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Radius-independent resonances in electron-hole drop magnetoplasmas
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We discuss theoretically the microwave and far-infrared spectra which exist in the parameter ranges
appropriate to small electron-hole drops in Ge when they are located in a dc magnetic field. Our examination
employs the perturbation-theory results of Ford, Furdyna, and Werner, which rigorously describe the
interaction of a small gyrotropic sphere with external time-varying electric and magnetic fields. We consider
only the two high-symmetry orientations of the dc magnetic field, parallel to the [100] axis of Ge and
parallel to the [111]axis of Ge, for which the electron-hole magnetoplasma in Ge is described by a dielectric
tensor of a form amenable to the perturbation theory. The theory predicts several radius-independent electric
and magnetic resonances. In parameter ranges appropriate to compensated electron-hole drops in Ge, we find
that the positions of all resonances are functions only of the various carrier effective masses and
ratios of the concentrations of the different carriers. The intensities of the electric resonances are inversely
proportional to the electron carrier concentration and vary as the cube of sphere radius and the fourth power
of frequency. The intensities of the magnetic resonances are directly proportional to the electron carrier
concentration and vary with the fifth power of radius and the square of frequency. W'e find that two
additional electric resonances can occur when the electron-hole drop is uncon;pensated. The positions of these
resonances depend directly upon the difference in the electron and hole carrier densities.

I. INTRODUCTION

Several authors have recently reported complex
spectra of mell-resolved microwave and far-in-
frared resonances, associated with electron-hole
drops (EHD) in germanium in the presence of an
external dc magnetic field. ' ' 7hese resonances
depend directly on the properties of the electron-
hole plasma and constitute potentially powerful
probes for determining the EHD characteristics.

Unfortunately, a quantitative interpretation of
the resonance spectra meets with a serious diffi-
culty: the presence of the dc magnetic field, re-
quired by the experiment, makes the electron-hole
plasma anisotropic, and the interaction of an elec-
tromagnetic wave with a spherical plasma of arbi-
trary anisotropy remains an unsolved problem of
classical electrodynamics. For this reason, much
of the discussion of the magnetic-field-dependent
microwave resonances in EHD has been, so far,
qualitative, using the ad hoc phenomenological
model of Cardona and Rosenblum' as a point of
departure. "'

Recently, however, Ford, Furdyna, and Vferner"
(FFW) solved the problem of the interaction of an
electromagnetic wave with a small" gyrotropic
sphere, characterized by a complex dielectric
tensor of the form

K = —K„y K„„

0 0

using a perturbation expansion. Their results can
be applied directly to the microwave interaction
with small EHD for certain field orientations and
thus provide, for the first time, a rigorous handle
on the problem. "

In this paper we use the results of FFW to ex-
amine theoretically the spectrum of microwave
resonances existent in the parameter ranges ap-
propriate to EHD in germanium when the external
magnetic field is applied either along the [100] or
the [111]crystallographic axis, the two high-sym-
metry orientations for which the electron-hole
plasma of the droplet is described by a dielectric
tensor in the form of Eq. (1). We also restrict
attention to "small" droplets, which have radii
less than 10 p, m," "in order to satisfy the per-
turbation criteria of FFW. ' Specifically, we do
not consider the large EHD (the y drops) observed
in inhomogeneously stressed Ge, 7 since both their
size and the conditions under which they were cre-
ated preclude their quantitative discussion in the
context of the perturbation theory. We approach
the problem of resonances in EHD macroscopical-
ly, by formulating and examining the electrical and
magnetic polarizabilities for normal- mode excita-
tions of the droplets as a function of the applied
dc magnetic field. Resonance conditions, line-
widths, and intensities are discussed, and both
compensated as well as uncompensated electron-
hole plasmas are considered. Since the resonance
spectra are very complex, particular attention is
given to identifying and classifying the resonances
according to the microscopic mechanisms which
give rise to the various peaks.
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II, ELECTRIC RESONANCES

In this section, we discuss the radius-indepen-
dent resonances that arise from the interaction of
a time-varying electric field with a magnetoplasma
sphere. After describing the appropriate macro-
scopic formalism, we first review the resonance
spectra of magnetoplasma spheres composed of
materials with isotropic band structures and then
discuss the resonance spectra for EHD in Ge.
Throughout this paper, we employ mks units.

e, = ~ (x+iy), e = ~ (x-iy), e~~=z, (2)

resulting in the form

&ex+ &&my

0 g 0
i &xx &&xy

The time-averaged power absorbed by a gyro-
tropic sphere from a time-varying electric field
pace- gu)g is

