S, and y are given as in Eqs. (7) for N =2.
The Mpo formulas for three, four, or more coordinates are obtained similarly. For example, for three coordi-

nates, terms of the form ~A ~
~' Wp, o, + W, Wp and

(A)A2'+A2A)')X, o, Xp, o, +Wp,

are obtained; and p~, p2 are summed from —~ to +~ with p~, p2, p3 constrained by p~+p2+p3=p. Using Eq. (11)
for Wpo and Eq. (10) for Xpo, these terms are summed through the HRP Wp reproductive formula in three

coordinates,

Wp (S~, (m)) Wp (S2, (m)) W„(S3,(m)) = Wp(S~ +S2+S3, (m)),
p ~,p2~ —oo

I

where p~+pq+p3=p; and Eqs. (6) for M, o again result, where A', S, and y are given as in Eq. (7) for
W =3.
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gS =A'S. (17)
l

Since all the added terms are non-negative, it follows
that I g,. A;S l'lz lies between 0 and A'Sand there-
fore that, as asserted, y in Eq. (7) lies between 0 and
+1.

The parameter y is a measure of the unevenness
of the A; and S ' for.the different coordinates. If all

A; and S; arc the same or if all 3;= OS . where o
is a constant, it follows from Eq. (7) that

The parameter y in M, o+ is a new parameter not

in the one-coordinate model. Its value lies between 0
and +1. To show this, one adds to the square

I X,. A;S. zl2in y in Eq. (7) all possible squares of
the form IA, SJ' ' —AJS, ' 'I'. This addition gives

N N

n =
I XA s I + X IA s'"-A s'l'I

i=1 ij&i

I X,. A;S l I'=A Sand y=0. Significant differences
among the 3;,S /' values are needed to make y ap-
preciable. For example, if N is even, all the 3; equal
Ap, and half the S 2 equal Sp 2 and half equal 2Sp
then

I gA, S«2I2=-', w2jA, I~S, ,

A's = —,
' w'IA, I's, ,

and y =0.1. The same result obtains if all the S
equal Sp and half the A; equal Ap and half equal
2Ap. The root S ' is a signed quantity, "and 3; can
be complex. Though g, A;S, '~ might therefore sum
to zero and y then be I, we have no particular expec-
tation that y values will lie close to 1.

The transition rate for the 8/Bz operator had been
calculated for 10"coordinates (the HRP lattice
model) by Huang and Rhys' and Perlin. '3'4 Huang
and Rhys gave as their rate

h
Rg»&, = —'ZzLg+

I YI2[(—+ (m))2+ (1+m)—(m)] Wg
QJ.i t

—
I Yl'(2m+1) Lp+ —,

'
I Yl'((m)'Wp+2+ (1+m)'W 2g) . (18)

This formula is Rg sos, in Eq. (6) with W, s/s, in Eq. (6) written in the five-Wg form (11) and with A and y in
the notation

A'=bzz&/" y=1 —
I
YI2/2Z2S.

Perlin gave as his rate

Rg g~s,
=

2
exp( —2a coth p+pp), lb„, l l, (x)+1+2cosh2p 2 egg lbggl cothp

(E„—Eg)2 2, 4sinh'P 2sinhP

X[I, t(x)+1„,(x)]+ "', [l, ,(x)+lg+2(x)]
lb., l'

8sinhzP

S =-a
2

2~"c„g lb.gI'

Thus, the Mp @g, formula derived here for N ~ 2
coordinates agrees with the Huang-Rhys and Perlin
8/Bz formulas in 10z2 coordinates. Not having the
one-coordinate weight W;@q„Huang and Rhys were
not motivated to relate the one- and multiple-
coordinate weights Wp ~/q, and Mp p/p in the simple

where P = huo/2kT and x =a/2sinhP. This formula
too is R, sag, in Eq (6) with. W, s~s, in Eq. (6) in the
five- Wg form (11), with the Wg functions expressed
in lg(x) Bessel functions as

exp( —,'a cothp+ p p) l, (a/2sinhp),

and with the notation

manner Eq. (6) here. Also, they did not appreciate
that the five- Wg combination (18) can be contracted
via the Wp recursion formula to the more transparent
three-W„ form (6) with Eq. (3).

