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Lattice dynamics of a 15-layer unrelaxed MgO (001) slab:
Breathing-shell model
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The lattice dynamics of a 15-layer unrelaxed MgO {001)slab is studied using a breathing-shell model and
the results are compared to previous non-breathing-shell model and experimental results. An efficient method
of integrating over the surface Brillouin zone, involving one-dimensional integrals along several "special
directions" is outlined. In general the results are similar to the non-breathing-shell model results. However,
a new surface mode is found at the lower edge of the LO bulk band, and the surface-excess-distribution
function shows peaks not found in the non-breathing-shell model result.

I. INTRODUCTION

Recently there has been a considerable amount
of interest in theoretical studies of surface modes
of vibration in ionic crystals. The most success-
ful approach has been that of slab lattice dynamics
in which the normal modes are obtained for a
slab-shaped crystal of finite thickness. Chen
et al.' have recently reported the results of a
comprehensive study of the unrelaxed (001) sur-
faces of seven ionic crystals having the rocksalt
structure. The crystals studied were six alkali
halides and MgO. The normal- or non-deform-
able-shell model was used. 'The purpose of the
present paper is to report the effect of incorpor-
ating a breathing mode on the normal modes of
vibration of an unrelaxed MgO (001) slab and to
form a basis for future calculations including sur-
face relaxation.

'The breathing-shell model has been shown by
Sangster et al.' to be superior to the normal-shell
model in describing the bulk lattice dynamics of
MgO, particularly the high-frequency modes
where the effect of surface relaxation is expected
to be most pronounced. In addition, in the breath-
ing-shell model, the forces may be taken to be
central even though the elastic constants do not
satisfy the Cauchy relations C„=C4„provided
that C») C«, as is the case for Mg0.3 We have
previously reported the results of a self-consis-
tent calculation of the relaxation of an MgO slab
due to the free (001) surfaces4 and have found that
the breathing mode produced significant contribu-
tions to the surface energy and the relaxed con-
figuration. The present paper is restricted to the
unrelaxed case and a future publication will deal
with the relaxed surfaces.

The paper is organized as follows. In. Sec. II
we briefly describe the model and how the breath-

ing mode is included, and discuss the method used
to obtain the frequency distribution functions. The
results for a 15-layer MgO (001) slab are reported
in Sec. III, we compare our results with the nor-
mal-shell-model results of Chen et al.' and with
the experimental surface-excess-distribution
function of Rieder. '

II. MODEL AND CALCULATIONS

The breathing-shell model used in the slab lat-
tice-dynamics calculations reported here is equiv-
alent in the limit of an infinite number of layers to
model E of Ref. 2; the definitions and numerical
values of the parameters are given there. In this
model each ion consists of a positively charged
core surrounded by a negatively charged shill.
The shell may be displaced with respect to its
core, taking into account the polarizability of the
ions. The breathing mode consists of an isotropic
deformation, or a change in radius, of the shell.
Short-range interactions between ions are as-
sumed to take place only between the shells so
that a decrease in radius of a shell will have the
same effect on the non-Coulomb interaction with
a neighboring ion as a displacement away from
that ion.

We define u(f~), w (1 &0), and v(l e) to be the core
displacement, the shell displacement with respect
to its core, and isotropic shell distortion of the
~th ion at lattice site l. 8ince translational in-
variance still applies in directions parallel to the
surfaces these variables will be two-dimensional
Block functions u(l, v; g, w(l, w; q) and v(l, v; q),
where l, is the component of l normal to the sur-
faces and q is the two-dimensional wave vector
parallel to the surfaces. The equations of motions
may be expressed as follows:
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m„~'u(l, «;q) =g [z„z„.C(l, «, l,'«', q) u(l,'«', q) +z„y„,C(l, «, l,'«', q) w(l,'«', q)+R(l, «, l,'«';q) u(l,'«', q)
)i ~c
3

