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Quadrupole interaction in the scattering of H2 from the surface of LiF: Rotational transitions
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It is shown that when H2 is scattered from the (001) surface of a LiF crystal, the quadrupole moments of
the incident molecule interact with the electric field of the crystal to couple translational and rotational
modes. This interaction causes rotational transition probabilities which are comparable in magnitude to those
measured experimentally and to those calculated to result from other interaction mechanisms.

I. INTRODUCTION

A principal objective of molecular-beam diffrac-
tion studies of crystal surfaces' is to determine
the interaction potential between the incident parti-
cle and the surface. ' For many systems in which
the incident particle is a light atom, the experi-
mental elastic scattering intensities can be ex-
plained by calculations which assume a Van der
Waals type interaction that arises from an in-
duced-dipole, long-range attraction plus a hard-
core, short-range repulsion. ' ' In fact, in some
cases it is possible to match experimental elastic
scattering data while keeping only short-range re-
pulsion, ' even when modeling the repulsion as a
corrugated hard wall.

Several quantum-mechanical theories used for
the scattering of atoms have been applied to the
scattering of ).ight diatomic molecules. ' ' The
calculations are used to describe not only the ob-
served elastic scattering diffraction peaks, ""
but also to predict the intensity of beams consist-
ing of molecules which have undergone rotational
transitions upon scattering. These distinct beams
were predicted by Logan, "who extended the
analysis of Jackson and Howarth, "and were ob-
served by Boato et gl."and Rowe and Ehrlich. "
The mechanisms for inducing rotational transitions
considered in past calculations stem from the ob-
long shape of the molecule'4 "' and the directional
dependence of the molecular polarizability. " For
ionic solids, however, there is an additional in-
teraction which, so far, has been neglected in
molecular-beam scattering theories, but is shown
in this paper to contribute significantly to rota-
tional transitions. This additional potential is the
interaction of the lowest-order intrinsic multipole
of H, (the quadrupole moment) with the electric
field which is above an ionic crystal":

Coordinates (r, 8, P) specify the position and orien-
tation of the molecule. The primed coordinate
system of (lb) has its origin at the position r Th. e
quadrupole interaction is known to be important
in the physisorption of some molecules on ionic
crystals. "

The purpose of this paper is to calculate inter-
action (1a) for the particular case of H, incident
on LiF (Sec. II), and to estimate the magnitude of
the rotational transitions it induces by causing a
coupling between translational and rotational
modes. It is shown that the transition probabilities
caused by the above mechanism are comparable to
those measured experimentally and to those cal-
culated to result from other mechanisms (Sec.
III). The rotational transitions are calculated to
first order, using a flat hard wall, and a corru-
gated hard wall as zero-order potentials. Con-
tributions to rotational transitions due to the ob-
long shape and the directional dependence of the
polarizability of H, are not included, thereby iso-
lating the effect of the interaction V'(r, 8, P) given
in Eq. (Ia).

II. QUADRUPOLE INTERACTION

The first task is to calculate the electric field re-
sulting from crystal ions at observation points above
the surface. Figure 1 illustrates a(010) section

0;,= f(», », —r"a;,)p(F')d'

(Ia)

(lb)
FIG. 1. 82 incident on the (001) face of LiF. Theflat,

hard wall coincides with the plane z = 0. The corrugated,
hard wall is also shown.
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of a, LiF crystal with a (001}surface .The cen-
ters of the ions in the surface layer lie in the
plane z=-h. The plane z=0 coincides with the
flat, hard wall. One can calculate the potential at
points with z &0 by beginning with the equation

(-.)=f,;"
,

" ( )

for a charge density distributions p(r'). Denoting
projections of three-dimensional vectors on to a
plane parallel to the surface by upper case letters,
e.g. , r=(R, z), the Fourier transform of 1/(r- r'(
in directions parallel to the surface is"

e-r I z-z' I

e 1*'& 1t-11') (3)Ir- r'I 2p y

with y= (K(= (K'„+K'„)'/'. For z &0, one then gets

(t)( r ) = d'Z e'"'"
2r y

x f3'& p
~rf erz'e-iR 5'

To reduce the expressionfor (t)( r }further, it is
now assumed that p(r') = p(r '+1)where 1 is a lattice
vector, andwhere r'and r'+1 are bothpoints within

the semi-infinite crystal. First, this assumes that
the charge distribution in a unit cell next to the
surface is the same as the distribution in a bulk
unit cell, i.e. , a semi-infinite, truncated-bulk
model. This is a good approximation for an ionic
crystal. Secondly, it supposes that phonon dis-
placements of ions from their equilibrium posi-
tions can be ignored. This second point is dis-
cussed in the Appendix.

