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Band limits and the vibrational spectra of tetrahedral glasses
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The primary features of the Raman and infrared spectra of AX2 tetrahedral glasses are associated with the
edges of the vibrational bands calculated by Sen and Thorpe. The dominant Raman peak is assigned to a
singular matrix element rather than a peak in the density of vibrational states. Simple expressions are
developed which yield useful values of the vibrational force constants and intertetrahedral angles for vitreous

SiO„GeO„and Bep,.

In this paper, I develop a method for analyzing
the vibrational spectra of AX, tetrahedral glasses
which is based on intepreting the vibrational-band
limits previously calculated for a central-force
network model by Sen and Thorpe (ST).' The
method leads to simple formulas for the direct
experimental determination of force constants
and intertetrahedral angles to within l0% of the
correct values. ' The substantial computational
simplif ication accomplished by this method is
accompanied by new physical insight into the
nature of the normal modes and the selection
rules for these and other glasses.

I. CENTRAL-FORCE NETWORK MODEL

Figure 1 illustrates the local order assumed by
ST. It shows two neighboring tetrahedra, drawn
schematically in the AXA plane that involves the
single shared X atom. This local topology is
repeated throughout space: All A-X bond dis-
tances are the same, all X-A-X angles have the
tetrahedral values cos ' {--',) = 109.5', and all
intertetrahedral A-X-A angles have the common
value 8. The symbols B, S, and R indicate
"bending, " "stretching, " and "rocking" motions
of the X atom, using a nomenclature first in-
troduced by Bell and Dean. ' The structure does

~,-"=(o/mx)(1+ cos 8),
(e', = (a/m~)(1 —cos 8),
Q,!2 =

Qp& + (4Q /3 Vl &) &

(u,'= (o2+4a/3m„.

(l)

(2)

(3)

(4)

Here, ~, are angular frequencies (rad/sec),
while mx and rnid are the mass of the X and A
atom. [All equations in this paper remain true if
we replace v by the wave-number value W (cm ')
of the frequency, m by the atomic weight M of the
atom, and o. by n/0 0593, w. here o = o (dyn/cm)
= l0'n (N/m). j The dependence of these expres-
sions on intertetrahedral angle 8 is illustrated by
the solid lines in Fig. 2, for the special case n

not necessaril'y contain rings of bonds. It em-
bodies certain elements of disorder, since it
is not periodic in space and the dihedral angles
may have any values. {A dihedral angle gives the
orientation of an A-X-A plane relative to one of
the tetrahedra that it links. )

Assuming that all force constants are zero ex-
cept for the A-X bond-stretching constant n, ST
obtained the following expressions for the spectral
limits of the two highest-frequency bands in the
density of vibrational states of such a system:
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FIG. 1. Schematic diagram of local order assumed for
tetrahedral AX2 glass, showing common intertetrahedral
angle 8.

FIG. 2. Diagram of Egs. (1)-(4) showing dependence
of band edges on intertetrahedral angle &. The dashed
lines are a schematic of the density of states at two dif-
ferent values of 0, with relative weights given in paren-
these. s.
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independent of 0.
It is important to understand the relation of 0 to

the frequency distribution of the bands calculated
by ST. The dashed lines in Fig. 2 are aschematic
representation of the density of vibrational states
for two different values of 0, one above the cross-
over angle 8, =cos '(-2mx/3m„) and one below.
The relative weights in the density of states are
given in parentheses, with vertical arrows indic-
ating 6 functions of unit area. These states
account for four of the nine expected per formula
unit AX, ; the others are driven to zero by their
acoustic nature, and by the assumption that the
noncentral force constant P is zero. When 8 =90',
the tetrahedral units are effectively uncoupled,
and the frequencies are the same as those of an
isolated tetrahedral molecule having no bond-
bending restoring forces, i.e., having bond-
stretching forces only. For example, &u, (90')
is the frequency of the nondegenerate (A, )
"breathing" mode of such a molecule, while
&e, (90'} is the frequency of the threefold-degen-
erate (F,) "rigid cage" mode. As 8 increases
above 90', the situation changes drastically from
that expected for isolated molecules. The A.,
mode broadens into a band of states having unit-
normalized area, while the F, mode splits into
three features: a unit 5 function at &„another at
&„and a band of unit area between them.