+ R(l, «, l,'«', q) ~ w(l,'«', q) + Q(l, «, l,'«', q)v(l,'« ', q)],

0 = g [ y„z„,C(l3«, l,'«', g) u(l,'«', q) +y„y„,C(l, «, l,'«', q) ~ w(l3«'; q) +R(l,«, l,', «', g) u(l3«', g)
l3&'

+ R(l, «, l,'«', q) ~ w(l,'«', q) +Q(l, «, l,'«'; q)v(l,'«'; q)] +y„(z„—y„)C(l,«, l,«; 0) ~ w(l, «; q) +K„w(,«; g),

0 = g @*(l,'«', l,«; q) u(l,'«', q)+ Q*(l,'«', l, «;tl) .w(l,'«', g) +H(l, «, l,'«', q)v(l,'«', q)]+ G„v(l,«;g),
K3

where ~„ is the mass of the zth ion, z„ is the total
charge, and y„ is the shell charge of the I(.'th ion,
and K„and G„are spring constants associated with
shell displacement and isotropic distortion, re-
spectively. The matrix elements C,~(l,«, l,'«', q)
and A, ~(l,«, l3«', q), where n. , P =1,2, 3 describe,
respectively, the Coulomb and short-range inter-
actions and are identical, except for a factor of
1v'm„rn„, , to those given in Appendix C of Ref. 1.
C(l, «, l3«', 5) is diagonal and is equivalent to
4 (l,«, l, «;0) of Ref. 1. The elements
Q (l, «, l,' «'; q) and H (l,«, l,'«', ll) describe, re spec-
tively, the core or shell-displacement-shell-
breathing and the shell-breathing-shell-breathing
interactions and are given in the Appendix of this
paper. The sums over l3' are understood to include
only the layers in the slab.

The polarization and shell breathing of the mag-
nesium ion are assumed to be negligable with re-
spect to the oxygen ion. This is equivalent to let-
ting K~/K, and G, /G, become zero where « =1 for
Mg and « =2 for O. In this case ~(l,1;g) and
v(l, 1;q) will be identically zero and may be omit-
ted from the equations.

The shell displacement and breathing can now
be eliminated to obtain the dynamical matrix for
core displacements. W'e define U to be a column
matrix of the core displacements, S' and t/' to be
column matrices of the shell displacement and
breathing, and a column matrix X= (W, V) ~. The
equations of motion may be expressed in matrix
form:

where D„ is an Hermitian matrix containing all
the core-core interactions, D„ is an Hermitian
matrix containing all the shell-shell interactions
and D„ is a nonsquare complex matrix containing
the core-shell interactions. The determination of
the individual elements from the equations of mo-
tion given earlier is straightforward and need not

be shown here. M is the diagonal matrix of ionic
masses.

Now if we define M ' 'f(q) = U(q), where M ' ' is
a diagonal matrix of elements 1/4m„, then the dy-
namical matrix is

D =M-&~2(D D g)-& D~ )M-& &2

The eigenvalues and eigenvectors of the dynamical
matrix are the squared frequencies ru'(qp) and the
normal modes g(qp), p = I, . . . , 6N, N is the num-
ber of layers.

The dynamical matrix D is a 6N x 6N Hermitian
matrix. Allen et al.' show that if the slab has
either axial-inversion symmetry or a three-di-
mensional center of inversion the matrix may be
reduced to a real symmetric matrix of the same
size and that if both of these symmetries are
present it may be block diagonalized into two real
symmetric matrices of approximately equal sizes
(equal sizes of N is an even number). For a 15-
layer slab the two matrices are 46 ~ 46 and 44
x 44. The components of the eigenvectors of the
larger matrix which are parallel to the surfaces
are symmetric about the center plane of the slab
and the components normal to the surfaces are
antisymmetric about the center plane. These
modes will be referred to as symmetric modes.
The opposite is true of the components of the
eigenvectors of the smaller matrix and these
modes will be called antisymmetric.

