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Scattering from a corrugated hard waii: Comparison of boundary conditions
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The calculation of the scattered-wave amplitude by a hard-corrugated-wall potential is reduced to the
determination of a source function, which is then calculated by application of an appropriate boundary
condition. We discuss and compare the general features of the solution given by three different boundary
conditions: (i) setting the wave function equal to zero on the corrugated surface, (ii) setting the wave
function equal to zero on a plane beneath the surface, and (iii) the Rayleigh condition. It is argued that only
the first of these three methods will always produce'a solution. Detailed comparisons are made for the case
of a triangular corrugation profile, and we show that the application of boundary conditions on the surface
always gives a solution. However, it is argued that the other two methods cannot produce a convergent
solution for this profile, and these conclusions are supported by numerical calculations.

I. INTRODUCTION

The problem of scattering of waves from a hard
corrugated wall has been a useful technique for a
number of years in the areas of acoustic and elec-

t tromagnetic waves." H,ecently the problem has
been of interest in the field of low-energy atom-
surfaee scattering where the model has been quite
successful in interpreting experimental data. '-'

The solution of this problem consists in the de-
termination of the so-called "source function" by
application of appropriate boundary conditions
(physically, the source function is the strength of
the wavelets reflected by each part of the hard-
wall surface). Since a complete exposition of the
theory has been given in detail elsewhere, "'we
will give here only a"brief review and concentrate
our attention on the solutions produced by differ-
ent boundary conditions, that is to say we intend
to analyze the different approaches to the prob-
lem.

In Secs. II and III we give a review of the three
main methods of applying the boundary conditions:
(i) the Bayleigh approach, (ii) forcing the wave
function to vanish on a plane inside the surface
[the Masel-Merrill-Miller (MMM) condition'j,
and (iii) forcing the wave function to vanish on the
surface. It is argued that the first two ap-
proaches, although very simple to apply, cannot
always be made to produce a solution. That is to
say, the boundary-condition equations do not al-
ways give convergent solutions. However, apply-
ing the boundary condition on the surface, in prac-
tice a much more difficult procedure, always pro-
duces a convergent solution.

In Sec. IV we present calculations for all three
methods for the particular example of the triangu-
lar surface corrugation in order to substantiate

the arguments presented in Sec. II. Ne are able
to demonstrate that, for the method of applying
the boundary conditions on the surface, the solu-
tion is always convergent. However, a similar
analysis gives a strong indication that both the
MMM and H, ayleigh methods are divergent for the
triangular profile and this conclusion is supported
by the behavior of the numerical calculations.

II. CORRUGATED-HARD-WALL PROBLEM

In the language of atom-surface scattering the
corrugated-hard-mall model is described by a po-
tential which is vanishing outside the surface and
inf inite inside:

( )
0, z&y(x)

z(y(x)
where z is the direction perpendicular to the sur-
face, and y(x) is a periodic function giving the
corrugation profile. For simplicity we will con-
sider only the case of a one-dimensional corruga-
tion of period a and total amplitude 2ha (2ha =y,„

,.„) but the extension to two dimensions is triv-
ial.

The simplest approach to the problem is the one
taken by Hayleigh in which one considers the form
of the wave function in the asymptotic region
s &y (x) and assumes that this form can be ex-
tended up to the surface. If Ko and &o, are, re
spectively, the parallel and perpendicular compo-
nents of the incident wave vector, the asymptotic
form consists of the incident wave plus outgoing
diffracted waves:

i @Ox&-i ++8+ g &
i ( gO + G )xg 'L pozz

'Yi 0
0

where G is a. reciprocal-lattice vector [G =(2v/a)g,
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O 1 + eik0z(P (x} C ei GxeikGzy (x}
G

G
(4)

Equation (4) can be Fourier transformed which
converts it into an equivalent matrix equation to
be inverted for the coefficients CG

+M Z Q@Q((( &

where

(6b)