Fundamental lattice vectors are chosen in the
(1, 1,0), (1, 1,0), and (0, 0, 1) directions (see Fig.
2): b~„=(a/V2)(1, 1,0), b, =(a/v2)(1, 1,0), and

b, =~2a(0, 0, 1). For LiF, the lattice constant is
a=2.84 A. This set is selected because b„and b,
correspond to the usual choice for describing the
surface of LiF. One can now reduce the second
integral in (4) to

r p(r()e)'2'e 1&tit-
e"» '"' d'r'p r' er» e 'K'".

unit
cel 1

G, g~ 5(K, —G&2)5(E, —GP)

e, g
e-rc, pa~

d'r'p r' er 'e-'oe
un it
cell

"
{9,9,1}

4(r)= fA n2g esG(ex+By)e-yN gz

u, B ~a, B

lelt"' 1 —e" .&'~~

(7a)

(Vb)

From this potential, one obtains the symmetric
tensor

FIG. 2. Unit cell. . The fundamental lattice vectors are
chosen to be b„, b~, and b»; the corresponding set of
basis ions is shaded, 'The le~nth of b„and b„ is a
= 2, 84 A; the length of b2 is &2a= 4.016 /(.

where G=2)&/a, y B=G(&22+ P2)'!2,

l=(L, l,) =m„b„+m,b, +m, b, ,

m, ~0, and J„,« „»denotes integration over one
unit cell next to the surface. The summation over
a and /2 extends over all integers except n = P=0.

The charge distribution is described by locating
point charges having the magnitude of electronic
charge (e( at the positions of the ions. For the
unit cell given by the present choice of lattice vec-
tors (see Fig. 2), the charge distribution is

p( r ) = (s([5(x)5(y) 5(z+ h)

+ 5(x —a/2) 5( y —a/2) 5(z + h + a/0 2 )

—5(x —a/2) 5(y —a/2) 5(z+ h)

—5(x)5(y)5(z+h+a/v2)]. (6)

This distribution assumes that the crystal bonds
are purely ionic, and ignores the departure from
this distribution caused by the bonds actually hav-
ing a covalent contribution. LiF is, in fact, al-
most entirely ionic, '4 so this should be a good
approximation. Substituting E&ls. {6)and (6) into
(4) gives

/ g ~ (G/y )2eic ((2x +82)e-)'~ B2 & P
~

~

BE
e, g e, g

i Of, B

2&2 (&22+ P2)1/2

a() ia(a'+))')"')
P2 2P(&22+ P2)1/2

(P(~'+ ()')'" -(~'+ P )/' (6)
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The orientation of the molecule is specified by
coordinates (8, (1(), and the molecular symmetry
axis is parallel to the z axis when 8=0. For 8=0
the value of the Q» elements of the (luadrupole
moment [Eq. (lb)] is given by McLean and Yoshi-

mine. " Cylindrical symmetry about the z axis for
8 = 0 implies Q» = Q» ——-~ Q» and Q;,. = 0, i 4j ."
The matrix can then be transformed to a general
(8, (t() to obtain

Y, ,+ Y, , -(2/3)"'Y, ,
1/2

Q;;(8, 0) =o-
6

' (Y...—Y.. .)/&
—(Y2, i —Y2, -.)

(Y, , Y, ,)/f
-(1;,+ Y, ,+(2/3)'~'Y, ,)

(Y, , + Y, ,)/f

-(l;, —I;,))
(Y, , + Y, ,)/f
(8/3)'~'I'

where the Y, = Y, (8, (t() are spherical harmonics.
The value of the constant is 0 = 6.18 x ].0 "
esu cm'. "

E(luations (la), (6), and (9) result in the interac-
tion

(e, —Z, )r,(r, r', 8, 8', y, y')

= 5(r - r') &((t(- (t(') 5(cos8 —cos8') .
The energy of the incident particle is

8(=I'0';/2M + (0'/2f)l, (l, + 1), (14)

f

X g &iG(ex+/@)&-ye gze, g
e, 8

x [e"'Y»+e "'1'
f

—2i(e "Y, , —e "Y, ,) ~6Y, ,],
(10)

with e'= (n —iP)/(n'+ P')' '.