Miyakawa and Dexter' have also calculated the
8/Bz-operator rate in multiple coordinates. They
used a more complicated model with a spectrum of
phonon energies tee but, in the end, particularized to
a single phonon energy temp. Thus, their final nuclear
factor should have been the multiple-coordinate
weight Mp q/q, . It was not.

We are uncertain how to read the temperature
dependence of their weight because the Miyakawa
and Dexter coupling parameter g is referred to in text
as a constant yet seems to be defined in their Eq.
(3.16) as increasing with temperature as our quantity
S(2m+1). At 0 K, their g is certainly our S, and
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their formula for Mv a~a, , offered for S small, is [their
Eq. (5.6)] (1—p/S) zSr/p!. At 0 K, Wv reduces to the
Poisson distribution e S'/p!, and the exact M, a~a,

weight obtained here and by Huang and Rhys and
Perlin is

M, aiaz(0 K) = [(1—y)(p —S)'+yp]e sSv/p! . (20)
2S

The Miyakawa and Dexter expression is a multiple of
the 0-K one-coordinate weight W,'@a, [obtained by
taking y =0 in Eq. (20)]. We conclude that their ap-
proximations led them to miss, the additional parame-
ter y in Eq. (20) required. for multiple coordinates.

III. SUMS OVER THE p DISTRIBUTIONS
AND THE LIMIT S 0'

It then follows that

Mr, g = (1—y) Wp. g + yLv

has the same sum
2

(1+2m) as Wvg and Lv.

These sums are useful for checking numerically com-
puted p distributions.

For S 0, the distributions ~p Lp 8 p 0+ and

Mp 0 + have limiting behaviors which are readily

derived. For S 0, the offset u„and v wave func-
tions coalesce into a single orthonormal set u„, and
their overlap integrals (u„~v ) approach

(u„~ u ) =5„. Thus, for the weight W, for the
operator 1,

The tempei'ature coefficients a;g in Eq. (11) and

in Appendix 8 have the property
Wv= X (1 r)r (ur+ —~v )z

m ~mo

+2 .+2

X ~;,, = X ~;.aia, =0.
l=—2

(21) (1 r)r 5r a=5—va.
m =nr0

(23)

This property leads to simple sums over p for the
various distributions. Starting from the HRP 8'p-

function normalization X Wv =1 and making use of
Eq. (11) and L, in Eq. (3), one' has

+OO +2

W„,= X L, +S X ~,g. W„,
P=—oo l= 2

For the function Lp, we have

Lv =
2 ((1+m) Wr t+ (m) Wva [)

-((1+m) 5„+)+ (m) 5v )) . (24)

Lr = —(1+2m) (22) For the weights 8'po for the operators 0+ in one

coordinate, we have, from Eqs. (4), (8), and (5),
a

Wrg = $ (1—r)r"[(—m)'~ (uz+
~
v, ) + [—(m+1)]'~2(u

~ v, )}z
m=mo

(1—r)r [z m5v t+ z (m+1)5r+~] =
z ((m)5v &+ (1+m)5r+&) .

m mo

(25)

It then follows that

M g =(1—y)Wg +yL

has the same S 0 limit

—,((1+m)5„,+ (m) 5, ,)

as po+ and Lp. Thus, W~~ and Mp~ are the

same for S 0. The sums of the limiting distribu-
tions are —(1+2m) in agreement with the sums (22).

Rebane's book'9 gives a qualitative picture of these
limits as selection rules, namely, as the rules p =0
for the operator j. and p =+1 for the operator 0+=z.
For 4f 4f and 3d —3d narrow-line transitions, the
offsets S are in the range 0.05—0.3 and are not small
enough for these limiting distributions to be realized.
See the numerical analyses in Sec. IV.