Several other methods have been utilized for in-
verting Eq. (4),"and in all cases the intensity of
the diffracted beams is given by the usual expres-
sion

I~ = (k~,/k„)
~
C~

~

' .
The unitarity condition

I =1
GtkGz real G

g =0, +1,+2, .. .] and k2~, =IV~+ k02, —(Ko+ (")'.
The boundary condition,

y =0, z =(p(x),

is applied directly to (2) giving the defining equa-
tion for the coefficients CG

The convergence or divergence can be under-
stood in the following way. If Eq. (4) is converted
to a matrix equation by some appropriate trans-
formation such as the Fourier transform [Eq (5)]
we have an infinite matrix to invert in order to
calculate the scattered amplitude CG. Obviously
in the numerical procedure this matrix is trun-
cated, say to a N &&N matrix. Except for extreme
situations such a finite matrix can always be in-
verted and the CG calculated values a.s well as the
unita. rity sum will depend upon the value of ¹

For convergent solutions the results will be stable
as N is increased to arbitrarily large values, that
is to say the IG approach their asymptotic values
and the unitarity sum approaches 1. For a diver-
gent process the results strongly depend upon N
and the CG amplitudes will become unstable with
high N values and the unitarity sum will become
worse. But in this case, it can happen that for
given N values not too large, the result can ap-
proximate reasonably the exact solution. This
sort of behavior is substantiated by the calcu-
lations presented in Secs. QI and DJ,

Next we present the general formulation of the
problem. This can be done with equal fa,cility
starting from the Green's-function solution of the
Helmhotz equation, or beginning with the integral
equations for nonrelativistic scattering theory.
Choosing the latter approach the wave function is
expressed as

must be satisfied by any calculated result (how-
ever, good unitarity by itself is not sufficient to
guarantee that the solution is good).

The Hayleigh method is obviously not universally
valid because in the region of the potential, p,.„
&z&y, the true wave function mill, in general,
have both incoming and outgoing scattered waves
(since each point on the surface acts as spherical
emitter of reflected. waves).

However, it is not completely correct to call the
Rayleigh method an approximation because if by
some chance Eq. (4) can be satisfied the result
roust converge to the true solution, according to
the uniqueness theorem obeyed by the wave equa-
tion. ' From a physical point of view one would
expect this to happen only when the amplitude of
the incoming multiply scattered wave in the sel-
vage region is very small, that is to say, for
small h values. Thus we are left with tmo pos-
sibilities, either the Hayleigh method does not
converge at all, or it converges to the exact so-
lution. This has been demonstrated to be the case
with the sinusoidal corrugation profile in which it
is known that the Rayleigh method is correct for
small corrugation amplitudes, while for large am-
plitudes it diverges. ""

(+} 1=~(+Z ~( E )+ SE
(9)

where &f&, is a plane-wave state and T„is the tran-.
sition matrix

T„= drys V(I" .

The necessary and sufficient boundary condition
at a surface of infinite discontinuity in the potential
is that (t(=0 on and inside the surface":

V/I" = e'+"f(x)t](z —y(x)) . (12)

Equation (12) provides a substantial simplification
for the transition matrix appearing in (10) and (9),
and after utilizing the periodicity of the surface
and carrying out all of the trivial integrals Eq.
(9) becomes

(, =0; z~y(x).

The normal derivative of g,. is unspecified, and
is in fact discontinuous at the surface. Thus Eq.
(11) and the condition V =0 for z ) cp(x), together
with Schrodinger's equation implies that the prod-
uct Vg,"is given by'
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{+} ei go xe ikOzz
t

et {Ko+G )x
+

kG,
dx' F(x')

xe-'~"' exp [iu~, ~z —y(x') ~],

j,(z =cp(x)) =0 (14)

to P,. in Eq. (13).
One is guaranteed an exact solution with this

boundary condition because (12) and (14) taken to-
gether contain all the information of the necessary
and sufficient boundary condition of Eq. (11) and
also imply that the potential vanishes for z &p(x).
This point has been demonstrated in a previous
paper. ' Thus we have