The parameters used in creating Fig. 2 are
approximately those that I will deduce for vitreous
(v-) SiO„ including 8(SiO,)= 130 . Therefore, in-
spection of the distribution of states depicted by
the lower set of dashed lines (8 =130 ) reveals
the extensive departures from the prediction of
an isolated-molecule model (8 = 90'} that are
caused by the intertethedral coupling of bond-
stretching forces at angles 0 typical of oxide
glasses. Isolated molecule models are inadequate.

To relate these results to experimental spectra,
I argue as follows. It is known that the inter-
tetrahedral angle in real glasses is not every-
where the same, but is distributed about some
most likely. value, estimated by x-ray diffraction
to be 144' in ~SiO„'133' in &-GeO„'- and 146' in
»-BeF, .' I approximate the true situation with an
ensemble of local environments, each as shown
in Fig. 1, with disorder accounted for by a stat-
istical distribution of the angle 8 used in Eqs. (1)
-(4). The resultant statistical distribution of
local densities of states will lead to a total density
of states related to that shown in the lower part
of Fig. 2, with the difference that both the bands
and the 6 functions will be broadened, and the
latte~ Mill dominate. That is, if one ascribes to
each 6 function a width of the order of a phonon
natural linewidth (say 1 cm ') and anticipates the

II. ACCURACY OF THE MODEL

An obvious use of Eqs. (3) and (4) is to solve
them for ~ and cos0 in terms of the experimen-
tally determined values &e, = &u, (8) arid co, =&u, (8):

(y =-,'((o', + (o', )mx(1+4&nx/3m„)-',

cos 8 = ((g', —~')(~', + ~4)-'(1+ 4m'/3m„) .
(5)

(6)

These expressions involve the assumption that
P =0, so it is instructive to test them against the
more accurate large-cluster computations of Bell,
Dean, and Hibbins-Butler (BDH),' who used
P =0.18n. The results are contained in the first
six columns of Table I for the three materials that
BDH considered. In Table I, W, and W~ are the
central wave-number values of the two highest-
frequency peaks in the total density of states
computed by BDH, 8 and a are computed from
these using Eqs. (5) and (6), and a.»„is the
bond-stretching force constant input to their
calculations by BDH. It is quite encouraging that
the computed values of 0 are essentially the same,
and are only -10 less than 140', the mean A-X-A
angle far the model structure that BDH used for
all three materials. ' lt is similarly encouraging
that the computed values of n are only about 10%
higher than those input by BDH.

It is also possible to obtain good estimates of
the noncentral force constant P by direct calcula-
tion fromm the position of a feature in the low-f req-

TABLE I. Test of Eqs. (5)-(7), using W3, W4, and Wo
from the theoretical density of states of Bell, Dean, and
Hibbins-Butler (BDH) as input. Note that derived values
of 8, &, and P are within -10% of the BDH values
(8&DH~140'). W is in units of em, and n and P in N/m.

Ax2 w3 w4 00
BDH o ~ PBDH

Si02 740 1050 126 444 (400) 420 79 (71)
GeOg 500 845 128 354 (330) 375 67 (58)
BeF2 620 725 126 134 (110) 190 20 (19)

result that the separation co4 —(d, for»-SiO, is
about 200 cm-', one concludes that for reasonable
spreads in 8 (say +10') the total density of states
will be dominated by bands due to the distribution
of 6-function contributions. I therefore associate
the center of the two highest-frequency bands seen
in these glasses with &, and ~4, evaluated at the
most probable intertetrahedral angle. '

Sen and Thorpe also associated &, and w4 with
certain features of reported spectra, but they made
no detailed study of the accuracy of their formulas,
nor did they report any use for the other two f req-
uencies &, and ~, . I shall address both of these
subjects.
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uency portion of the vibrational spectra. In this
case, I build upon a result reported by Kulas and
Thorpe (KT),"who successfully used an effective-
medium approach to calculate the density of states
of a hypothetical AX, glass with sA aint A-X-A
bonds (6 =—180'), for the case that both n and P are
nonzero. They obtain a 5 function at a low freq-
uency &u, given by oF, =2p/m». This frequency
corresponds to motion of the Xatoms in a dir-
ection perpendicular to the A-X-A line, without
motion of the A atoms and with negligible stretch-
ing of either A-X bond, conditions that are re-
flected by the absence from this equation of m„
and n, respectively. Some of these properties
are retained by the "rocking" motion R in Fig. 1
as g departs from 180', so it seems reasonable
to expect a 6 function in the density of states to
persist near e, at a frequency only weakly de-
pendent on 0. I therefore explore the determin-
ation of P from the simple expression

(7)

When this formula is tested against the exact
calculations of BDH, as shown in the last three
columns of Table I, the derived values of P are
found to be remarkably clost to the input values
P»„. While the exact atomic motion involved is
uncertain, it is evident that Eq. (7) yields useful
values of P (on the order of 10/q too large}.

