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Correct form of energy-balance equation for intervalley
and intersubband scattering in semiconductors
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Two different methods for deriving the energy-balance equation for hot electrons in semiconductors are
described in the literature. The first method uses the Boltzmann equation, while in the second method the

equation is obtained from the rates of scattering out of a state by absorption and emission processes. It is

shown that for the general case of intervalley and intersubband scattering in semiconductors the use of
method 2 is incorrect, and only in a special case the two methods are identical. It is pointed out that in

method 2 the rate of change of energy due to intervalley exchange of electrons is neglected, Because of this,
the two methods should give different expressions and different values of transport coefficients. - The nature of
this difference is discussed from the general point of view, and illustrated in the case of bulk and of
quantized inversion layer by assuming a Maxwellian distribution.

I. INTRODUCTION

In a theoretical study of hot-electron transport
in semiconductors, ' the distribution function for
the electrons is usually assumed to be Maxwellian.
The transport coefficients of the electrons are
then calculated by solving the energy- and momen-
tum-balance equations obtained from the Boltz-
minn equation. The energy-balance equation is
obtained by multiplying the field and collision
terms by energy and integrating over the momen-
tum space of the valley. Thus one gets

E; ' dk= -n eg~F~= E, ' dk, (1)

where sf, /st[~ and sf, /st~ „are, respectively, the
rate of change of the distribution function f„ for
the ith valley electrons due to field and collision,
k is the wave vector, E, is the energy, n, and p, ,
are, respectively, the number density and mobil-
ity of the electrons, e is the electron charge, and
F is the field. The above method of expressing
the energy-balance equation was first proposed
by Frohlich and Paranjape' and will hereafter be
referred to as method l.

A different method (hereafter mentioned as meth-.
od 2) was proposed by Conwell. ' In this, the rate
of loss of energy to the lattice is calculated from
the rate of scattering from a state k in the ith val-
ley. The rate of loss is given by

where h&g, is the phonon energy, (1/g ), is the rate
of scattering by emission of phonons, and (1/7),
is the same for absorption. 4 The average rate
of energy loss is obtained by multiplying dE/dt

by f, and integrating over momentum space. When
this average rate of loss is equated with the rate
of gain of energy from the field, one gets

net+3 ~

The above method has been utilized by several
workers' ' to solve the hot-electron problems in
bulk semiconductors. Recently the same method
has been followed' ' to calculate the energy loss
due to intersubband and intervalley scattering in
quantized inversion layer.

Although both these methods have been in con-
tinuous use' "in the study of hot electrons, as
far as the author is aware, no attempt has yet
been made to examine whether the two methods
are equivalent in all respects. Such an attempt
is made in the present paper. We have found that
for the general case of intervalley and intersub-
band scattering, method 2 is incorrect, and only

in a special case may its use be justified. We will
give a proof of this statement in Sec. II and discuss
how the expressions and calculated results for
transport parameters are expected to differ in two
methods. We will consider three examples: (i)
equivalent intervalley scattering, (ii) nonequivalent
intervalley scattering in the bulk, and (iii) inter-
valley and intersubband scattering in quantized
inversion layer in Sec. III to illustrate the conclu-
sions drawn from Sec. II. By using a Maxwellian
distribution for carriers, we will compare the ex-
pressions and numerical results obtained from the
two methods. Finally, in Sec. IV we will discuss
some of the cases where the two methods may
give nearly equal numerical values for transport
coeff icients.
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II. GENERAL CONSIDERATIONS

We will first give a direct proof regarding the
limited validity of method 2. The Boltzmann equa-
tion in the presence of intervalley scattering is
given as

~ F'V],f; =P Q [f((k')W(((k', k}

—f, W(((k, k'}],
where f, and f& are the distribution functions in the
ith and jth valley, respectively, W(((k', k} is the
probability of transition from the state k' in the
jth valley to the state k in the ith valley, and
W" (k, k') is the same for the reverse process.
The energy-balance equation following method 1
is obtained by multiplying both sides of the above
by E, (k) and summing over k. This yields