eiGx g

0 ~ (kpgb+ -Q dxr ~-iGx' F( I)
G &G. O

(15)

with b =y(x).
In the asymptotic region z &y,„the wave func-

tion (13) consists of an incoming plane wave and
outgoing diffracted waves; i.e., the same form as
Eq. (2), the starting point for the discussion of the
Rayleigh method. The coefficients of the diffrac-
ted waves are given by

where the integral is carried out over the unit cell
and

F(x) =(-im/h'a)f(x) .
The unknown source function F(x) can be deter-

mined by applying the boundary condition

F(x') =Q FNe'""'

and if Eq. (15) is also Fourier expanded in the
variable x we are left with a system of linear eq-
uations in I~ which can be expressed in matrix
form as

0 =AN(ko, )+ Q CNNFN, (18)

where

y~ e-tMxe-iqy {x)

However, in the selvage region y
it is clear that in general there will be diffracted
beams traveling both toward and away from the
surface due to the factor exp[ikey, ~

z —y(x)
~
].

There have been two approaches to the solution
of Eq. (15}. First the numerical method of Garcia
and Cabrera' converts the integral equation into
a system of linear algebraic equations by a finite
difference method. The integral over the unit cell
is replaced by a finite sum over 2N equally spaced
points and the equation is evaluated on an identical
grid of 2N points. The resulting system is in-
verted to obtain F(x) and the coefficients C~ are
evaluated by numerical integration of (16). This
method, although completely numerical, is very
'flexible in that it works for a large range of cor-
rugation profiles and has been quite successful in
interpreting experimental data. '

The second approach, taken by the present auth-
ors, ' is to expand F(x} in a complete set of states
and invert Eq. (15) by an appropriate transform.
In particular if F(x ) is expanded in a Fourier ser-
ies ln x

1
CG=

Gz
dxF(x}e '~"e '~c ''"' (18)

'--~
u

G Gz
y& ei {G-N) dx'e"" ~'"' exp [ikg, ~y(x) —y(x')

~
] (19)

while the coefficients CG become

CG Q +G N~~Gs)FN '
Gz N

In practice the infinite matrix equation (18) is
truncated at a finite dimension and numerically
inverted to obtain the F„

0=F„+Q CN'„A„. (21)

The difficulty with this method is the double in-
tegral appearing in (19) but for the case of the tri-
angular profile (or any profile consisting of

straight-line segments) this integral can be car-
ried out and the calculations are in good agree-
ment with the Garcia-Cabrera method.

A different approach to the problem has been
taken in the work of Masel, Miller, and Merrill. '
Although fully realizing the importance of the
boundary condition (14), in order to avoid the
mathematical complexities involved with its ap-
plication they chose a simpler condition, some-
times known as the extinction theorem 2 The wave
function is forced to be identically zero below the
surface, i.e., for z &y „.(This procedure is val-
id subject to the conditions of convergence dis-
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&u =~o. m

at ei(N-M)x' @i&~ g (x' ) (23b)

cussed below. ) Putting (,=0 for g=b=const=cp „
in Eq. (15) the same transformation procedure of
Eqs. (17)-(21)gives a much simpler eciuation,
which is independent of b, for the same set of
coefficients I'„:

case the solution must be exact and equivalent to
the solution given by putting the wave function eq-
ual to zero on the surface. This point has been
demonstrated by Beeby'~ and follows from the un-
iqueness theorem. Thus the validity of the method
is determined by the criterion of convergence or
divergence of the solution as previously pointed
out for the Hayleigh case. We also note that, just
as with the Rayleigh method, even under divergent
conditions a good approximation may be obtained
by judicious truncation of the problem.

Calculations supporting precisely this sort of
behavior are presented for the triangular profile
in Sec. IV. It appears that for this profile both the
MMM and Rayleigh methods are divergent, but for
small corrugation amplitudes reasonable approxi-
mate solutions can be obtained.