A. Macroscopic formalism

We assume that the fields outside the sphere are
spatially uniform, i.e., that the wavelength of the
electromagnetic radiation in the medium outside
the gyrotropic sphere greatly exceeds the sphere
radius. We consider separately the three linearly
independent modes of excitation of a gyrotropic
sphere (denoted by the subscript m) into which an
arbitrary time-varying field (electric or magnetic)
can be resolved. The modes of excitation consist
of two transverse circular polarizations (m = a),
where the time-varying external field is perpendic-
ular to a dc magnetic field 8, and of a longitudinal
polarization (m= II), where the time-varying ex-
ternal field is parallel to B. The gyrotropic ten-
sor, Eq. (1), can be diagonalized in the coordinate
system associated with these modes, which is
given by the three unit vectors e,

um, », =16), the dimensional corrections in Eq. (5)
may be neglected for the' microwave and far-in-
frared frequencies. Doing so yields the expression

o's =4»a'(» —», )/(» +2», ),
from which we get

=121l'a K K /[(K +2» ) '+K ],

(6)

where prime and double prime indicate the real
and imaginary parts of the complex dielectric ten-
sor elements. This expression was first shown to
be applicable to the gyrotropic sphere in the Bay-
leigh limit by Galeener" and is identical in form
to the Bayleigh limit expression for an isotropic
sphere. " When the Drude expressions for the di-
electric tensor elements are substituted into Eq.
(6), it reduces to expressions derived by the de-
polarization method of Dresselhaus, Kip, and
Kittel""

When the losses are small («"« I»„'I), the reso-
nance condition is

&m+2&0 =0 ~ (6)

From a cursory inspection of this equation, it is
obvious that graphical techniques (i.e. , plotting «'
and examining its topography for intersections
with -2»0) will prove immensely helpful in identify-
ing the circumstances under which resonances will
occur. '

B. One- and two-carrier spherical magnetoplasmas

In order to establish a framework in which the
radius-independent electric resonances of EHD can
be appreciated, we review the electric Bayleigh-
limit spectra of one-carrier and compensated,
two-carrier spherical magnetoplasmas. Through-
out this paper, we employ Drude expressions for
the principal dielectric tensor elements (remem-
bering, however, that the macroscopic formulation
is not limited to any particular microscopic model
for» }. For N types of carriers with an isotropic
band structure, we have

ps = —,
' (ueolmns IE„"I', (4)

2 ~ "1
CObl, QP 2 COck- tTA

(d ((d 2 (dq~) +Tp

where & is the angular frequency of the field and
ImuE is the imaginary part of the electric polar-
izability. According to FFW '0 the complex elec
tric-dipole polarizability is

and

(10}

[2+ 5 K()(&a/C) ]K~ —2»o

[1 —.'», (~a/c)'l». +—2», ' (5)
where

~pa=&ae /MI~o ~ ~ca=VI&/~a~
where /(p is the dielectric constant of the medium
surrounding the sphere, and g is the sphere radi-
us.

For the situation typical of EHD in Ge (a ~ 10

g, is the lattice dielectric constant, T is the car-
rier relaxation time, g is the free-carrier con-
centration, M is the carrier effective mass, q is
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The resonance condition is simply

QJ = 6[(d &/(d ( g
&

+ 2 go ) —(0 ] . (13)

The situation described by this resonance condition
was first discussed by Dresselhaus, Kip, and

Kittel. " When the first term is negligible, i.e, ,
when g is small, resonance occurs when

~
&u,

~

= v
for the polarization which has the same sense of
rotation as does the cyclotron orbit of the carrier
in the magnetic field. We will refer to this polar-
ization as the cyclotron-resonance-active (CRA)
polarization. As n increases, the resonance shifts
to lower magnetic fields in the CHA polarization.
Eventually, the resonance appears in the opposite
polarization, which we will refer to as the cyclo-
tron-resonance-inactive (CRI) polarization, at low
magnetic fields and moves to higher fields as n in-
creases.

The power absorbed at this resonance is

the carrier charge (including sign), and k is a
subscript indicating the kth carrier. Throughout
this paper, we will regard the magnetic field I3 as
the quantity that is to be varied experimentally.

For a single-carrier magnetoplasma (% =1), the
imaginary part of the electric-dipole polarizabil-
ity, Eq. (6), for the transverse modes of excita-
tion becomes

12FQ /co

(Kg + 2/0)

1
1 + [(d —(d&/(d( IC& + 2KO) 2 &~] T

si I [( I +2 )3+ o2]va I
(18)

An examination of Eqs. (1't) and (18) points to the
conclusion that the single-carrier resonance, as
well as all other electric resonances which might
exist, occurs in the term ~E~'~, i.e. , it is due to
buildup of the internal electric field at the reso-
nance condition (8) rather than any increase in ab-
sorption associated with the inherent behavior of

As shown in Eq. (18), ~E'"'~, in general, is
reduced by the factor 3q, /~2q, +g„~. Thus, at the
cyclotron resona-nce field, where ~z'~-~, the in-
ternal field is screened out by the surface charge
so that a resonance does not occur at that point.

In the case of the longitudinal model of excita-
tion, no resonances occur because gI~ is indepen-
dent of magnetic field for any isotropic system,
one or two carrier. Furthermore, if the relaxa-
tion times for both carriers are large, there are
also no microwave or far-infrared resonances for
the transverse mode of excitation for a compen-
sated, two-carrier system when the carrier dens-
ity n is in the range cha, racteristic of EHD (-10"
cm ). Specifically, utilizing lossless expressions
for g,', we find that no resonances exist if

I = 2 VRe(lgt 'E +)

=
~ va'e, ~~"~E'"'('

where j'"' is the internal free current density, V is
the sphere volume, and

~z(Pres�

)
0

j
Eac(2

(g, +2m, )'M (14)
n & eo(g, +2')(M, +M„)(u2/4e2,

where 8"' is the magnetic field at which resonance
occurs. Thus, the resonance strength is indepen-
dent of frequency and is directly proportional to
carrier concentration and relaxation time. The
line shape of the resonance is Lorentzian in 8,
having a halfwidth at half power of

where the subscripts e and h indicate electrons and

holes, respectively. At 35 GHz, with parameters
similar to those of EHD in Ge (go = g, =16;M,
=0.135M,; I,=0.277M„where M, is the free-elec-
tron mass), this demarcation point occurs at n
=7.5&&10" cm '.