In performing the integral over the Brillouin
zone (BZ) we need the quantity [&,&a(qp)] q, i.e.,
the derivative of v with respect to ~q ~

in the di-
rection of q. We can show that

&,~(qp)
= [I/2 (gp)]{r-'(q)[v,D(q)]r(qB„,

where I' is a matrix made up of the eigenvectors
of D such that

[r '(q)D(q)r(a) 1„=6„~'(qp) .
Thus the derivative of +(qp) in any direction k is
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given by

[V,go(qp) ] ~ k = [1/2 (g(qp)](1 -'(tr) [V,D(q} k]I'(II))» .
This expression is useful in drawing the disper-
sion curves as well as in the BZ integration.

After some simple matrix manipulations we find
that

VD =M '"((vD ) [(vD,)D-'D~ ]

[(vD„)D;,'D'„)'

+ [(D,D'„)'(VD.,}(D,D~„)]}M-'"

6

g (td)=
~ ~

', f d. 'eg &(&-&(CP))

for the bulk,

1 2%0

6N (2v)2

6N

&(~ —~(%P))
z

for the slab, and

is the surface excess distribution function, where
~, is the nearest-neighbor distance. To perform
the BZ integration for the -bulk we have used the
"special directions" method of A. Bansil' and an
analogous two-dimensional method, Qauss-Che-
byschev integration, for the slab. In these meth-
ods the distribution function is approximated by

The matrices (vD„), where a, b =c or s, are obtained
by simply taking the gradient of the individual ele-
ments. This method is superior to both interpo-
lation or extrapolation procedures since the time
consuming process of diagonalizing the dynamical
matrix need be done only once for each g and the
problems arising from the close approach or cros-
sing of dispersion curves are avoided.

The frequency distribution functions are defined
as follows:

I"IG. 1. Surface Brillouin zone (SBZ). The irreducible
element is bounded by the high-symmetry 1.ines T&,
XM, and MI'. The five special directions, "+&f TD 5
used in the SBZ integration are also shown, I'B& being
closest to 7X.

The one-dimensional integrals involved in g(+, q,. )
were obtained by evaluating +(q, ,qp) and

V&o(q;, qP) ~ q, for 50 evenly spaced points along
the special directions, then using ~~ q,. to ap-
proximate & between the evenly spaced points.
For the bulk calculation we have used the 13 spec-
ial directions given in footnote 7 of Ref. '?. In the
two-dimensional slab case the special directions
are given by the angle Q, (N~) =(2i- l)v/8N~ be-
tween q, and the line. i'X (see Fig. 1). For the
slab calculation reported in Sec. III we have used
N„=5.

To verify our calculations we have compared our
results to the results of previous calculations.
We reproduced the frequencies quoted for models
B and E for the bulk in Ref. 2. The slab calcu-
lations was checked by decoupling the breathing
[setting Q (l,~, f,'~', g) =0] and using the same para-
meter values as Chen et al. used for MgO in Ref.
1. We were able to reproduce both the dispersion
relations and surface-excess-frequency-distribu-
tion function giveh in Ref. 1.

III. RESULTS

2'~(~, q;)
~max &4 )

&(~- ~(q;, qP}),
=1

g.(~, q;)

1 2'
6N (2v)'

e~(e~ )

qdq g 5(~- ~(q~, qP)) ~

where N„ is the number of special directions spec-
ified by unit vectors q, , and

In this section we present the results of our cal-
culation in the form of the dispersion curves &u(gP)
and the frequency distribution functions g, (&u},

g, (&u} and f(&u). The dispersion curves for the sym-
metric and the antisymmetric modes are shown
separately. They are given for the high-sym-
metry lines I'X, XM, and RI' in Figs. 2 and 3,
and along the five special directions in Figs. 4-8.
Fig. 1 shows the surface Brillouin zone (SBZ),
the high-symmetry lines along the boundaries of
the SBZ irreducible element, and the five special
directions.
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A. Dispersion curves