III. ROTATIONAL TRANSITIONS

In this section, the rotational transitions caused
by the quadrupole coupling between translational
and rotational modes are calculated to first order
using a flat hard wall as a zero-order potential,
and treating potential (10) as a perturbation.
These calculations are then extended to estimate
the rotational transitions when the zero-order po-
tential is a corrugated hh. rd wall.

At energies of -O. k eV, typical of molecular
scattering, the H, molecule can be considered a
rigid rotor so that the zero-order Hamiltonian
for points above the hard wall is

Ho =p'/2M + L'/2 1 .
The moment of inertia I is given by

I= 4Md2, (12)

where d=0.76 A is the average distance between
the nuclei for H, in the ground state" and M is the
total mass of the molecule. To find a solution of
the complete Hamiltonian H=HO+ V' to first order
in t/", a Green's function I', for the zero-order
Hamiltonian is constructed. It satisfies the equa-
tion

k,. and E,. being the incident particle's wave-vector
magnitude and its total angular-momentum quan-
tum number. The solution P for the total Hamil-
tonian II obeys the I ippman-Schwinger equations, "

1'ol"0«' ~

The function (, is the zero-order wave function,
the differential d7' =d'r'd(cos8') d(((&', and the in-
tegral is over all points r' above the hard wall and
all orientations (8', (t(') of the molecule. The func-
tions (I(, g„and 1", must all satisfy the boundary
conditions of vanishing at the hard-wall and of
being outgoing solutions. First-order results are
obtained via the Born approximation of replacing
$ by (t(, on the right-hand side of (15).

I lat hard spall. First, the zero-order potential
is modeled as a flat hard wall;

0, z&0
(16)

Although this potential does not include such im-
portant features of the real potential as the, long-
range attractive part and the corrugated shape of
the repulsive part, it does allow a comparatively
simple estimation of the coupling between transla-
tional and rotational modes caused by the quadru-
pole interaction when the incident H, molecule
moves through the electric field above the sur-
face. The hard-wall potential (16) also does not
include crystal phonons in the scattering process
and does not depend on the orientation of the
molecule, so that the rotational transitions in-
duced by interactions with the hard-wall can be
ignored (see Ref. 14).

For a unit-amplitude, incident plane grave
e'"~, k, =(K„v;), the zero-order solution is
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g (r 8 P) = ejKj R(e is js e j-sjz) Y (g y)

The Green's function I', is derived by an eigen-
function expansion:

1'o= Z Yi

2 sin/&z slngz ex d~Ã — dg
7T Q k, l

&-„,=(a'/2M)(Z'+ jj')+(fj'/2f)l(1+1). (16)

The z integral can be performed by contour inte-

gration to yield the outgoing Green's function" for
z&z',

r,=, g Y, .(e, y)Y*, .(e', y')

~
~eieK )(g-g') igK i (g+g') iR N-%')

x
~K, /

jj-„,=+j(lj2-X')+4/d'[l;(l;+1) —l(l+1)]j'j'. (19)

'Using (10), (17), and (19), one can then calculate
the Born approximation to (15):

j'(r, 8, j)=-fI,V'j, dr'

= gg [X jj(jj;;jj ~ j) —X„jj(-jj;;jj„z j)]R j(lj, , m, , l, m) e'"o jj i*e' ~.8' Yj (8, $),
l, m 0„8

with K ~=K, +G(c.i+ pj) and K jj i=Kg i. The function X ~ is defined for arbitrary jj, and K2 as

1

and the R . z is defined, using 3j symbols, "as

(20)

(21)

5(2l+ l)(2l;+ 1) j/2I(l l j 2l ( l l,. 2) f l li 2 )
j Pl

~ if
11 '

(22}

For l,.=m, =0, Eq. (22) reduces to

R ~(0, 0, l, m) =(6»/44jj ),[e+j6„,+ e @j6,—2i(e'j6, —e 'i6„,) —v6 6,].