(AB),)2 =1/p, =M/er,

where LL(, is the carrier mobility.
For sphere radii small enough to neglect the di-

mensional correction terms in the expression for
the electric polarizability, a description of the
internal electric field requires only FFW's zero-
order term in the internal electric field expan-
sion, Eq. (52) of Ref. 10. Thus, the internal elec-
tric field E '"' is uniform throughout the sphere:

Em [3Ko/(2 @0 + g~ )]E~

Since the internal free current density is also uni-
form, the time-averaged power absorbed by the
sphere can be written as

C. Resonances in EHD in germanium

In this section, we consider the resonance spec-
trum for EHD magnetoplasmas in Ge. As stated
before, we limit ourselves to the two high-sym-
metry directions, B~~ [100] and B

(~ [111], for which
the dielectric tensor has the form of Eq. (1). For
simplicity, we assume that the light- and heavy-
hole bands are isotropic. The carrier densities
used will be such that n=n, =n»+n„„n»=~2pn„and
n„g 2p n„where the subscripts e, lh, and hh indi-
cate the conduction, light-hole, and heavy-hole
bands, respectively,

With B
~~ [100], the expressions for the principal

dielectric tensor elements are'P
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and

where

40+ jv + cobe e
(d (M+gV ) —(d

CO + g Vih + CO P,

(~+'~m) —~ cu

2(d b

~(~+ fh, )

(d bhh

&(& + &&hh)

2blh
(0((0 + ZV~h)

4-
I
I
I
I
I
I
I
I
I

2 I
I
I
I

I
I
l

CO (0+g Vhh+ 6) hhbhh

(++&~hh) +ehh

(20)

(21)

ne'( 1 2'i ne'
(22)+

3go (1VI~ M~ ] q028p,

e'B 2 1
I

'B'
(23)ce

eB (2M~ + M~) eB
(24)

M (Mr+2M~) M~

3e'B' e'B'
(25)

M (Mr+2M') M2

v =1/~, M~ and Mr are the longitudinal and trans-
verse electron effective masses, and the sub-
scripts e, lh, and hh indicate electron, light-hole,
and heavy-hole parameters. As previously men-
tioned, graphs of the real part of these expres-
sions in the lossless limit (v-0) have proven use-
ful in locating resonances because of the ease of
identifying those points at which the resonance con-
dition (8) is satisfied. Figure 1 displays the real
part of each of the principal dielectric tensor el.e-
ments, Kqs. (20) and (21), for parameters appro-
priate to EHD, and Fig. 2 shows the corresponding

'n these calcula-resonance spectra. In performing
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FIG. 1. Heal part of the principal dielectric tensor
K as a function of magnetic field for B para1-

lel to the I.100j crystallographic axis of Ge. T e p
eters used in the calculation were n = 2.5 &10 7 cm"3, T'e

tc =& ='l6, and /27i. =35 GHz. The effec-
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Because o e rof the large range of w~, the intersection of v~
with the abscissa suffices for the accurate 1oca ion o
the electric resonances shown in Fig. 2.
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FIG. 2. Imaginary part of the electric polarizability
for the three modes of excitation of a gyrotropic sphere
as a function of magnetic field, for the case of Ge with
B along the I,100] crystallographic axis. The radius o
the sphere was 3 pm, and the material. parameters em-
ployed in the calculation are listed in the caption o ig.
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B coM,

e (28)M„+M

provided that ~~, »(g, +2m, )' 'v. Since M„ is larg-
er thanboth M~, and M„and Mp, and M, are of nearly
the same magnitude(M~, /M, =0.8), theresonance
position is determined almost exclusively by M„ i.e. ,

tions, we took n =2.5 x10" cm ' and ased the bulk
germanium carrier effective masses": M~

1 59Roy Mr =0 082Mo Mg, = 0.043Moy and Mhh

0 2 8Mo A quick comparison of Figs . l and 2
shows that the resonance positions are located ac-
curately via the plots shown in Fig. 1.

The low-field resonance in the transverse polar-
ization in Fig. 2 is produced by the introduction of
the third carrier species in Eq. (20). Assuming,
for the moment, that the electron band is isotropic
with M, =M„=0.135Mo, the resonance condition
(8) and Eq. (9) yield, in the lossless limit, an ex-
pression for the resonance position

M~(j&„M, + ~„)+ ra, MhhM,

e M, +rhhM~- (1+r~)Mg,

valid for the high-carrier-concentration limit,
i.e., for &u~, »&o(g, +2m, )' ' where r&, =n~/n and r„„
=n„gn. Where r,„«1and Ma, «Mh„Eq. (26) re-
duces to the form

B"'= &@VS/e . (2&)

Thus, the resonance introduced by the presence of
the third carrier is near the cyclotron-resonance
field of the light hole. The introduction of the
anisotropy of the electron band tends to move the
resonance even closer to the light-hole cyclotron-
resonance field.