From this analysis, I conclude that Eqs. (1)-(7)
yield quantities that are within -10% of those
given by an essentially exact calculation based on
Born forces and realistic disorder (the BDH cal-
culations). This shows remarkable accuracy, con-
sidering the apparent complexity of the vibrational
system and the mathematical simplicity of Eqs.
(1)-(7). To the extent that the BDH theory is
applicable to real glasses (especially v-SiO„
v-GeO„and v-BeF, ), this quantitative success
encourages the use of Eqs. (1)-(7) in interpreting
obse rved spectra.

III. APPLICATION TO REAL GLASSES: v-SiO»

v-Ge02, and v-BeF&

Application of these expressions to real experi-
mental data uncovers a new difficulty —owing to
the known splitting of the highest-frequency mode
into a well-separated transve rse-optical-longit-
udinal-optical (TO-LO) pair. ' The problem is the
absence of a good theory for predicting the posi-
tion of the so-called bare mode, whose frequency
is split by Coulomb interactions into a T.O-LO
pair. We have argued elsewhere', ii that the bare
mode lies nearer the LO frequency than the TO
frequency in ~-SiO» v-GeO„and v-BeF» and
results to be presented later in this paper strongly

TABLE II. Application of Eqs. (1), (2), (5), and (6) to
experimental LO frequencies W3 and W4. 0„ is the x-ray
estimate. Note the close correspondence of computed
Wf to the obs erve d Ham an frequency Wz. Units are as in
Table I.

AX2 W3 W4 00 0„' w, w,

Si02 820 1200 .569 130 144 992 464 (450)
Ge02 595 973 478 126 133 894 455 (420)
BeF2 810 940 227 124 146 562 297 (295)

support this assertion.
Thus, I tentatively applied Eqs. (6) and (6) to the

experimentally observed LO values of 5', and 8'„
taken from Refs. 7 and 11. The results are tab-
ulated in Table II. The values of 8 are about 10$
less than those deduced from diffraction studies
(eg,' ' while those for o, are presumably -10$
too high, as in Table I. Use of these quantities in
Eqs. (2) and (1) leads to the values of W, and W,
given in Table II, and comparison of the last two
columns reveals an important new result.

A. Origin of the dominant Raman line (W 1)

The wave-number value S'y of the derived low-
est-frequency limit &, is remarkably close in
each case to the observed position Wz of the main
peak in the Raman spectrum. From this, I infer
that the dominant peak in the Raman spectrum
occurs at the loui frequency e-dge of the band whose
parentage is the breathing mode of the isolated
molecule, and that the Raman matrix element ( or
coupling coefficient) must peak sharply at this
position (=W,}. This is an extremely interesting
result, demonstrating a case where a coupling
coefficient in the theory of Shuker and Gammon"
is not constant, but is a sharp function of freq-
uency over the band involved, "and peaks near
one edge.

The Raman selection rule is most easily under-
stood as follows. First, one notes that according
to ST, co, corresponds to pure "bending" motion
of the X atom, as defined by B in Fig. 1, without
any motion of the A atoms. This involves a simul-
taneous stretching of two neighboring A-X bonds,
as opposed to the situation in an 8 motion in Fig.
1, where the stretching of one bond results in the
compression of its immediate neighbor. Since
Raman scattering in related materials is known
to arise largely from changes in bond length
rather than bond angle, "we imagine that Raman
strength is maximum for the in-phase stretching
associated with B motion at m„and is greatly
reduced for the out-of-phase stretching assoc-
iated with S motion, which occurs in pure form at
the w, band edge. The enhancement of Raman
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activity when neighboring bonds are compressed
in phase, and the seduction when some bonds are
compressed while others are extended, is well
known in studies of molecules, and is given an
elegant elementary discussion in the textbook by

ng i5

B. Minimization of the To-LO problem

Since the main Raman line is infrared (IR) in-
active, it has no observable TO-LO splitting,
and its frequency (~„-&u, ) can be used to deduce
z and 8, thereby avoiding the ambiguity raised
by the large TQ-LQ splitting of &,. Since &, has
little TO-LO splitting, it is advantageous to
retain use of this feature. The required solution
of Eqs. (1) and (3) is