IV. DIFFERENCES BETWEEN ONE- AND
MULTIPLE-COORDINATE p DISTRIBUTIONS

The nonradiative rate and its temperature depen-
dence can be inferred from the thermal quenching of
luminescence. In Refs. 16 and 20, the four types of
thermal quenching [bottom crossover, outside cross-
over, small-offset multiphonoh emission, and inside
(or tunneling) crossover] were analyzed in one coor-
dinate for nonradiative transitions driven by the
operators 1, z, or 5/Bz. These examples are now
reconsidered for the z and 8/Bz operators in multiple
coordinates, where the results might be different.

For the operators 0+ in multiple coordinates, the
nuclear factors are Mvg =(1—y) Wrg +yLr, where

0 ~ y ~ 1. Thus, to compare multiple-coordinate
Mp 0 + with one-coordinate 8 p 0 +, it is necessary only
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to compare W~o and L, . The values of W~o and

L~ appropriate to the four quenching examples are
given in Table I. Values renormalized to unity at 0 K
are also shown.

In the first three examples, L~ is closely a multiple
of either W~, or Wp p/p In the last three examples,
Lp is small compared to either Wp or Sp @q,. Thus,
Mp 0 + can hardly differ from W, 0 +, because W~ 0 +
and Lp are so similar, or because Lp is small, or both.
These four examples representative of thermal
quenching are therefore not useful for distinguishing
between Wp0 and Mpo+.

I

From the sums (22) where g~ W~, o+ = X~ L~, one

recognizes that there are p values for which L~ is not
small compared to @~0 . In fact, L~ is greater than

or comparable to W„, = [(p —S)'/2S] W, for p near S

and small compared to W„ for p far from S. %e
therefore address the region p near S (near the max-
imum in the W, distribution) where W„z can be

small but L, is large, and, therefore, M, o can differ

from Wp 0 + This region was not investigated in the

Table I quenching examples.

The distributions W, , L„and Wpo+ are plotted in

Fig. 1 for the case of large offset (S=9). W, and L,
are similar broad-band distributions with a single
maximum near p = S =9. Their band shape is simi-
lar to the familiar Gaussian band of broad-band
luminescence. W~, at all temperatures and W~@q, at
low temperature have a double maximum with a
center node at p =S =9. This node is due to the
[(p —S)'./2S] W~ term common to both W~, and

W~@p, ', see Eqs. (3). At high temperatures, W~ pip,

TABLE I. Examples of the thermal quenching of luminescence taken from Refs. 16 and 20. The nonradiative. nuclear factors
are W~o in the single-configurational-coordinate model, (1 —y) Rp0 + yLp in the multiple-coordinate model, with 0 «y «1.

Bottom crossover, S =6.25, p =14.
kT/Ao)p (m) '102 W~, 10 Wp ygz

0
0.45

0.65

0.95

0
0.122
0.273
0.536

'1.48
2.29
3.45
5.58

1

1.55

2.34
'3.78

1.48

1.88

2.29
2.85

1

1.27

1.56
1.93

0.34
0.56
0.90
1.66

1

1.62
2.63
4.81

Outside crossover, S =6,25, p =25.
k T/hop (m) 106 W, 10 W@~,

0
0.45

0.65
0.95

0
0.122
0.273
0.536

0.276
1.30
6.40

52.1

1

4.72

23.2
189,0

0.276
1.16
4.91

31.5

1

4.19
17.8

114.0

0.020
0.09
0.47

4.1

1

4.80
24.1

207.0

Small-offset multiphonon emission, S =0.09, p, =6.
kT/So)p (m) 107 Wp, 107 Wp @gz

0
0.45

0.65
0.95

0
0.122
0.273
0.536

1.31
2.55

5.32
15.6

1

1.95
4.06

11.9

1.31
2.53

5.23

15.1

1

1.93
3.99

11.6

0.22

0.44
0.91
2.69

1

1.95
4.06

11.9

Inside (tunneling) crossover, S =30.25, p =2.
kT/hcup (m) 10P W~, 10 Wp 8/ez

0
0.25

0.35.