Most of. the 90 dispersion curves of a 15-layer
MgO slab fall into bulklike bands corresponding to
the bulk LO, LA, TO, and TA curves. At the SBZ
origin, I', this identification is exact with the
longitudinal modes having polarization vectors
normal to the surfaces (longitudinal with respect
to an imaginary third component of q) and the
transverse modes having polarization vectors
parallel to the surfaces. Away from the origin
along the high-symmetry lines I'X and 1'M the
normal modes are divided into two noninteracting
polarization types, sagittal plane (SP) and shear
horizontal (SH),' the sagittal plane being the plane
normal to the surfaces containing the direction of
q. Thus along these high-symmetry lines there
are six bulk subbands. They are the LQ and LA

subbands which are of the SP type, and the
TO(SP), TO(SH), TA(SP), and TA(SH) subbands.
Since modes of differerit polarization types are
noninteracting the SP and SH subbands may cross
or overlap and the individual curves are contin-
uous. Where bands of the same polarization type
cross or overlap, the individual curves are not
continuous but rather are loci of hybridized
curves. The same is true in the interior of the
SBZ irreducible element where the dynamical
matrix for each symmetry type, symmetric and
antisymmetric, is not further reducible.

In addition to the bulklike modes there are seven
surface modes of each symmetry. They occur in
degenerate or almost degenerate pairs of opposite
symmetry and are characterized by a rapid de-
crease in magnitude of core displacement away
from the surfaces. These surface modes are
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FIG. 3. Dispersion
curves for the symmetric
modes of a 15-layer MgO
(001) slab for q along the
high-symmetry lines.
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labeled Sn, where n is a number between 1 and '7

assigned in the same manner as in Ref. 1. Sur-
face modes are shown in the dispersion curve fig-
ures as solid lines, or as dot-dash lines for

"pseudo surface modes" which have both bulklike
and surface properties. Bulk modes are shown as
dashed lines.
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between bulk subbands of the same polarization
type, thus the structure of the bulk subbands plays
an important role in determining the occurrence
of surface modes. We now give a brief description
of the behavior of the bulk subbands and the sur-
face modes.

1. Bulk subbands

Along the direction I'X, as q increases from the
origin, the lower and upper edges of the TO(SP)

and TA(SP) subbands lie above the corresponding
edges of the TO(SH) and TA(SH) subbands. The
LO subband moves up through the TO(SH) subband
and overlaps the TO(SP) subband. As the angle
between g and I'X increases the polarization char-
acteristics of the transverse subbands are smooth-
ly changed from SH to Sp and vice versa so that
along I'M the TO(SH) and TA(SH) band edges are
above the corresponding TO(SP) and TA(SP)
edges.
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2. Naeroseopie surface modes

There are two types of surface modes which are
derivable from continuum theory. These are the
Fuchs-Kliewer (FK) modes from dielectric con-
tinuum theory and the Hayleigh modes from elastic
continuum theory. The FK modes are not degen-
erate near the origin and are not shown in the dis-
persion curves. They are however evident near
the origin as hybridizations involving the TO(SP)
and LO modes. FK(-), the symmetric FK mode,
shifts the frequency of each continuous curve up,
starting at the bottom of the TO subband and con-
tinuing to near the top of the LO subband. FK(+)
shifts the frequencies of the antisymmetric modes
down near the top of the LO subband. According
to Fuchs and Kliewer' the two should approach a
common frequency a little below the LO bulk fre-
quency but for a slab of only 15 layers the atom-
icity of the crystal becomes important before this
happens and there is no degenerate surface mode
pair corresponding to the FK modes.

The surface modes labeled S1 correspond to the
B,ayleigh modes. They are SH along I'X, SP along
1"M, and lie below the bottom edge of the TA sub-
band. The attentuation of the displacement away
from the surface is inversely proportional to the
wavelength, so for long wavelengths (small g)
they become bulklike and are not degenerate.

3. Microscopic surface modes

These other surface mode@ ax'e not derivable
from any continuum theory.

SR arid 83; These miodes pre found in the gape

between the LO and TO subbands. They are SP
modes. S2 is unique to the breathing shell model
for MgO, it did not occur in the non-breathing-
model results of Ref. 1 although similar modes
labeled $2 were found for some of the alkali hal-
ides. This pair follows the bottom edge of the LO
subband from the origin until the top edge of TO
subband approaches the LQ subband. S3 occurs
only in the gap between the LO and TO(SP) sub-
bands near X.