, g (a. ,(l,,m, , i, m)(,

B (l;,m„l, m)

[Xa, jj(» jt jjdf
~ 8 i) X(g jj( jj i j jj(g 8 i)]

x R 8(l;, m;, l, m) .

(23a)

(22b)

These transition probabilities are significant only
when (cj(+(p(= 1; the factor &„jjcontained in X„z

The transition probability P(n, P, l; —. l} of emerg-
ing in the diffracted beam (cj, P) with total-angu-
lar-momentum quantum number l is obtained by
averaging the beam amplitudes over nz, and sum-
ming them over m, and, including a kinematic flux
factor, "
P(n, P, l;-l)

is zero or very small for other n and P owing to
its dependence on 1 —(-1)~'~ and e "~ jj" [see Eq.
(»)1.

Some significant transition probabilities
P(jj., P, l, - l) are shown in Table I for several
angles of incidence. The important result is that
the values of the rotational transition probabilities
caused by the quadrupole interaction are signifi-
cant, and are on the same order as those deter-
mined experimentally by Boato et al. ,' and theo-
retically, using other interaction models, by
Garibaldi et al. ,'~ and Wolken. ' ~' The distance
h between the plane containing the surface ions
and the hard wall is taken in these calculations as
2.75 A. Considering that the average radius of H,
taken from H, -H, potentials is about 1.4 A,"and
that a typical value of the radius of F is 1.33 A,"
the chosen value for h is reasonable. It is em-
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TABLE I. Rotationally inelastic diffraction probabilities P(0.', P, E; E) X10 caused by the
quadrupole interaction between H2 and Lip with the zero-order potential modeled as a flat
hard wall. The H2 beam is incident at various angles 0; in the (110) azimuth. The incident
wave vector is k, =8.17 A ~; the distance between the hard wall and the first layer of iona is
k =2.75 A.

(n, P, i;
15' 30' 4 5o 60

(1,0, 0-2)
(1,0, 0-2)
(1,0, 2-0)
(1,0,'2-0)

6.1 (3.5 ')
10 (4.5')
4.2 (0 )

3.1

2.8
16
5.9
2.3

4 ~ ~

-28 (4.0 )
10 (0.5 )
1.4

50
19 (2')
0.9

~ 0 ~

55 (15 )
41 (3 )

0.5

Experimental values from Ref. 17.

phasized, though, that the representative value of
5 may be somewhat different. Since the rotational
transition probabilities depend strongly on h,
through the factor e "4,&" [see Eq. (Vb)], changing
h by an amount + &h results in the transiti. on pro-
babilities given in Table I being scaled by the fac-
tor e"oa". (For all significant Fourier compo-
nents in Eq. (V), those with Io.'I+IPI=1, one has
y s=G=2.21 A '.) Thus, if h is decreased to
2.5 A, the values in Table I should be scaled by R

factor of 3.0, and if h is increased to 3.0 A, the
values should be scaled by 0.33. Even in the latter
case, the quadrupole interaction remains signifi-
cant.

Corrugated hard oval/. Although the results for
the flat, hard wall show that the quadrupole inter-
action is significant, they predict appreciable
transitions only into rotationally inelastic diffrac-
tion beams for which

I
n

I
+

I
P I= 1 Experimentally,

appreciable transitions into other rotationally in-
elastic beams are observed. " The quadrupole
interaction will contribute to these other beams if
a more realistic corrugated shape is included for
the hard wall.

One is immediately faced with the difficult
problem of finding a Green's function ~, which
satisfies the boundary conditions of vanishing for
points on the corrugated surface. If, however, the
object is just to find results to the right order of
magnitude, one can argue from the results for a

flat, hard wall as 'follows.
Note that

q.(,8, e)

= e"I'+ g P'„.e»PI((K„„PK i»„. „*)I)
4, V

x l, ,(8, y}. (24)

For the correct coefficients E, „, the wave func-
tion g, vanishes at the hard wall. Then in analogy
with (1V) and (20), the perturbation is approxi-
mately

X. ,(g, , ~. . .) R. ,(f„m„f, m)

in Eq. (20) describes the coupling of a state
exp[i(K; R+ ~;s)] Y„,(8, Q) to the state
exp[i(K () R+ ]( ]],z)]Y, „(8,Q). This coupling
is caused by the quadrupole interaction as the H,
molecule moves through the electric field above
the surface. This interaction is not expected to
depend greatly on the exact shape of the surface.
Therefore, an estimate of rotational transitions
can be obtained for the corrugated, hard wall by
again using the same product X ~ A ~, defined by
Eqs. (21) and (22), to describe couplings between
states. Specifically, since the hard-wall potential
is not a function of 8 and Q, the Rayleigh hypo-
thesis" can be used to write the zero-order solu-
tion as