0
0.0187
0.0609

0.440
7.74

180.0

1

17.6
410.0

0.440
5.34

84.0

1

12.1
192.0

0.0011
0.078
3.4

1

71.2
3080.0
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FIG. 1. Distributions 8'p, Lp, H'p„and 8'p@~, for the

large offs'et S =9. These distributions give the transition-
rate nuclear factors for the operators 1, z, and 8/Bz in sin-

gle and multiple coordinates. See Eqs. (6) and the associ-
ated text.

The values 0.2 and 0.04 for S are small in the sense

that, for the Condon-approximation operator 1, the
zero-phonon line Wp is strong, and the phonon side
bands Wp~p are weak. However, for the operators
0+, the distributions Wpo differ from their S 0

limiting distribution. The limiting distributions were

has this node filled in by its

—2S (1+m ) (m) ( W~ ~

—2 W~ + W~+~)

term in Eq. (3) and reverts to a single broad band
similar to Wp and Lp.

Thus, the effect of combining L, with Wpo in

forming Mpo is to fill in any node at p=S. There-

fore, compared to one-coordinate Wpo, the

multiple-coordinate distributions Mpo look more

like the operator-1 distribution Wp.

The distributions Wp, Wpo, and L, are shown in

Table II for cases of small offset (S =0.2, 0.04, and
0). The S 0 behaviors, derived in Sec. III, are

Wp =5pp and

Wp, o =Lp = —((1+m)gp+&+ (m)gp

calculated assuming that the wave function overlap
integrals (u„~ v ) approximated 5„. For given S, the
exact (u„v ) matrix can be computed via the
Manneback recursion formulas. "'7 This (u„~ v )
matrix for S =0.2 is shown in Table III. The ele-
ments are seen to differ greatly from 5„.

Returning to Table II, the largest departures from
the limiting distributions occur for Wp ~/~, at high
temperature and are associated with the

—2$(1+m) (m)(W~ ~

—2 W„+ W~+~)

term of W~ ya, in Eq. (3), Because of the strong
zero-phonon value Wp, this term is large for

p =0, + 1, adding to the Wp, term of Wp Q/Q in Eq.
(3) for p =0 and subtracting for p =+1. Thus, com-
pared to its limiting distribution, Wp@q, is larger for
p =0 and smaller for p = +1. These compensating
behaviors maintain the sum g %~@a, independent
of S. At kT/ho)0 = 1 Wo ya is the largest W~ a~a,

value for S =0.2 and, even for S =0.04, has the ap-
preciable value of 0.15.

The next largest departures occur for Wpo for

p =1 and 2. The term [(p —S)2/2Sj W~ common to

W~o in Eq. (3) causes the ratio W2o /W~ o to be

larger than W2/ W~. This effect increases with S and

is riot very sensitive to the temperature. For exam-
ple, for S =0.2, Wq o /W~ o is greater than 0.5 at

every temperature.
The Lp distribution deviates less from the limiting

distribution than Wpo do. Thus, the multiple-

coordinate weights M, o in Eq. (6) deviate less from

the limiting distribution than Wp o. do. That is,

departures from the limiting distribution are smaller
in multiple coordinates.

V. ESTABLISHING fVp 0 y Mp o
EXPERIMENTALLY

The largest differences between single- and
multiple-coordinate nuclear factors Wp, o+' Mp, o+ oc-

cur for S large.
For the z operator for S large, Wp, vs p has a node

at p =S with maxima on both sides, and Mp, has this
node filled in by yL, at every temperature. These z-

operator distributions are expected for broad-band
absorption spectra when the initial-state equilibrium
configuration z =0 is a high-symmetry point and
when the electronic integral for the transition is zero
at z =0 and proportional to displacements z off this
point. We are not aware of an absorption spectrum
that shows the double-maximum W„behavior.
Thus, experimental data appear to exclude a one-
coordinate description Wp, or a multiple-coordinate
description Mp, with y small. A multiple-coordinate
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TA BLE II Kp Wp z &p p/pz and Lp distributions for the small offsets S =0,2, 0.04, and
S 0.