S4 and S5: the frequencies of both these pairs
is the same at the origin. S4 is SP along I'X and
SH along 7'M. It occurs as a locus of hybridized
curves for some intermediate value of q away
from the origin and reappears as a pair of con-
tinuous curves in the TO- TA gap, which exists
along the SBZ boundary except near 1P. S5 is SH
along I'X and is a continuous curve all the way to
X. Along I'M it is SP and extends only about half-
way. In the interior of the SBZ irreducible ele-
ment it is a locus of hybridized curves extending
out from the origin and reappears in the TO- TA
gap at the boundary. In the nonbreathing model of
Ref. 1 S4 and S5 cross as q moves along the bound-
ary line XM, but in our result S5 remains below
84. 'The fourfold degeneracy of S4 and S5 at the
origin suggests that they might be subject to direct
experimental verification; however, no such veri-
fication has been made.

S6 and SV: These are acoustic surface modes
found at oy near the bottom edge of the TA sub-
band. So occurs at the bottom edge of the TA sub-
band only near the SBZ boundary. It is 88 at X
and approaches being SP before disappearing near
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M. Sv is SH along I"X and is a continuous curve
except near the origin, following the bottom edge
of the TA(SH) band all the way to X. In the inter-
ior of the SBZ irreducible element it occurs as a
locus of hybridized curves for some intermediate
values of q and disappears entirely as the two TA
subbands exchange polarization characteristics.
S7 does not occur along I'M.

These results, except for the occurrence of S2,
resemble very closely the results for the non-
breaching-shell model, and we refer to Ref. I for
a more complete description of the surface-mode
characteristics.

B. Frequency distribution functions

I 5"

I.O"

0.5"

slab

'The bulk frequency distribution function for our
model is shown in Fig. 9 and may be compared to
the distribution function shown for model D of Ref.
2 since the parameters are almost the same. The
slab distribution function, g, (cg), is shown in Fig.
10 and the surface excess distribution function,

f(~), in Fig. 11. Also in Fig. 11 we show the ex-
perimental surface-excess-distribution function
of Rieder' as a dashed line, scaled in arbitrary
units to fit in the f(v) frame. The distribution
functions were all obtained initially as 450 bin his-
tograms and then smoothed so that each bin g(n)
in the smoothed function is a weighted average of
several bins g'(n+ m), m =0, 1,2, . . . . The weight-

b ulk

0 I

FRE QUENCY (IOe/'SEC)

FIG. 10. Frequency distribution function for a 15-lay-
er unrelaxed MgO (001) slab from the breathing-shell
model discussed in the text, smoothed over a frequency
interval of 0.033 &&10 Ssec

ing function is the normal distribution function
e ",where a is adjustable to control the range
over which the functions are smoothed. For the
bulk and slab 20'= 0.033 && 10" sec ' and for the
surface excess 2a =0.048 x10" sec '. The bulk

I.5" I G~ Hb

I.O" surface
excess

I.O'

05" 0 ~ ~

I

I
I
I

I
I

I &

I I
l~I

I

FREQUENCY (IO'~t'SEC)

FIG. 9. Bulk (infinite crystal) frequency distribution
for MgO from the breathing-shell model discussed in
the text, smoothed over a frequency interval of 0.033
&10~~ sec ~.

I

FREQUENCY ( IO' I'SEC)

FIG. 11. Surface-excess frequency distribution func-
tion for a 15-layer unrelaxed MgO (001) slab from the
breathing-shell model discussed in the text, smoothed
over a frequency interval of 0.048 &10~3 sec"~. The
dashed curve is the experimental result of Hieder.
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and slab f requency distribution functions are nor-
malized to unity.