The matrix C„'„is much simpler than the cor-
responding matrix C» of Eq. (19) as it is only a
single integral and does not contain the internal
summation over reciprocal-lattice vectors.

Masel, Merrill, and Miller have presented cal-
culations using this approach for the sinusoidal
surface profile for which the integral in (23b) be-
comes a Bessel function. The integral can also
be carried out for other corrugation profiles in-
cluding the triangular profile presented in Sec. IV.

This method is clearly simpler than the method
of applying the boundary conditions on the surface,
however, in practice a number of computational
difficulties have been observed. The method
seems to converge only for relatively weak sur-
face corrugations. ~

We would like to point out that this sort of be-
havior is to be expected. Although the MMM
boundary condition is always a necessary con-
dition on P;, it differs substantially from the
known necessary and sufficient boundary con-
dition. Consequently there exists the possibility
that for some corrugations the MMM condition is
not a sufficient condition to produce a solution.
Physically, the MMM boundary condition states
that the wave function vanishes beneath the sur-
face, but not on the surface itself [except-for pos-
.sibly the denumerably infinite set of points x„giv-
en by q, „=y(x„)]. However, at a surface of in-
finite discontinuity in V the wave function must
vanish. both below and on the surface. One can
aLso point out that the MMM condition is redun-
dant in the sense that this information is contained
in Eg. (12) which has already been used to solve
the general scattering equation [however, Eq. (12)
leaves the value of tIt on the surface undetermined].
Of course it ean happen, depending on the shape
and amplitude of the surface profile, that this con-
dition is sufficient to produce a solution, in which

HI. MATHEMATICAL COMPARISON OF THE THREE
METHODS

In this section we would like to present some in-
teresting mathematical comparisons between the
three different approaches to the hard-mall prob-
lem. First we show how all three approaches are
related to a general formalism, and then we show
how the Rayleigh and MMM cases can be written
as the leading term in an infinite series expansion
of the solution using the, boundary conditions of Eq.
(14).

In all cases, applying the, boundary conditions
to g of Eg. (13) gives

ei Gx

0 =e-'+"+g
G Gg

dx'e '~"'F(x')

x exp[gag, ~z-y(x') ~]. (24)

Application of the boundary conditions on the
surface is effected by setting z =y(x). The MMM
conditions are obtained by setting z =b&y,.„, in
which case the absolute magnitude ~z —q(x')

~

be-
comes [p(x') —5]. The Rayleigh method, on the
other hand, is obtained by simply removing the
absolute magnitude in the exponential of Eq. (24).
To see this we replace ~z-y(x')

~

by [y(x)-cp(x')],
and then note that the resulting integral over the
unit cell is exactly the same as for the diffracted
beam coefficient of Eg. (16). Thus using Eg. (16)
for C~ leads directly to the Rayleigh condition (4).

Now that the connection is established we would
like to continue to look at the H,ayleigh case in the
general formalism with a source function.

In this manner we will obtain a relationship be-
tween the Rayleigh approach and the method of ap-
plying the boundary condition on the surface.

Replacing
~

z —y ~
in (84) by + [y(x) —y (x') ] and

Fourier transforming the source function as in



19 SCATTERING FROM A CORRUGATED HARD %ALL: 4095

(1V) we have for the Rayleigh condition

O-e- Q ~( )
Z=gx)

~i Gxei AG y (x) N

G N ~Qz

Qg hei(N C)x g i kG &p (x' )

(26)

Fourier transformation of both sides of (25)
leaves a matrix relation equivalent to (18}for the
Fourier component FN

X2

FIG. 1. Single cycle of an arbitrary corrugation pro-
file of period e and amplitude 2ha. The points x~ or x2
are given by the expression q (x) —cp(x~, 2) =0.