F'Vk ]E) k =
~

k' g~
k

-f, (k)W" (k, k'}]E,(t ) .
(5)

The final expression is obtained once S"~'s are
expressed in terms of the deformation-potential
constants and other physical constants of the ma-
terial, '

the form of the distribution function is in-
troduced, and the summation over k and k' is per-
formed. We will deal with the expressions for a
few cases in Sec. III. In the following, we will
show how, from Eq. (5), the balance equation ac-
cording to method 2 follows as a special case.
For this purpose we write Eq. (5) in an altered
form

—Q F ~ V],f E, (k) = Q f((k) Q W '(k, k')[E((k) -E((k')]
k k k'

+~ Q [f (k)W" (k, k')E, (k') f(k )W" (-k k)'E, (k)])'. ,
,k,k'

Interchanging the variables k and k' in the last term of the above, one gets

—Q F ' V],f(E, (k) = Q f((k) Q W(((k, k')[E((k) -E((k')]
k k

+
~

Q [f, (k)W'((k, k')E((k') -f((k)W(((k k')E, (k')]) .

Now for intervalley or nonpolar-optical phonon
scattering the transition probability W is isotropic,
independent of k and k'. Therefore, one gets W'~

Furthermore, if we consider the scattering
between equivalent valleys as in n-Ge or n-Si,
we have E, (k') = E, (k'). If in addition, we put f,
=f, , the two terms within large parentheses in
Eq. (7) cancel each other. Under this condition
we have

@ Q F'V], f(E, (k) =+@(()0Q f((k) Q W(((k, k'),
k k k'

(8)

since we have E((k') -E, (k) =~i((d„ the phonon en-
ergy. Using the definition of relaxation time, one
may rewrite Eq. (8),

n;e(((F2=+ lf-((k)k&oo i

——
i

— dk,
['1 /1

g

S

function, the two balance equations given by the
two methods are identical. In all other cases, i.e.,
when we have gi) E, (k') =E,(k'), but f, (k)xf;(k)~
(ii) E~(k')eE((k'), but f, (k) =f~(k); and (iii) E((k')
o E, (k') and also f, (k) xf, (k),"the above two terms
in Eq. (I) do not cancel each other. Since in meth-
od 2 this difference of terms in large parentheses
is always ignored, the method is liable to give
incorrect expressions.

It may be concluded by examining Eq. (9) that
the energy-balance equation for the ith valley ob-
tained from method 2, contains f, only, but is in-
dependent of f(. In other words, the final ex-
pressions are decoupled. Method 1, on the con-
trary always gives coupled equations as can be
seen from Eq. (5).

To obtain more information about the nature of
the expressions derived, we may write all the
terms in Eq. (I) as

which is the balance equation derived in accord-
ance with method 2.

The above arguments point out that only for the
specific case when the two valleys are equivalent
and are characterized by identical distribution

dt g dt ~„i dt gg dt ;g

laitice ivx
(10)
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for the ith valley electrons. Here (dE/dt)~ de
notes the average rate of gain of eriergy from the
field. When the electrons make a transition from
the itb valley to the jth, energy is drained out of
the valley. Part of this energy is given to the lat-
tice at a rate of (dE/dt)„«;„and the rest is brought
to the jth valley at the rate (dE/dt), &. Similarly
the lost energy in the ith valley is replenished at
the rate (dE/dt)&, by the electrons coming from the

j th valley. The difference, (dE/dt), ~
—(dE/dt), .„

therefore, represent the rate of change of energy
in the valley due to intervalley exchange of elec-
trons, (dE/dt), . This exchange contribution is
completely igriored in method 2. If the total energy
of the jth valley electrons is higher, it is only na-
tural to expect that the electrons coming to the ith
valley will bring more energy than that carried
away by outgoing electrons. In other words the dif-
ference, (dE/dt);„„will be nonzero and negative.
It may be similarly argued that for intravalley
scattering, or that between two valleys having the
same distribution, the above difference will be
zero. In such a case, both the methods will give
identical expressions.