2 3
Q = ((d 2

—(d ~) goal~ ~

i 4m~cos8+1=
&s

The result of applying these equations to the
experimental data is shown in Fig. 3 and the
first six columns of Table HI. The values of 0.
and 8 are the best obtained by this type of
analysis, although they will be improved if pe0
can be included in the formalism. In Fig. 3 one
sees that with S', = lV~ and %', as input, the
derived value of the bare-mode frequency 5"4

(cm ') always lies between the high-frequency
TO-LO pair, and closer to the LQ than the TQ
peak. In contrast, W, fails to correspond con-
sistently to any Raman or infrared spectral
feature.

C. Estimation of the noncentral force constant

The noncentral force constant P is extracted
from the data using Eq. (7), with z, identified as
the lowest-frequency peak in the IR spectrum of

s, . (This IR-active line does not show in any of
the Raman spectra of Fig. 3, but may be seen in
the c, spectra of Refs. 7 and 11; its frequency
accidentally coincides with that of the main Raman
IIeak in v-SiO„but not in 6-GeO, and BeF,.) The
resultant values of P and P/n are tabulated in the
last two columns of Table III, where it can be
seen that the value of P/n used by BDH (0.18) was
excellent for v-SiO„about twice too l,m"ge for
v-oeO2, and twice too seal/ for v-BeF2. Acc-
ording to this analysis, recalculation of the BDH
densities of states using the values of P/n in
Table III should improve the comparison between
their theory and the experimental results for v-
GeO, an«-aeF, .

D. Spread in intertetrahedral angle 8

The present model can be used to estimate the
spread in 8. This is done by ascribing the width
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TABLE III, Application of Eqs. (7}-(9) to the experi-
mental TO frequencies W&=—W&, W3, and Wo (see also
Fig. 3). Note that the BDH value for P/& (0.18) is excel-
lent for Si02, but appears to be too large for Ge02 and
too small for BeF2. Units are as in Table I.

AX 2 W~ W3 w4 w, p p/~

Si02 450 800 130 545 1176 455 98 0.17
Ge02 420 556 128 431 930 278 37 0.08
BeF2 2 95 810 125 228 941 400 90 0'.40

0 500 1000

WAVE NUMBER, W, cm '

FIG. 3. Comparison of the present analysis with the
Baman spectra of vitreous SiO&, Ge02, and BeF2. The
solid vertical lines mark frequencies Wq and W3 which
are input to the analysis, while the dashed vertical lines
are output. Note that W4 always lies just below the high-
frequency LO line, while W2 does not consistently corre-
spond to any spectral feature.
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of the observed spectral lines entirely to the
width of an assumed peak in the distribution of 8.
Although this approach is clearly oversimplified,
since it does not account for effects due to dihed-
ral angles or variations of force constants with 8,
it appears to give reasonable results, and may
correctly predict which materials actually have
greater spread in 8.

For small variations &8, the change ~, in any
one of the frequencies z,. (i =1,2, 3, 4) is given by

&gP~,. =y, (n/2. mz) sin& &8, (10)

where y„=-1 (i=1,3) and y, =+I (i =2, 4). These
equations are obtained by differentiation of Eqs.
(1)-(4) under the simplifying assumption that n
is independent of 8. The results of applying Eq.
(10) to v-SiO„v-GeO„and v-BeF, are given in
Table IV, where &8, is the angular spread re-
quired to account for the observed full width at
half maximum (FWHM) &W, of the three principal
bands 5', = O'„, 8'„and W4. The center wave-num-
ber values S",. and the corresponding values of 0,

and 8 are taken from Table III. Where possible,
the linewidths are estimated from the Raman spec-
tra in Fig. 3; otherwise they are obtained from the
reduced Raman spectra (or the IR s, spectra) in
Refs. V and 11. For &5"4 I have used the width of
the LO mode, which is clearly wider than the TO
band in v-SiO, and v-GeO, (cf. Fig. 3).