P'(r, e, P) = QQ (x„,(»;; ». . .) e»P[i(K, , RK». . .»)]
l, m e, g

.le~+ Q P„„X e(K„„.i', Il „,I i)eep(II „„, „,I 'Re II, „,I it)])
P, V

~ a„,(l„m„f,m)r, .(8, y). (25)
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TABLE II. Rotationally inelastic diffraction probabilities P(p', &', l; l) X10 caused by the
quadrupole interaction between H2 and Lir with the zero-order potential modeled as a cor-
rugated wall. The plane of incidence is in the (110) azimuth. The values of the constant are
0; = 8.17 k t, 0 = 2.78 A, and fo = 0.28 A..

50 30' 45 60'

(0, 0, 0 2)
(1,0, 0 2)
(1,0, 0-2)
(0, 0, 2-0)
(1,0, 2 0)
(1,0, 2 0)

0.8 (7 )

5.1 (3.5 ')
6,3 (4.5 )
0.2
3.0 (0 ')
2.7

1.2
3.7
8.1
0.3
3.3
2.4

3.1
~ 0 ~

12 (4.0 )
0.6
3.4 (0.5 ')
2,2

14
1.9 (2 )
6.8 (2')
2.8

~ ~ ~

4.7 (15 )
1.7 (3.5 ')

26 (3')
4 3

' Experimental values from Ref. 17.

The coefficients E„„canbe determined by using
the Eirchhoff approximation. '"

i+~~

"~[t(I., I+..„,,)&,]

x J.((IK'I+K..., )4/2)

P(p', v', l, -l)

Ki

8, „(l;,m;, l, m)

F.(l„m, , l, m)
i m, rni

(28a)

~ z„((I~,I+ ~„„„)g, /2).

The shape of the surface is (see Fig. 1)

k(x, y) = ——,
' f,( cosGx+ cosGy+ 2) .

(26)

(27)

Xt, y(& X K. .., ()~
~

+ Q F X„.„.. „.(X„„,;X,)}
P, p

The corrugation amplitude is taken, after Gari-
baldi et al. ,

'~ to be $, =0.2$ A. The total geflected
intensity predicted by (26) was within 5/c of unity
for all incident angles less than 60', and within
15/c for 60'.

The transition probability P(11', v', l, -l) of
emerging in the diffracted beam (lt ', v') with total-
angular-momentum quantum number l is now

(28b)&& ft, , „„,„(l,, m „l, m ) .
I

Tables II and III give the values of transition
probabilities computed from Eqs. (28) for a. num-
ber of incidence angles in the (110) and (100) azi-
muths. Again ere find that they are comparable in
magnitude to experimental values" and to those
computed using different interaction models. "'

TABLE III. Rotationally inelastic diffraction probabilities P'(p.', v', &; -I) &103 under the
same conditions specified in Table II, except in the (100) azimuth.

(P's l" a&i

(0, 0, 0 2)
(1,1,0-2)
(2, 2, 0-2)
(0, 0, 2 0)
(1,1,2 0)
(1,1,2 0)
(2, 2, 2-0)

50

0.8 (7')
1.2 (0 )

0.2
0.3 (0 ')
0.2
0.3 (1.2

1.2 (7')
1.1
0.4 (0')
0.3 (0.5 ')
0.3 (0')
0.2
0.3 (1.6 ')

30

2.e (6')
1.2 (2.0 ')
0.6
0.6 (1.5 ')
0.9 (0 ')
0.3
0.2 (0')

~ 0 XX

2.2 (4.0 ')
0.6 (0')
1.6
4.0 (1.0 )
0.4 (2 ')
0.2 (0 )

60

0 ~ ~

4.0 (15,24 )

0.5 (2.5 ', 1.8 )
1.3 (5', 13b)
0.1 (3 ', 0.2')
0.6 (2.5', 20b)
0.1 (0,1.8 )

Experimental values from Ref. 17.
Theoretical values from Ref. 14.
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IV. CONCLUSIONS

This article shows that when H,, is scattered
from the surface of a LiF crystal, the quadrupole
moments of the incident molecule interact with the
electric field of the crystal ions to couple transla-
tional and rotational modes. This interaction
causes significant rotational transitions, and indi-
cates the need for a rigorous calculation using a
detailed potential which combines the quadrupole
interaction with other important surface-potential
features like a long-range attractive part. In ad-
dition, the detailed potential should allow for other
important mechanisms which cause rotational
transitions, such as those stemming from the oblong
shape of H, and the directional dependence of its
polarizability.