Both the high-field resonance in the transverse
polarization and the resonance in the longitudinal
configuration are consequences of the anisotropy
in the electron-band structure. The 'longitudinal
resonance is a tilted orbit resonance, '4 i.e., a
resonance resulting from the carrier having a
component of its cyclotron motion periodic along
the field axis. All three resonances shown in Fig.
2 are hybrid resonances, '4 since the resonance
positions depend upon the effective masses of more
than one carrier species. However, for the situ-
ation under consideration, the carrier parameters
are such that the resonance fields for the two
transverse resonances are determined mainly by
one carrier type, the light hole in the case of the
low-field resonance [Eq. (2V)] and the electron in
the case of the high-field resonance.

The behavior of the high-field transverse reso-
nance is made clear when the third carrier type in
Eq. (20), the light hole, is neglected. Then the
position of that resonance, in the lossless limit,
is

vM, co M~ +2M

Mioo = M + 2M~ + 3M~ M ~(rg, /Mp, + rhh/Mhh)

3+(2M +M )(~ /M&+y„„/M„„)
(31)

The expression is derived by use of the resonance
condition (8) and Eq. (21) in the lossless limit and
assumption of the high-carrier-concentration lim-
it, i.e., that &o2~a+e~~„„»(g, +2')&u~.

Vfhen losses are small, the power absorbed at
resonance can be written as

&s(&"') = («s'~a~. &/~.")
I
E'„'II'. (32)

In the case of the longitudinal resonance, the small-
loss limit (sr~ —a&,'» v'„&o'- ~'„»v'„a&' »vs, &u'

» vhh) yields

P „(8'")= (6w ~,e ',cP (u'/ne')f
~

~E'~~'~', (33)

where f~, is a function of relaxation times and ef-
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FIG. 3. Field positions of the electric resonances in a
1-pm radius magnetoplasma sphere as afunction of car-
rier concentration. The resonances inthe {-)circular
polarization are plotted on the negative side of the field
axis. The positions of the transverse resonances are plot-
ted with a solid line while the position of the longitudinal
resonance is plotted as a dashed l.ine. B is paraU. el to
the Ge I.100] axis, and the material. parameters for the
sphere are described in the caption of Fig. 2. The high-
carrier-density regime l.ies above a carrier density of
5 &10~4 cm"3while the low-carrier-density, or cyclotron-
resonance, regime l.ies below 10~3 cm"3. Note that the
resonance positions are independent of carrier concen-
tration in both of these regions.

The hybrid character of the longitudinal reso-
nance is evident in the expression for the reso-
nance field

(3o)

where
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the background absorption at that point. These calcula-
tions were done for the same system as was described
in the caption of Fig. 8. Note that the resonance
strengths are increasing with decreasing n in the high-
carrier-concentration region and increasing with in-
creasing n in the low-carrier-concentration region.

independent of n, but their strengths are propor-
tional to n (see Fig. 4).

The intensities of all electric resonances in coDII.-
pensated magnetoplasmas also depend upon the
third power of radius and the fourth power of fre-
quency. Since the resonance-field positions are in-
dependent of radius, the third-power dependence
of resonance strength on radius is obvious. The
variation of the resonance strength with the fourth
power of frequency depends upon the fact that the
resonance-field positions are directly proportional
to ~. In the small-loss limit the denominator of
Eq. (32), &", at resonance is inversely proportion-
al to the cube of frequency, resulting in the expres-
sion for the resonance strength, Eq. (32), having
the &4 behavior. In the cyclotron-resonance re-
gion, the resonance strengths depend on the cube
of radius but do not depend on frequency, just as
in the isotropie single-carrier situation.

Figure 4 shows that the longitudinal resonance
does not exist for a certain range of carrier con-
centrations due to a gap in &I'I produced by the elec-
tron-band anisotropy. Finally, in Fig. 5 we dem-
onstrate the validity of the comments we previous-

fective masses alone. Thus the strength of the
longitudinal resonance is proportional to the third
power of radius and the fourth power of frequency
and, surprisingly, inversely proportional to the
carrier concentration. "

This behavior is characteristic of all electric
resonances in compensated magnetoplasmas in the
high-carrier-concentration regime (the region ap-
propriate to EHD at microwave and submillimeter
wavelengths), where (u~, »(g, +2&0)'~'(u, &u~~

»(Ic, +2&0)' '&u, and ~»„»(lc, +2lc, )' 'e. This can
be seen as foIlows. Figure 3 shows that, in the
high-concentration regime, the resonance field
positions are independent of n. From Eq. (32), we
find that the resonance strength is inversely pro-
portional to g" and that, since the resonance-field
is independent of n, g" is proportionaI to n at a
given resorbence. Thus all electric resonances in
the high-carrier-density regime vary in»e~sely
with yg, as shown in Fig. 4. The low-carrier-
density, or cyclotron-resonance, region, where
(u„(((n, + 21co)'~~(u, (a~a «((g, + 21co)'~'cd and (o~„„
«(g, +2', )'~'v, is clearly visible in Figs. 3 and 4.
The resonance positions in this regime are also
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the magnitude of the internal electric field (bottom,
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When, additionally, v2, »(», +2», )'~2~ e„j for i =e
and h, K, may be neglected so 'that the resonance
condition is K, = 0. Then it is apparent that the
first resonance occurs at the field point at which
the principal dielectric tensor element changes
from being dominated by the Alfven term (the sec-
ond term on the right-hand side) at low fields to
being described at higher fields by a heliconlike
term (the third term), which has an effective car-
rier concentration equal to n, —n„. The field posi-
tion of this first resonance is then

jP lCS —y
(o ~,M + pg„M„

ne
(35)