The maxima and minima in the surface-excess
distribution function are due to the flat portions
of the surface-mode dispersion curves and the de-
pletion of bulk subbands associated with the form-
ation of surface modes. The surface-excess func-
tion of our model shows more structure than is
seen in the experimental function, particularly at
frequencies above 10" sec ', but the experimental
resolution does decrease with increasing frequen-
cy. The main features are in reasonable agree-
ment except for the wide peak in the experimental
result near the maximum frequency.

The peaks of the experimental surface-excess
frequency-distribution function are labeled in Fig.
11 by Roman numerals, and the subscripts a, b, c
refer to corresponding individual peaks in the mo-
del function. The peaks may be attributed to the
surface modes as follows: I, due to S1,$6, and
S7; II„due to S4 near X and $5 along XM; II„
due to S4 and S5 near I" and S4 along XA7 away
from X; III. .. due to the lower reaches of S2
along I'M, along I"X, and to $2 near 1', respec-
tively; and IV, due to $3. The minimum in the
model distribution function above 2 && 10" sec ' is
attributed to FK(+) shifting the antisymmetric 1,0
modes down in frequency.

C. Summary

The breathing-shell model has been used because
it gives significantly better agreement with experi-
mental results for the bulk lattice dynamics, and
because previous calculations have shown that the
breathing mode has a nonnegligible effect on sur-
face relaxation. The principle differences between
the breathing and the normal-shell-model disper-
sion curves are the occurrence of surface mode
S2 and a shift in frequency of surface modes $4
and $5 at the SBZ boundary. There are corres-
ponding differences, i.e., peaks II, and IG, , „ in
the surface-excess frequency distribution func-
tions. It i.s hoped that the results reported here
will be of interest to others working in the same
area and will be a basis for comparison with future
more realistic model calculations including surface
relaxation.
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APPENDIX

The matrix elements coupling the breathing
mode to the core and shell displacements are as
follows:

(a) If I/. -/.'I-2 q. (/. ~, /;~', q) =O.

(b) q (/, 1, l,'1; q) does not appear in the equations
of motion since the breathing of the Mg' ions is
neglected.

(c) lf I/3-/. 'I=I,

Q, (/, 2, /32;/I) = [(I, —I,')/( I I, —I,' l)](e'/2V)M2A'

&& [cos(q,r, )+cos(q,r,)],

Q, (/, 2, l,'2 g) =(e2/2V)M2A'i sin(q, r ),
Q, (/, 2, l,'2;q) =(e'/2V)M2A'i sin(q r ),

q, (/, I, /32ytI) = [(I,—I,')/ll, —l,'l](e'/2V)A,

Q, (/, 1, /,'2;g) =@2(/,1, l,'2;/I) =0 .

(d) if ll. -l.'I =0,

Q, (/, 2, /, 2;1I) =-(e'/2V)(A. +2M2A')[6(/, ) —5(/ -N)],

Q, (/, 2, l,2; /I) = (e'/2V)242 A 'i sin(q, r, ) cos(q, r,),
Q2(/, 2, l, 2; q) = (e'/2V)2/2 A 'i sin(q2ro) cos(q, r,),
Q, (/, 1, /, 2; q) =0,

Q, (/, 1, l, 2; q) = (e'/2V)2Ai sin(q, r,),

q, (/, I, /, 2; q) = (e'/2V)2Ai sin(q, r,),

where l', =1, ... , N; A, 8, A', and 8' are the
short-range interaction parameters as defined in
Bef. 2; e is the proton charge; and V=2m', is the
simple cell volume, x, is the nearest-neighbor
distance.

The breathing-breathing matrix elements are as
follows.

(a) If Il, —/,'I-2, 8(/, ~, /,'~', q) =0.
(b) /i(/, v, l,'1; q) does not appear in the equations

of motion since the breathing of the Mg' ion is
neglected.

(c) If I/~ —/~ I=1,
H(/ 2, /~2;/I) =(e~/2V)2A'[cos(q, ro)+cos(q2ro)].

(d) lf I/, /;l=o,

H(/, 2, /, 2; q) = (e'/2V){4A' cos(q, r, ) cos(q, r, )

+ 6A+12A. ' —(At 4A ')

x [n(/, }+a(/, -N}]].
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