LiF is the subject of the present calculation be-
cause the crystal bonds are almost entirely ionic,
thereby allowing a straightforward calculation of
the electric field. Experiments have also been
carried out scattering H2 from MgQ (Ref. 18) and

Ag, ' and rotationally inelastic beams are ob-
served. To determine the significance of the
quadrupole interactions in these cases, it is neces-
sary to combine the general approach of this
article with a microscope calculations of the elec-
tric field above the surface of each of these crys-
tals. Since crystal bonds of MgO are largely
ionic, '4 the quadrupole interaction between H, and

MgO is probably similar in magnitude to the val-
ues calculated for H, and LiF. The contribution of
the above interaction mechanism for molecular
scattering from a metal surface could be estimated
using the charge distribution for a metal surface
cell in Eq. (5), which when used in Eq. (4) yields
the potential at observation points above the sur-
face. Recent calculations of metal-surface elec-
tronic-charge densities" employ a jellium model
to represent the charge of ionic cores. For the
purpose of the theory presented in this paper, the
detailed contributions due to the ionic cores should
be included. In the case of metal surfaces, the un-
certainties in the location of the repulsive part of
the potential [see the discussion in Sec. III follow-
ing Eq. (23b)], as well as the interaction potential
in general, are greater than for ionic crystals. '
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APPENDIX: THERMAL MOTION OF THE IONS

The calculation has ignored the displacements
of the ions from their equilibrium positions caused

by thermal motion. The following analysis, which
closely resembles a calculation of the Debeye-%al-
ler factor, '6 "justifies the neglect of the thermal
motion.

The charge distribution p( r ) throughout the
crystal is written as a sum of contributions from
the ions:

S
(29)

The second sum is over all of the ions in a unit
cell. The charge distribution p, is contributed by
an individual ion labeled s. The position of an ion,
including the thermal displacement u;, (t) is

r;, = I+ r, +u;,(t}.
The vector r, is the position in the unit cell of ion
s relative to the lattice point l.

The second integral in (4) is now reduced to

d 3 r p(rr)e)rz'-iR %'~
~ ~

S
1 unit ce11

The second term in the expansion describes a
time-varying component of the electric field
which, although averaging to zero, may act
through interaction (1a) to couple crystal phonons
to rotational modes of the H, molecule. This
article, however, is focused on the coupling be-
tween the rotational and translational modes of the
H, molecule caused by the time-averaged electric
field of the crystal ions. Thus, time averaging
(31) so that only even-powered terms remain, "
we obtain

(e p) = exp(y'(u', ) —1~'„(u'„)—K'„(u',)) ~ (32)

If one assumes isotropic vibration, i.e. , (u'„) = (u',)
= (u', ), then (e~d) is unity because y' =K'„+K'„.
This simply results from assuming that the aver-
age charge distribution caused by each vibrating
ion is spherically symmetric about the equilibrium
position. Actually, for the ions near the surface,
which are most important in determining the field,
(u', ) is larger than the other two components. "
Nevertheless, with (u';)' ' = 0.1 A,""and y=

~

K
~= 2v/a= 2.2 A ', the terms in the exponent of (32)

Letting u;, =(U, u, ), the exponential factor is
~ ~

eES —egg&-i K' U

= 1+ (yu, —iK'U)+ 2 y'u', ——,'(K'U)'+. . . .

(31)
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are individually small, -0.05. Therefore, even
with (u2)4(u&), the value of (e~*) is near unity, so
that Eqs. (29) and (30) reduce to (5) for the small
Fourier components K of the field. For larger IC,

the components of the field are very small because
of the factor e"' in (30) so that the influence of
thermal vibrations on these components does not
significantly affect the total field.
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