OK

W,o Lp

kT/fop = 1

Wp z Wp,

S =0.2

—3

-1
0
1

2

3

4

5

0
0.819
0.164
0.016
0.001

0
0.082
0.262
0.133
0.021
0.002

0
0.000
0.409
0.082
0.008
0.000

0.000
0.004
0.077
0.673
0.209
0.033
0.004
0.000

0.004
0.054
0.277

0.067
0.334
0.266
0.068
0.010
0.001

0.003
0.029
0.084
0.458
0.229
0.212
0.058
0.009
0.001

0.001
0.022
0.199
0.122
0.542
0.166
0.026
0.003
0.000

S =0.04

—2
—1

0
1

2

3

0
0.961
0.038
0.001

0
0.019
0.443
0.037
0.001

0
0.000
0.480
0.019
0.000

0.000
0.021
0.918
0.058
0.002
0.000

0.013
0.289
0.018
0.669
0.088
0.004

0.011
0.224

0.148
0.610
0.084
0.004

0.006-

0.268
0.034
0.727
0.046
0.002

S 0

—2
-1

0
1

2

0

0
0

0
0
0
0.5
0

0
0
1

0
0

0
0.291
0
0.791
0

TABLE III. The matrix of wave function overlap integrals (u„i v ) for S -0.2. The omitted

elements for n (mare given by (u iv&) =(—I) +s(univ ).

m=0

n. =0
1

2

3

5

6
7

8
9
10

0.905
0.405
0.128
0.033
0.007
0.002
0.000

0.724
0.515
0.207
0.063
0.016
0.004
0.001

O.S61
.0.565
0.273

0.094
0.026
0.006
0.001

0.415
O.S82
0.328
0.126
0.039
0.010
0.002
0.000

0.285
0.578
0.373
0.159
0.052
0.014
0.004

0.169
0.558
0.410
0;190
0.067
0.020
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description M~, with y near 1 would describe these
spectra. However, so would models with many dif-
ferent phonon energies t~. We have been exploring
such multiple-tee models numerically (not reported
here) and find that for them the z-operator node is

readily filled in,
For the 8/Bz oPerator for S large, Wv a~a, vs P has a

double maximum like &„at low temperatures, but
the center cusp near p = S is filled in with increasing
temperature. For M~ Q/Q the cusp is filled in by yLp
at every temperature. The 8/Bz operator is expected
for nonradiative transitions. These transitions will be
much harder to study than z-operator absorption
spectra. To obtain the p spectrum of nonradiative
transitions, multiple transitions with different energy
gaps philo are needed. These multiple transitions can
be obtained either from the same activator transition
in several related hosts or from a single luminescence
center with several re1ated nonradiative transitions
such as Eu3+ charge-transfer state (CTS) —5Df feed-
ing. In either case, multiple electronic factors will be
present, and it wi11 be difficult to distinguish the p
spectrum of the nuclear factor from different values.
of the electronic factors. However, since the tem-
perature dependences of the rates arise from the riu-

clear factors, electronic factors determined empirically
at one temperature might be used at another.

For p near S, nonradiative transitions are fast bot-
tom crossovers with rates 10' —10' sec '. Thus,
measuring the same transition singly in several relat-
ed hosts will require rise-time equipment with pi-

cosecond capability. On the other hand, if one meas-
ures several competing transitions in a single center
such as Eu'+ CTS 'D& feeding, one deals only with

the relative rates into the several D& states. These
relative rates can be inferred from the proportions of
the 'DJ emissions.