The resonance always occurs in the CBI polariza-
tion of the carrier with the larger carrier density.
ln the large-carrier-density regime, the power
absorbed at resonance is

(36)

&u M,g. + Mana+ ~„„
e g~ 5Q ghh

(3V)

At sufficiently large fields, the Alfvdn term in
Eq. (34) can be neglected. At these high fields, a
second resonance is predicted at the field

8',"= +(n, —n„)e/(», + 2», )eo& (38)

Thus, the strength of the first resonance varies
with the third power of radius and the fourth power
of frequency, as do all of the previously discussed
electric resonances for multiple-carrier magneto-
plasmas. However, the resonance strength is in-
versely proportional to the difference in the car-
rier densities and, in a sense, directly -proportion-
al to the sum of the individual carrier concentra-
tions. In the case of Ge with B parallel to the [100]
axis and ~~,/v», »~ tu„. ~»&u»v, , where 2 =e, lh,
and hh, this resonance occurs when"

~'~, (», +2».)(M. + M„)
e2(1 —n„/n, )

(40)

is satisfied. Therefore, the slight charge on EHD
in pure Qe (see Refs. 26, 27) would not produce
any resonances at microwave or far-infrared fre-
quencies. However, the resonances discussed in
this section should be observable for EHD in doped
Ge, where the electron and hole carrier densities
are believed to differ by the uncompensated impur-
ity concentration. " These resonances are highly
sensitive to the difference in electron and hole
concentrations, thus providing a, valuable tool for
investigating the effect of doping on EHD.

'I

A. Macroscopic description

As in the case of a time-varying electric field,
any time-varying magnetic field can be resolved
into three components: two opposite circular po-
larizations transverse to B (m =a) and one longi-
tudinal with B (m=~~). The mean power absorbed
from any of the normal-mode components of the
time-varying magnetic field, 8"e '~', by a plasma
sphere having a magnetic dipole moment M and a
magnetic dipole polarizability d" is

P" =-,' arlm(M ~ B")= ((u/2y, ,)lm n»~ )B"~2, (41)

where, according to FFW,"the magnetic dipole
polarizability is

, III. MAGNETIC' RESONANCES

In this section, we discuss the radius-indepen-
dent resonances that arise from the interaction of
a time-varying ~nagnetic field with a magnetoplas-
ma sphere. We first discuss the macroscopic
formalism developed by FFW.' Then we apply the
formalism to develop a description of the resonance
spectra of magnetoplasma spheres consisting of
materials with isotropic band structures. We then
move to a discussion of the resonance spectra of
EHD in Ge.

Its resonance strength is
15 C' 1 - ~2, (&Oa/C) 2» (42)

(», +2» ()g, Mv, + n„M„v„)
(39)

Here,

2K' K~~

K~+ Kgg

2K+ K

K+K (43)

Thus, in contrast to the first resonance, the
strength of the resonance now varies as the square
of the difference in the carrier concentrations but
is roughly inversely proportional to the sum of the
carrier densities. Note that Eq. (39) transforms
to Eq. (14) as n„or n, approaches zero

It can be shown from Eqs. (8) and (9) that, for a
two-carrier isotropic system, the resonances can
only occur when the condition

More explicitly,

and

(»,'. +»",,) + (»,"+»,",)'

-, ,„2 «,'"I» I'+»' "I»,l'(' »i)+»(2++ »e+)»2

(44)

(45)
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In this section, our attention will be focused on
the small-size limit' in which magnetic reso-
nances exist that have radius-indpendent resonance
positions. This is a more severe limitation on
radius than is involved in ignoring the dimensional
corrections in the case of the electric interaction.
If we consider only spheres of radii s3 ym for
microwave and submillimeter wavelengths, . the
radius-dependent correction terms in Eq. (42) can
be neglected so.that

n"=~~(a'~'/c')~ . (46)

The mean absorbed power can then be written as

(47)

An examination of Eqs. (44) and (45) indicates
tha, t, should

(48)

7-1
(d +T (53)

radius-independent resonances, and as the square
of the frequency, whereas the resonance strength
of the single-carrier plasma-shifted cyclotron
resonance was independent of frequency and varied
with the third power of radius. Also, the resonance
strength of the magnetic resonance is directly pro-
portional to both the carrier concentration and the
relaxa. tion time.

No resonance exists for the longitudinal mode of
excitation; but a low-field shoulder' 'P due to the
longitudinal magnetic field exists when g, is non-
negligible compared to the free-carrier term of
the dielectric tensor elements, Eq. (9). When g,
can be ignored, the longitudinal mode of excitation
has no field dependence within the framework of
the Drude model since

for the ng=a mode or

(49)
2. Compensated carriers with isotropic band structure

for the m=jj mode of excitation, a resonance will
appear in the power absorption of a sphere. Such
conditions are analogous to the g'+2 =0 resonance
condition for the electric interaction with a small
magnetoplasma. sphere.