O=A„(k„)+g C„'~F„, (26)

where

C(R 1
d+ &i(G-N)x ikG y (x)

NN
kG,

d~ ) e i (N-G )x' e-i kG 0 (x' )

A„c(-kc,)Ac „(kc,) . (2V)
G Gz

Equations (26) and (2V) are the analogs of Eqs.
(18) and (19}for the exact case. Note that C„'"N' is
simpler than C», being the product of two single
integrals rather than a double integral.

To see the relationship between Eq. (18) and Eq.
(26) we now write the matrix coefficient (19) in
terms of C„(~N)

0 A~(k„)+ Q C~&"„'F„
N

since

„(k„,)A„'=Q A (k,), 6„,=A (k,)

(32)

and

We note that even when both methods lead to ex-
act solutions the matrix S» is not necessarily the
null matrix. This is because there are an infinite
number of different source functions which lead to
the same diff racted intensities. '4

A similar result can be presented for the MMM
boundary condition.

If the MMM boundary condition (22) is multiplied
by A~ „(k„,) and summed on M we are left with the
result

NN NN -'lfN &

where obviously

(28) 1C'"„'=Z
k Ai c(kc.}Ac .( kc.}-

(29)

However, it is a straightforward matter to show
that the difference matrix of Eq. (29) can be ex-
pressed as an integral over only those parts of the
unit cell for which y(x) —&c(x') (0

x sin(k„h (x') —«(x}]),
(30}

where the points x, and x, are the points at which
p(x) —&c(x') =0 as shown on Fig. 1. (The extension
of this procedure to more complicated surface
profiles exhibiting several local maxima is
straightforward. )

Thus we can write the boundary condition (18) in
the form

dx e(&c I, x jekc&5&x)--(
G &Gz & uc

d+g +i (N-.Q)x' ikGzy (x' ) (33)

C~N - C~("N) =2iM~N,

where

&& "1 a
dx e«c-~'"~ dx'+ dx'

~

G ~Gz uc L o x,

(34)

Note that the only differences between this ex-
. pression and the corresponding matrix in the Bay-
leigh ease of Eq. (27) is the change of signs of

kG, in the exponentials. Again we can obtain the
'difference between C» and C~N', and in this case
it can be expressed in terms of an integral over
the part of the corrugation profile for which y(x)
—y(x'} )0.

0 A~(ko, }+g (C~„'+2iS„~)I'„.
N

(31)
x e""c'"' sin(kc, [y(x}—y(x'}]).

(36}
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Thus the boundary condition of Eq. (18) can be
written in terms of the MMM matrix as

o=a, (u„)+P
I
c&„'+2'„II„. (36) 2h

IV. COMPARISON WITH CALCULATIONS

To support the arguments presented in Sec. II
we have carried out a number of calculations us-
ing all three methods of applying the boundary con-
ditions for the case of a triangular corrugation
profile. The profile is shown in Fig. 2 and is
specified by

2hax/b; 0 &x& b
V(x) =

2ha(a —x)/(a —b); h & x & a
(38)

where b is the position of the vertex of the tri-
angle and 2h, as defined previously, is the total
trough to crest amplitude of the corrugation.
The results of the calculation for the exact case
of applying the boundary conditions at the surface
as in Eqs. (18)-(20) are somewhat lengthy and
have been presented elsewhere. ' We will only

In either case, Eq. (31) or (36), we have the fol-
lowing matrix relation (I I

and II II are column
and square matrices, respectively)

I+ Ilc+2znll lz

or after inversion (and supposing the existence of
the inverse matrix)

(37)

This relation shows clearly that the Fourier
component F„'"' or EN"' given, respectively, by
the H,ayleigh or MMM boundary. condition is equal
to the first term of an infinite expansion of Eq.
(3V). This is similar to conserving the first term
in a perturbation theory.

FIG. 2. Triangular profile period a, amplitude 2ha
with vertex at x=b, as defined by Eq. (38).

outline the results here in order to explain why
one always obtains a convergent solution.