Our own experience has been with the Eu + CTS
D, ' and the analogous Sm + 51 D~, Do feed-

ing fractions, not with z-operator-dominated absorp-
tion spectra. We have no new feeding-fraction data
taken specifically to distinguish among 8'p Sp p/Q„
and M~ q/q, . The existing data give no evidence that
crossovers close to the CTS or Sd minimum (p close
to S) are avoided. For BaC12'.Sm'+, the simple W,
distribution described the observed 'D~, 'Do feeding
fractions better than W~ Q/Q or Mp Q/Q For
Y202S:Eu + and La202S:Eu +, the data were fit with
unequal force constants and the operator 1, and we
did not feel compelled to use the 8/Bz operator. z'

Nevertheless, we expect that unequal force constants
and the 8/Bz operator will also give an adequate
description.

The dip in the one-coordinate distributions ~po+
near p =S does not require the force constants to be
equal. We have computed one-coordinate, large-
offset, unequal-force-constants examples numerically

by the U, ~-matrix method. ' The distributions for
the z and 8/I)z operators still have the same dip, and
this dip is again filled in at high temperatures for the
8/1)z operator.

In summary, we expect that z- and 8/Bz-operator
nodes at p =S will not be confirmed experimenta11y
and that interpretation of z- and 8/Bz-operator cases
in single-feoo models will require the multiple-
coordinate functions M~0 with y near 1. Further-

more, we expect that interpretations through
multiple-coordinate, multiple-80) models will not be
very different from M~0 with y near 1 and that, in

so far as these differences can be resolved experi-
mentally, multiple-h~ interpretations will be pre-
ferred.

VI. VIEW OF EQ. t,'4)

This paper concerns rate formulas derived exactly
from rate (4). However, Eq. (4) itself is not exact,
and we comment here on our attitude toward Eq. (4).

Rate (4) could be construed as the golden rule rate
resulting from quantum-mechanical perturbation
theory plus approximation of the initial- and final-
state wave functions p;, pf as the products

Q ' vf vz v/4I I(If $fu ~ uz uu, where $;, @f
are the initial and final electronic wave functions,
v~, v2, , v~ and ul, u2, , u~ are the offset initial
and final wave functions of N independent harmonic
oscillators (nuclear coordinates) with the same pho-
non energy tcvo, and the operator 0 is the resultant
of the integration over the electronic coordinates.
Indeed, Condon used rate (4) with N = I and 0 =
constant for his quantum-mechanical treatment ' of
transition rates in diatomic molecules.

However, we view Eq. (4) as a simple model of
transition rates even if it cannot be well argued from
perturbation theory. For one thing, a continuous
spectrum of phonon energies is needed to obtain con-
servation of energy in the transition. We believe that
such a continuous spectrum is always present, yet it
does not appear explicitly in Eq. (4). There may be
instances where the transition energy mismatch is
bridged mainly by p phonons of equal or nearly equal
energy tea so that Eq. (4) might then be justified
from perturbation theory. However, if phonons with
different energies participate in the transition, we
would prefer a model containing these different ener-
gies and are interested in such models. Nevertheless,
we still regard Eq. (4) with t&oo some average or ef-
fective phonon energy as an appropriate first model
whose predictions can be calculated accurately and
compared with experiment.

The situation is analogous to that occurring in the
theory of specific heats. For specific heats, the Ein-
stein lattice corresponds to the single-A~0 model here
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with W large. This Einstein- lattice gjves the
specific heat proportional to the temperature deriva-
tive of (m) in Eq. (S) and, accordingly, going to zero,
at low temperature. However, to obtain the accurate
low-temperature - T' behavior of measured specific
heats, a Debye lattice with phonon density of states
proportional to (iree)Z is required. Although one
therefore prefers the Debye lattice, the Einstein lat-.
tice is an appropriate first model and certainly
deserves attention before going on to the Debye
model.