SENT 5 tl8 P.p+
15 I 7-1

(2ro+&o, )2+4T ' ' 50

The resonance, occurring when

8,"'=+2&aM/q, (51)

has a halfwidth at half power of 2/g, which, for
the same carrier parameters, is twice that of a
single-carrier plasma-shifted cyclotron resonance
[Eq. (13)]. The resonance loses its exact Lorentz-
ian form and its position shifts as the contribution
of g, to Eq. (9) becomes significant compared to
the free-carrier term.

The power absorbed at this resonance is

~(~ res) ~ +( e2+2 5/M)7 j
Ilacj2 (52)

Thus the resonance strength increases as the fifth
power of radius, a characteristic of all magnetic

B. Carrier systems with isotropic band structure

l. Single carrier

In the case of a single type of carrier with an
isotropic band structure, one resonance occurs in
the CRA transverse polarization. Q'ithin the con-
text of the Drude model, such a resonance will be
Lorentzian in 8 when the free-carrier term is
much greater than the lattice dielectric constant.
With 2, ignored ((u2»g, &u j(u, j), Eqs. (44) and (46)
yield

A compensated plasma sphere composed of equa1
concentrations n of electrons (e) and holes (h) with
isotropic band structures has a magnetic reso-
nance for each of the linearly independent modes
of excitation. Neglecting g, (&u2&» ~g, &u) and utiliz-
ing the lossless expressions for the dielectric ten-
sor elements, the resonance condition (48) yields
the resona. nce fields:

B~"= jM, -M2 x (M + M2)2e

X [1+4M,M2/(M, + M2)']'~2
j ~

If, say, M„»M„ then the square root in Eq. (54)
can be expanded to y'ield

&u ( M,M„) &uM~
e ~+I

~ (u $ M.M„ )—jM„+ ' "
j
= —(M„+M,), m= —.eg" M, +M„J e

(55)

Each resonance is associated with one of the two
transverse circular polarizations of the time-
varying magnetic field. In this case, one resonant
field occurs in the CBA polarization for electrons
(m =+) while the other resonance field occurs in
the CRA polarization for holes. An examination of
Eq. (55) shows that the resonance associated with
each carrier occurs when j &a, j& 2v. Thus, intro-
duction of a second carrier having the same car-
rier concentration as the first results in the two
magnetic resonances being moved closer to thei. r
cyclotron resonance fields. %(hen the two carriers
have substantially different effective masses, the
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shift of the magnetic resonance toward the cyclo-
tron-resonance field is significantly greater for
the carrier with the heavier mass.

For the longitudinal field configuration, a hybrid
resonance exists which depends on the existence
of both carriers. Again neglecting g„ the reso-
nance condition (49) yields the resonance field:

@r's
li e h (56)

f

When &uI, /~IL, »&u»~,. ', where i=e and fL, the pow
er absorbed at resonance for this longitudinal
resonance is

M +M
pN(II ree) os~ 2IL&2 e + a

i
Bacim (5y)

T +Th
I

In the regime where w»~ ' for all carriers and

+~e» v&, a& (conditions satisfied by the EHD pa-
rameters), the behavior of the longitudinal reso-
nance strength with respect to radius, frequency,
and carrier concentration is the same as that of
all the magnetic resonances which we shall con-
sider. The magnetic-resonance-field positions .

are independent of radius and, if g, can be
ignored, carrier concentration. Consequently,
the dependence of resonance strength on the fifth
power of radius is obvious. Likewise, since the
absorbed power [Eq. (47)] is directly proportional
to g" and since g", within the stated limits, is di-
rectly proportional to the carrier density, the
resonance strength is also directly proportional
to the carrier density. Vfhen the resonance-field
position is directly proportional to frequency, as
is the case for all magnetic resonances under dis-
cussion, g" is inversely proportional to frequency,
resulting in the resonance strength being propor-
tional to the square of the frequency.

C. Magnetic resonances in EHD in Ge

As in the case of radius-independent electric
resonances, graphical presentations of the real
part of the principal dielectric tensor elements
&' are useful in identifying the field positions of
magnetic resonances. The intersection of the real
part of one principal dielectric tensor element
with the negative of the real part of another, sel-
ected in accordance with the requirements of the
resonance conditions (48) and (49), pinpoints the
fields at which the various resonances occur.
Figure 8 presents such graphs for the situation
where 8 is parallel to the [100] crystallographic
axis of Ge. The intersections accurately locate
the field positions of the resonances in the power
absorption spectra shown in Fig. 9 [except for the
resonances marked i, 4, and 8, which occur. at
the electron-cyclotron-resonance field in the three
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FIG. 8. Principal dielectric tensor elements in the
lossless limit as a function of magnetic field for Ge with
B parallel to the f100] axis. The material parameters
used in these calculations are identical to those listed
in the caption of I ig. 1. The intersection of a dielectric
tensor element with the negative of another pinpoints
the location of all the magnetic resonances shown in Fig.
9 except those at the electron-cycl. otron-resonance field.

polarizations and do not correspond to the reso-
nance conditions (48) and (49)].