Another observation can be made. If one sums
the two sides of Eq. (5) over all valleys, one gets

equal and opposite to that of the other. Hence,
while considering the total rate of change of ener-
gy of the system, the gain is due to the field and
the loss is due to collisions.

Now in method 1, the appropriate share of the
total loss for each valley is correctly evaluated
by taking into account the exchange contribution.
In method 2, however, the loss is assumed to be
entirely due to collision to the lattice. From the
foregoing discussions it is evident that when meth-
od 1 is employed, there is more equal distribution
of energy amongst the valleys than what is obtained
from method 2. In other words, if the term "elec-
tron temperature" is used to characterize the dis-
tribution function in a valley, method 1 will lead
to a less difference of temperature between two
valleys, than that calculated following method 2.
In Sec. III we will consider- three practical situa-
tions to illustrate how, by assuming a Maxwellian
distribution of carriers, the above conclusions
drawn from a general point of view may be found
to be correct.

III. EXAMPLES USING A MAXWELLIAN DISTRIBUTION

A. Bulk: Equivalent intemalley scattering

which is also obtained from Eq. (9).
Physically, this means that in a two-valley sys-

tem the exchange contribution for one valley is

The energy-balance equation for equivalent inter-
valley scattering in bulk semiconductor, as occurs
in n-Ge or n-Si, under the assumption of a Max-
wellian distribution of carriers has been derived
by employing both the methods. The equation for
ith valley electrons making a transition to the jth
valley is"

tlat

-n, eP,E =,~z &s' 2n&
" '

j ksT,&[(NO+1)e "'&I»(x,&)+Ng»(x, z)j —2n, " keT„

+ [(No+ 1)e '«I„(x„)+NOIs,(x,))j0 81 e$ (12)

where we have

x„(j) = hco, /ke T„(,),
x [(N, + 1) exp(-x„) N, j(,'x„)-—

In the above equations, T,«,.&
is the temperature

of the i(j )th valley, No is the phonon number, D
is the deformation-potential constant, m~ is the
density-of-states effective mass, and p is the den-
sity of the material.

When method 2 is employed to calculate the rate
of energy loss to the lattice, one obtains for both
the intervalley and the intravalley optical-phonon
scattering'

x exp(axe))K~(~gx~) ) ~

K, being the modified Bessel function of second
kind "

Equation (13) shows that the balance equation
for ith valley depends only on the temperature of
that valley, but is independent of that of jth valley,
to which the electrons are scattered. Equation
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(12), on the other hand is coupled, i.e., it involves
the number and temperature of both the valleys.

It may easily be verified that for optical-phonon
scattering or intervalley scattering when we have
T„=T,&

and n, = n&, Eq. (12) reduces to Eq. (13)."
It is interesting to examine how the numerical

values of different parameters calculated by the
two methods differ. This has been done in Ref.
17, in which the temperature of the two sets of
valleys in bulk silicon, when the field is along

[100] direction, are calculated. ~ Figure 3 of
that paper shows that the temperature of the hot
valleys is less, and that of the cool valleys is
higher than the same calculated with method 2.
In other words, the temperatures tend to equalize

when calculated with method 1, as a consequence
of including the intervalley exchange contribution.