Rate (4) contains the basic parameters of transition
rates (energy mismatch p i«ufo, Franck-Condon offset
S, and temperature I); Moreover, rites derived
from Eq. (4) depend strongly 'on these parameters.
%'e think the preferred present course is to learn
these strong dependences from Eq. (4) and, by com-
paring these predictions with experiment, to see how
far the simpie model (4) goes toward accounting for
observed transition rates.

%ith respect to specific operators 0, we suppose,
like Condon, " that ihe operator can be expressed in
a power series about the equilibrium position of the
initia1 vibrational state

0 =go+a)z+a2z2+

The Condon-approximation operator 0 = constant is
the first term of this series. . If the syrnrnetry of the
initial state is such that a0=0, then the linear opera-
tor z is the first term of the remaining series.

We investigate the 0/Bz operator for nonradiative
transitions because, as the operator driving these
transitions, a neglected term in the adiabatic approxi-
mation proportional to 0/Bz is commonly recommend-
ed 1, 18, 27

We treat the z and 0/8z operators together because
they are similar mathematically as opposed to physi-
cally. %e have no reason to suggest z for nonradia-
tive transitions. Nevertheless, we believe one should
be open-minded about the nonradiative operator. In
spite of the theoretical bias for 8/Bz, .0 = constant
seems to fit experimental data better.

nuclear factor is the HRP 8'p function for any N.
For the operators 0+=z, 0 =0/Bz, the nuclear fac-
tors 8'~g for one coordinate and Mpg, for N: «2
are related by

M 0 = (1—y) W g + @LE .

8p g +' and Lp are the 8 p-function combinations in

Eqs, (3). The parameter y lies between 0 and l.
The 0/Bz-operator factor M, qis, agrees with factors
derived for 10' coordinates by Huang and Rhys and
by Perlin.

The largest differences between 8', g+ and Mp g+
are in the region p near S for S large. 8'„has a dou-
ble mixirnum with a node at p=S. Mp; has this
node filled in by j Lp, where for S large Lp is similar
to +p' and has a single maximurri near p =S. 8'p

is similar to 8'p, at low temperatures with a node at
p=S. This node is filled in at high temperatures.
Mp '

Q/Q has this node filled in by y Lp- at every tem-
perature.

In the limit S 0, we have

8'p g = Lp = Mp g

= —,((1+m}5,„+(m}8, ,),
that is, lines are only at p = +1. For S values near
0.1 typical of 4f 4f and 3d 3d narrow-line transi-
tions, transition weight is spread to nearby p values,
especially to p=o for 8'p@q, at high temperatures and
to p=2 for 8'pg at every temperature.
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VII. CONCLUSIONS

For single-Svo models of transition rates, the
known one-coordinate nuclear factors are used to
derive the corresponding nuclear factors for any
number of coordinates N. For the operator I, the

APPENDIX' A. Xp,0+ FORMULA

The single-coordinate quantity Xp g is defined in

Eq. (10). Using the 0+ 'matrix elements (8), Eq.
(10) becomes

&p,o+= X. (z m) (up+mlvm} (up+mlvm-i} (1 «)r
m —m

+ X [—(m+1)]'r (ur+ l v ) (u„+ lv +~} (1—r)r =r Yr+I+ Yv= Yv+~+ Yv,
(1+m }

(A 1)
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where

Y, —= X [—,
' (m+I)] '~'

(up+ ~
v )

m =mo

&& (u, + ~
v ~, ) (I—r) r (A2)

If Eq. (A3) is squared and then operated on with

(1—r) r, where mo is the larger of 0 and —p,

one obtains

(p+(m) p )) Wp ( =r '(ni) p ( lVp (

)'~ can be evaluated from one of the Manneback
recursion formulas' "for the overlap integrals

(u„~ v ), namely, the first of Eqs. (9) of Ref. 12.
This equation is, for n written as p+m,

(p+m) '
(up i+ i v ) = (m+I) ti2

(up+ i v +i)

+S'i2(up+ iv ) . (A3)

+SH, +2'/25'/2 Y, (A4)

(m)p=—Wp
' X m (up+ ~v )'(1—r) r . (AS)

m =mo

where Wp is defined by Eq. (4) with iV =1, 0 =1, Yp

by Eq (A. 2), and (m), by

The average (m), is evaluated in Eqs. (21) and (26) «Ref 20 and is

(m)p= (m) +S(1+m) (m) Wp
' (Wp t

—2 Wp+ Wp+)) .