The trends are as follows. For each material,
the &8,. vary among themselves by a factor of
about 2. If the model were adequate to determine
&8, the values of ~8, would be essentially the
same. In particular, &84 is always larger than
&83 or &8„and this may be partly due to un-
knovrn broadening effects of the neglected long-
range forces that give rise to the pronounced
TO-LO splitting of S'4. On other other hand, in
v-SiO, (where data are available) the x-ray
estimate of &8 is -35',4 rather close to the pre-
sently derived value ~84-34'. It is also true
that only in v-GeO, is ~8y smaller than ~8, ; this
exception may be associated with the small value
of P/o. deduced for v-Ge03, and may therefore
signal the need for inclusion of noncentral forces
or a special distribution of dihedral angles in
order to better explain linewidths. In general,
the calculated angular spreads are greatest for
v-BeF, and smallest for v-Ge02. It is my suspi-
cion that both the present estimates and the x-ray
estimates suffer from the unrealistic assumption
that there are no preferred dihedral angles.

izations can be made. They are, true for AX,
tetrahedral glasses and should be approximately
true for nontetrahedral glasses based on 2-coord-
inated bridging (X) atoms. First, the dominant
Raman peak will involve motion of the X atom
along a line bisecting the 4-X-4 angle, the 8
motion in F ig. 1." I prefer to call this a sy rnmet-
ric stre-tch (SS) motion, since when acting alone
it results in identical distortion of the two neigh-
boring A-X bonds. Second, the highest-frequency
IR-active mode will involve motion of the X
atom along a line parallel to A.-A, the line between
the bridged atoms. This is the S motion in Fig.
1, which I suggest be called an antisymmetric-
stretch (AS) motion, since it results in opposite
distortions of the two neighboring A.-x bonds.
Third, the next lower frequency IR-active
mode will involve SS motion of the X atom, but
here as in the higher-frequency IR mode there is
a substantial amount of A-atom motion depending
on .the ratio of the masses mz/m„, the aver-
age 8, and the coordination of the cation (A
atom). Fourth, the lowest-frequency IR-active
mode will primarily involve rocking motion
of the bridging atom, as defined by 8 in Fig. 1,
but again including some cation motion. Some of
these modes may be split in glasses where theA
atom is not tetrahedrally coordinated.

Further explorations of the use of the band
limits are underway. These involve an analysis
of v-GeS2, v-GeSe„and v-ZnCl, as well as
calculations for other glass structures, including
those appropriate for v-P,O„v-As,O„and
v-B,O, . In the case of v-GeSe„ I have found no

way for the present theory to account for both of
the strong Raman peaks reported by Nemanich
et al." I conclude that v-GeSe, contains some
structural elements not inherent i.n the network
underlying the ST calculations. -

In summary, the present paper has developed
simple procedures for extracting useful values
of the central and noncentral force constants and
the most probable intertetrabedral angle from
the Raman and infrared spectra of AX, tetrahedral

TABLE IV. Investigation of the spread in intertetra-
hedral angle &0; required to account for the observed
linewidth &W; (F%HM) of the principal bands W, in the
Raman spectra of v-Si02, v-Ge02, and v-BeF2. The
spreads are largest for v-BeF2 and (except for &03)
smallest in v-Ge02. Units are as in Table I.

AX2 & Wg &Og & W3 +03 +W4 &04

IV. CONCLUDING REMARKS

From a study of the present analysis and related
ones given in Refs. 1 and 2, the following general-

Si02
Ge02
BeF2

200
100
160

23
13
33

75
100
40

15
18
22

110
80
60

26
41
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glasses. Equations(7)-(9) werederived from acen-
tral for ce network model which was shown to give the
same values as a more exact large-cluster
calculation to within 10%. Application to the
spectra of v -Bio„v-GeQ„'and v-aeF, revealed
that the dominant Raman peak in those materials
is due to a matrix-element. t effect and involves a
symmetric stretch of the A.-X bonds in phase
with one another. These results demonstrate the

practical and heuristic value of the calculations
of Sen and Thorpe, ' and suggest that extensions
of their method will be worthwhile.
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