B. Bulk: Nonequivalent intervalley scattering

The nonequivalent intervalley scattering, such
as the transition from the central to the satellite
valleys in Gahs, or from L-point minima toX-
point minima in Ge, has been treated by several
workers. "' """We will consider here the
transition from a lower valley, denoted by sub-
script 1 to a upper one, denoted by 2, both the
valleys being assumed to have parabolic E-k re-
lationship and scalar-effective mass. Following
method 1 the expression becomes"

i/3
-2n, (~,)' 'I ~sT2[(&~+»4(a, a, &, )+&~4(a, s, ~„)] (14)

where @&» is the phonon energy, N» is the phonon
number and we have

((m, g, a)=f e *x (x+a)"dx,
0

a„=(E~+ @(o~)/ks T, ,

E~ being the energy separation between 1 and 2.
Following the procedure described. in Ref. 5,

the equation on the other hand becomes
D'(m, )'/'

~le P'1+ 1 2l/ 3
7lP

I'a T

-(~ +1)e '-y(k, a, ~„)1 (»)
Equations (14) and (15) are evidently different.

Equation (15) is decoupled while Eq. (14) is not.
It may be noticed, -however, that even by making
T, = T, and also m, =m„which yields further

tin = B~ exp(-E ~/ks T~),

Eq. (14) does not reduce to Eq. (16), unlike the
result in the case of interequivalent scattering.
The reason is, by making m, = mg the condition
E,(kg = E,(k) may be realized, but we have f,(k)
gf, (k) even if we have T, = T„because of different

normalization factors [cf. Eq. (V) and case (iii) in
Sec. rt].

C. Quantized, inversion layer

The rate of energy loss of electrons due to scat-
tering between two valleys within the same subband
in a quantized inversion layer, ""has been ob-
tained by Hess and Sah' following method 2. More
recently, Ferry"'" has derived the results for
scattering between two valleys belonging to two
different subbands involving a zero-order and a
first-order coupled phonon. For the zero-order
case the expression is

Dm
eg, F =

&
' ' [(N, +l)e "« -f(/Je ~~&, (16)

p k(d~

where D, m~, and x„have the. same meaning as
before. P, is the number of equivalent valleys.
p„ is the mass density, m& is the width of jth sub-
band, and we have b, ,~

= e,, /ksT«, T„being the
temperature of the valley and e,„being the energy
gap between two subbands i and j.

To derive the energy-balance equation following
method 1 we may first write the collision opera-
tor for the symmetric part of the distribution func-
tion for the ith subband as

sf 2v 1PSp, r / 1 (g.+i)fo (E+h~g[l-f (E)]5(E„E„+k~-e,-, )
coll 2 pm0

+No+ f()/ (E —%do)[1 —f(), (E)]5(E) —E)- ((
—k(() o

—e,s)]

(PT, 1+)f„( )[E1-—f—„( E@(o,)] ( 5„-E„--E~+@(d,-e,,)
1

.~g. , (E)[1-f., (E ~ 4]5(E; --E;-l ~.— „)]I,
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where A is the area of the surface. We have retained in Eq. (1V) the degeneracy factors. Replacing the
summation over q by intergration in the usual manner, a' one gets

x [1-f«(E)]u(E k-(do —~,~)] — {(No+ 1)f«(E}[1—fo~(E k&oo)-]u(E —K(do —e„}1

+e f„( )e[1 f„(e+—etd, ))M(e+e(o, —e„.))), (18)

u being a step function.
The energy-balance equation is obtained by mul-

tiplying Eq. (18) by E and integrating over the mo-
mentum space of ith subband electrons. The in-
tegration cannot, however, be performed analy-
tically if one assumes we have for fo«&) a Fermi

I

distribution characterized by an electron tempera-
ture T,«,.). It is evident that the energy-balance
equation contains two temperatures corresponding
to the two levels. Some simplification results when

f, is assumed to be Maxwellian. Neglecting then
the [1-fo(E)]factors, one may obtain

n, e)), ,F'-=
&

' ' ' "
[(N, + l)e "e&+No(x &+1)]

IPP, m, n, k T„
2@Pm(do

m nkT" [(N +1)(d +x + 1)e "e)

+N, (s,+1))e '4), (19)

where we have

+to) ~it) kBTeiU) )

xe«)) = N(docks Telo)

and

nl(y)
= oiQ)

are the electron concentration in the respective
subband.