Using from Eq. (5) r ' —1 = (m) ' and then both Eq. (A6) and the HRP Wp recursion formula (I) rewritten

with p p —I, Eq. (A4) becomes

2 i2SV Yp=(p —(m) '(m)p, ) Wp i
—SWp

(A6)

= (p,—1) Wp ~

—S (1 +m ) ( Wp 2
—2 Wp ~

+ Wp) —S lVp =2S (1+m ) ( Wp ~

—Wp) .

Inserting Eq. (A7) in Eq. (Al), one obtains the desired Xpo formula in Eq. (10).

(A7)

APPENDIX B. EXPRESSION QF 8'p o AS LINEAR COMBINATIONS

OF O' FUNCTIONS %1TH COEFFICIENTS INDEPENDENT OF p

The simple formulas for Wp o+ in Eq. (3) contain p as an explicit coefficient of Wp in the term

[(p —S)'/2S] Wp. This p-containing coefficient can be avoided by expanding this term via the HRP Wp recursion

formula (I). The expansion is
1 t

Wp, = (p —S)'Wp = —, (p —S) P
Wp

—
Wp

———,'(p —S)((1+m) Wp )
—

Wp
—(rn) Wp„))

= —[(1+m) (p —I + I —S) lVp t
—(p —S) Wp —.(m) (p+I —I —S) Wp+i]

= —((I+m) lVp t + (m) Wp+i) + —S[(1+m)((I+m) Wp 2
—

Wp i
—(m) Wp)

—((I+m) IVp )
—

Wp
—(m) Wp+)) —(m) ((1+m) Wp

—Wp+) —(m) Wp+2)]

+2

=lp+S $ u;, Wp+, , (Bl)

where Lp is the lVp-function combination in Eq. (3),
and the u, , are coefficients depending only on (m).
Since Wp, and Wp a~a, are related as in Eq. (3),
W, q/q, can also be written in the form

+2

Wp. aga. =Lp+S $ u;aiba. Wp+ ~

I=—2

where the o.; q/q, are coefficients depending only on

(m). The explicit expressions for the temperature

coefficients a;o are, from Eqs. (Bl) and (3),

u 2, =- (1+m &2, a 2 @a, = 2 (1+m)

u ), =—(1+m), a ) a)a, = —(1+m) (I+2m),

uo,.= —, —(I+m) (m) ~ ao. a(az =, +3 (1+m & (m &

a+), = (m), u~) a(a, ———(m) (1+2m),
1 ] (83)
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APPENDIX C. EVALUATION OF

X~, o, +X~ o + FOR pt +p2 =p

where

P-t, o = + (1+m), Poo, = (m) + (1+m),

X~g is given in Eq. (10) which can be written in

the form

and

P+t, o, = —(m)

+1

X,,o =(—,S)'" X P;,o Wp+ (C1) Hence, making use of the HRP 8', -function repro-
ductive formula (12),

$X~ g Xp g =(SIS2)'~2—X $ P;g Wp, +, (St, (m)) $ Pgo Wp +g(S2, (m))
P) Pg

' I=—I j=—1

+1 +1

=( t ~)'" g X , P;,o,p~—,o, , ;+J(Si+S2, (m))

+2

=(S)S2)'~ $ u;g Wp+, (S)+S2, (m)), (C2)

where the n;o are readily verified to be the n, g given explicitly in Eq. (83).
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