Each singularity in the lossless expressions for
g,' has associated with it one particular resonance,
occurring in the transverse circular polarization
corresponding to the dielectric tensor element
w'hich has the singularity. In the high-carrier-
density region (II, ignored), each resonance occurs
at one to three times the cyclotron-resonance
field of the carrier with which the singularity is
connected. %Ye recall that, for an isotropic single-
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where r„=n„/n. ln the case of heavy holes (reso-
nance 9), r»-—1 and M„/M, = 0.8 so that

B"'= (&u/e)(M M, )'~' .
hh

And, in the case of light holes (resonance 7), r,„
=0 so that

(59)

a'„"=( / )M .
All six of these resonances have resonance fields

proportional to frequency and independent of car-
rier concentration (see Fig. 10) in the high-concen-
tration limit (which is applicable for EHD param-
eters), in which a, can be ignored. Consequently,
as previously mentioned, their resonance strengths
are directly proportional to n and vary as the
square of frequency and fifth power of radius. In
the low-carrier limit or cyclotron-resonance
regime, the resonance positions are again inde-

FIG. 9. Imaginary part of the magnetic polarizability
for the three modes of excitation of a 3-pm-radius
gyrotropic sphere as a function of magnetic field for Ge
with 8 aligned along the I,100] axis. The sphere param-
eters are given in the caption of Fig. 2.
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carrier system, a single resonance existed which
occurred at exactly twice the cyclotron-resonance
field of the carrier in the CBA polarization. Thus,
in Fig. 9, resonance 3 is associated with light
holes and resonance 6, with heavy holes. Reso-
nance 2 is associated with the singularity in the (+)
polarization connected with the presence of the
electrons. Resonance 5 is linked to the singularity
in the (-) polarization resulting from the aniso-
tropy of the electron band structure.

Resonances 7 and 9, in the longitudinal polariza-
tion, are hybrid resonances, having the same gen-
eral character as the isotropic two-carrier long-
itudinal resonance described by the resonance con-
dition (56). The field position of resonance 7 is
determined mainly by light hole and electron ef-
fective masses and the ratio of the concentration
of light holes to the concentration of electrons,
while the position of resonance 9 is determined
mostly by the heavy hole and electron effective
masses and the ratio of the density of heavy holes
to the density of electrons. Specifically, employ-
ing resonance condition (49} in the lossless limit,
neglecting g» i.e. , assuming re~, ~ v~g, &u, and

'l OI5

s

c

O
lpls

O
L

LgJ lP I2

I

I

I

I
'

I

I
I
I

l
l

l MAGNETIC

RESONANCES

l
I

I
lpII i I i I I I i I I s I i I I I I

-8 -6 -4 -2 0 2 4 6
Magnetic Field (kG)

PIG. 10. Field positions .of the magnetic resonances
as a function of carrier concentration for the case of a
1-pm-radius magnetoplasma sphere with 8 parallel to
the b00] axis in Ge. The material parameters used are
described in the caption of Fig. 3. The resonances in
the (-) circular polarization are plotted on the negative
side of the fieM axis. The positions of the resonances
in the transverse pol.arization are plotted with solid
lines while the positions of the longitudinal resonances
are plotted with dashed lines. Note that, as in the case
of the electric resonances, there are two regions where
the resonance positions are independent of carrier con-
centration: the high-carrier-concentration regime
(g &2 &10~4cm 3) and the low-carrier-concentration re-
gime (n &2 ~10 cm 3). Note that the unscreened reso-
nances, located at the electron —cyclotron-resonance
field in all three polarizations, remain fixed in position
independent of carrier density,
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pendent of carrier concentration, being fixed at the
cyclotron-resonance fields of the carriers (see
Fig. 10).

Resonances 1, 4, and 8 are all located at the
electron-cyclotron-resonance field, B„=M„&u/e;
and, in the high-carrier-density reg™,their
resonance strengths show the same dependence on

radius, carrier concentration, and frequency as
the other. six resonances. These three resonances
exist because of the simultaneous "blowup" of K„
K-, and Kil, resulting from the anisotropy of the
electron-band structure. The mechanism by which
these resonances are produced is best understood
by examining the internal fields, which we do be-
low.

In the case of the magnetic polarizability dis-
cussed by FFVf, ' the permeability of the medium
outside the sphere and the permeability of the
sphere material itself are both assumed to be
equal to that of free space'; i.e., all the media un-
der consideration are assumed to be nonmagnetic.
The equality of the permeabilities of the two media
results in the elimination of the very type of term
(the zero-order term in FFW) which dominates the
electric polarizability in the Bayleigh limit. " Con-
sequently, the internal electric, magnetic, and
total current fields associated with the magnetic
interaction are not uniform across the interior of
the sphere, as happens for the electric interaction.

The power is absorbed by the sphere from the
external time-varying magnetic field via the in-
ternal electric field induced by the magnetic field.
The mean power absorbed-by the sphere is given
by

Hall-Ohm law, Eq. (7) of Bef. 10, is

K~+ Kii Km+ Kii ~ 4
EP) "IBIcI

(x- iy)e, — ' (x+iy)e+g K++ K

(m=II), (64)

,
I.O

0.8-
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m=- Dashed line

and the origin of the coordinate system is at the
center of the sphere.