Equation (19) is different from Eq. (16). Even
when one puts u), =u)~ and T„=T,&

[in Eq. (19)] and
consider transitions between subbands arising
from the same type of valleys, (such as between

Eo and E, in n-channel silicon inversion layer" )
for which we have m, =m& and nj =n, exp(-b, ,&) with

6,&
= b,, = 6, , it is not possible to arrive at Eq. (16).

When we have 4,&
= 0, T« = T,» n, = n, , and se,.

=u), , Eq. (19}reduces to the form for optical-
phonon or intervalley scattering as derived by
Hess and Sah." Such a situation arises for the
Ep subband in n -channel Si, when the field is
along the [110]direction.

It may, therefore, be concluded that Eq. (16)
derived from method 2 is incorrect. It is of in-
terest to note that Eq. (16) gives values of temper-
ature numerically different from those calculated
from Eq. (19) even if the same scattering model
is used. To illustrate this we consider scattering
amongst the four valleys in the Ep subband in a

Si inversion layer with the field along the [100]
direction. Such a situation has been considered
by Bess and Sah." In this case, two valleys having
major axis along [100]will be less heated than the
other two valleys. We consider the scattering be-
tween the two cool valleys to be first-order coupled
and that between a cool and a hot valley to be zero-
order coupled in accordance with Ferry. " In ad-
dition, intravalley acoustical-phonon scattering is
taken into account for the calculation of momen-
tum-relaxation time. Phonon temperatures and
deformation-potential constants are of the same
values as used by Ferry and the width of the Eo.
layer is assumed to be 40 A.

Figure 1 shows the electron temperatures in the
hot and cool valleys for different values of elec-
tric field calculated by using expressions (16}and

(19). It is found that the valley temperatures tend
to equalize when calculated wi. th method 1. The
values of drift velocity calculated by the two meth-
ods are different as ean be found from Fig. 2. Al-
though the effect of first-order coupled phonon is
included in the rate of energy loss, it is negligibly
small so that the difference is entirely due to the
two approaches. .

IV. DISCUSSIONS

We have found that the use of method 2 to derive
the energy-balance condition is not justified. We
have also demonstrated that the expressions and
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FIG. l. Electron temperatures in the hot and cool
valleys in the Ep. subband in n-channel silicon inversion
layer with the fieM along the [100] direction. Curves
labeled 1 and 2 are the results calculated with methods
1 and 2, respectively, at 300 K.

the numerical results for the electron tempera-
ture and drift velocity are quite different for the
cases of equivalent and nonequivalent intervalley
scattering in bulk, and the intersubband scattering
in inversion layers when the above two methods
are employed.

The intervalley scattering in GaAs (see Ref. 5)
has been considered within the framework of meth-
od 2. However, in Ge or GaAs the mobility or
electron temperature in a valley is primarily de-
termined by intravalley processes, such as acous-
tical„nonpolar, or polar optical-phonon scatter-
ing. The effect of intervalley scattering is to in-

)O
6x'lO 10

ELECTRIC FIELD (Yam)

FIG. 2. Drift velocity of electrons in the Ep subband
at 300 K for field along the [100] direction. Solid and
dashed curves are obtained by using methods 1 and 2,
respectively.

troduce a small perturbation and to change the val-
ley population. Therefore, in these cases use of
method 2 may not lead to a serious deviation of
the results from those calculated by method l.
However, in Si, in both bulk and inversion layer,
intervalley scattering is a dominant process and
the two methods give divergent results. Ferry"
has recently calculated the drift velocity in a sili-
con inversion layer by considering Ep E, aIld

Ep subbands. His work is based on method 2 and

gives good agreement with experimental results.
In the light of the above discussion, it may be
worthwhile to examine whether the agreement is
still close when calculations are based on method
1.
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