As the cyclotron-resonance field of an isotropic
carrier isneared, I' I-~, where m=+or —,ac-
cording to the sign of the carrier. But, since Kil

and g „do not also approach infinity simultaneous-
ly with K, the component of the electric field E'"
with the proper polarization e to interact with the
cyclotron motion of the carrier is suppressed and

only the noninteracting polarizations remain. Thus,
in the case of isotropic carriers, no resonances
appear at the cyclotron-resonance fields of the
carriers because of the screening of the CBA com-
ponent of the internal electric field by the free
carriers. However, in the case of a carrier with
an anisotropic band structure, I&+II It(
all approach infinity simultaneously. The quanti-
ties /&~~/(K +K[~) and a /(w, +a ) appearing in Eq.

'Al Be liBI. EiBI~ d+Ii, "™
Jjgt, Eintg dyf

V )
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"here ALIBI is the internal total current density, the
sum of the conduction and displacement current
densities, as defined in Eq. (2) of Bef. 10, and the
volume integral is over the sphere volume. In the
limit we are discussing, in which the radius-de-
pendent correction terms in the magnetic polariza-
bility are neglected so that o.' is defined by Eq.
(46), the first-order terms in the perturbation ex-
pansion are adequate for the calculation of the ab-
sorbed power. That is,
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where J'", defined by Eq. (30) of Bef. 10, is

J'"=tv'", IB"ie "r,
E"', which is related to J~" via the generalized

(63)
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FIG. 11. Imaginary part of the polarizability for the
three modes of excitation of a 3-pm-radius gyrotropic
sphere as a function of magnetic fieM for Ge with B
aligned along the f111] axis. The sphere parameters are
described in the caption of Fig. 6.
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(64) do not then approach zero. Thus, at the
cyclotron-resonance field of a carrier with an
anisotropic band structure, the component of the
internal electric field which can couple to the cy-
clotron motion of the carrier is not screened out.
Resonances 1, 4, and 8 in Fig. 9' are, therefore,
the result of incomplete screening. '4

Equation (64) also elucidates the nature of the
remaining resonances (marked 2, 3, 5, 6, 7, 9). They
are associated with an internal field "blowup, "oc-
curring at the resonance conditions (48) and (49),
as can be seen from the denominator in E'". This .

behavior is analogous to that responsible for the
origin of the electric resonances (see Fig. 5).

When the dc magnetic field is aligned along the
[111]crystallographic axis in Ge, eleven reso-
nances, two more than exist in the [100j case, ap-
pear in the spectra, as shown in Fig. II. The two
additional resonances are associated with the in-
equivalence of the ellipsoids in the electron-band
structure when the magnetic field is aligned along
the [111]direction.

IV. DISCUSSION

If we assume a plane-wave relationship between
the incident external electric and magnetic fields,
the relative strengths of the electric and magnetic
resonances are given by the relative magnitudes of
the imaginary parts of the electric and magnetic
polarizabilities divided by v &,. At 35 GHz for
compensated EHD magnetoplasma spheres with
radii of 3 gm, the magnetic resonances are rough-
ly two orders of magnitude stronger than the elec-
tric resonances. Because of the different depen-
dence of resonance strength on radius for the two

types of resonances, the magnetic resonances are
expected to be even more important for larger
radii while the electric resonances are expected to
dominate for smaller drops. Also, as a function
of frequency, the strengths of the electric reso-
nances will grow more rapidly (as e') than will
the strengths of the magnetic resonances (as v').
At submillimeter wavelengths for typical EHD pa-
rameters, the two types of resonances will be of

the same order of magnitude in strength.
For a compensated EHD magnetoplasma sphere

at microwave or far-infrared frequencies, the
field positions of all resonances, both electric and

magnetic, are functions only of the carrier effec-
tive masses and the population ratio of heavy holes
to electrons and of light holes to electrons. Con-
sequently, the resonances. are particularly well
suited for the measurement of the effective masses
of the carriers within the drop. However, in doped
Ge, where the EHD magnetoplasma can be uncom-
pensated, there are resonances available which
are sensitive to both the total carrier concentra-
tion and the degree to which the magnetoplasma is
uncompensated.

Finally, there has been difficulty in interpreting
experimental microwave and far-infrared spectra
in terms of EHD resonances and resonances of the
free-carrier gas surrounding the drops. Our re-
sults point to the importance of using separate
normal-mode excitations in carrying out such ex-
periments, e.g. , use of circular polarizations ra-
ther than linear polarizations' in the situation
where the time-varying fields are perpendicular
to B, to aid in the identification of these highly
complex resonances.

In summary, we have presented a description of
the interaction of time-varying electric and mag-
netic fields with a spherical EHD magnetoplasma
in the context of the Drude model. However, as
previously mentioned, the FFW macroscopic
formalism used in our discussion can be employed
with any local-limit model for the gyrotropic di-
electric tensor. Thus our treatment of EHD can
be suitably modified to incorporate a whole host of
field-dependent features of EHD (e.g. , quantum
oscillations of the free-carrier concentration)
which we have ignored by use of the simple Drude
model.
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