The question of convergence is important be-
cause the inverse C„'„of the matrix in Eq. (19)
does not exist, in the sense that it has elements
which become large as the indices N and I be-
come large. However, the diffraction coefficients
(20) and hence the scattered intensities are always
finite. For the y(x) of Eq. (38) the matrix ele-
ments C~ of (19) become small as 1/N' or 1/M'
in the limit INI and l~l-- d N~~. However,
the diagonal elements Ã =M vary as 1/N in the
same limit.

Thus in the limit of large IN I
or l~

I

the only
important matrix elements are the diagonal terms
C» which become smaller as 1/N. Consequently
in the same limit the only important elements of
the inverse C„-'~ are the diagonal terms which are
proportional to N. In other words the matrix C»
can be thought of as composed of submatrices,
where the submatrices of elements with large in-
dex values approach either null matrices or di-
agonal form, with diagonal elements falling off as
1/N. The inverse C„'„ is then of the same form
where for large index values the submatrices are
either null or diagonal, with the diagonal elements
proportional to N. Thus the defining equation for

TABLE I. Diffraction intensities for helium incident on the triangular profile for several
values of k. The beam is incident perpendicu&arly on the surface (e; = 0) and the other
parameters of the system are defined by b = 0.75a and akp= 21.8, where ko is the magnitude
of the incident wave vector.

Diffraction
order

Angle of
diffraction h. = 0.025 h= 0.05 h= 0.1 h= 1.5

3
2
1
0

-1
-2

Sum of
intensities

62.8'
36.4
17.3'
0.0'

-1703
-36.4'
-62.8'

(Unitarity)

0.0000
0.0030
0.1713
0.6959
0.0976
0.0280
0.0042

1.0000

0.0024
0.0043
0.5238
0.1806
0.1475
0.1082
0.0332

1.0000

0.0038
0.3795
0.2959
0.0743
0.0044
0.0860
0.1562

1.0000

0.0333
0.0035
0.0141
0.2879
0.5095
0.0913
0.0597

0.9993
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TABLE II. Comparison of the exact, MMM, and
Rayleigh boundary conditions for different values of N
(for the exact and MMM case N is the number of Fourier
components of the source function, while for the
Rayleigh case N is the number of diffraction coeffic-
ients). The calculations are for the triangular corruga-
tion profile with h = 0.05 and all other parameter the
same as in Table I.

profile (38) we obtain for C„'„in Eq. (23b)

1c„„= a, ,(-k„.)
2k+2{et�(«

»)be-f k«+ha 1 )
[(N —M)k+2k», ha][(N M—)(a —b}—2k«, ha j

k = 0.05
N

7
9

11
25
51
95

147

Exact
U

0.9997
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.0038
0.9986
0.9989
0.9979
0.9983
1.1005

38.7594

Rayleigh
U

1.0115
1.0082
1.0042
1.0021
1.0003
1.5464

332.5195
g(c„„)-'c„„,=5„„,.
N

(43)

Since k„, +-i [M[ for )M) large it is clear that
C«'«varies as 1/N' or 1/M' for large ~N

~
and

~M
~

even when N =M
It can readily be shown that the inverse of an in-

finite matrix with the behavior of (42) is divergent.
The inverse of (42) is defined by the relation

0=F„+Q (C„'„) 'A« (40)

and with (23a) this becomes

0 =F„+(C„' ) '. (41)

In spite of its simplicity the limiting behavior
of CN„is quite different from that of the corres-
ponding matrix C„„above. For the triangular

the source function (21) becomes for large ~N
~

0 =F„+C„-'„A„(k„).
It is seen from Eq. (42) below that Agko, ) varies

as 1/N' for large ~N (, thus even as (N (- ~ the
F„are well defined, falling off as I/¹ The dif-
fraction coefficients given by (20) are also well
defined; in the summand A~ „varies as 1/N' for
large N and with the above behavior of F„the ser-
ies is seen to converge as a sum with terms vary-
ing as 1/N'.

Calculations have been reported elsewhere for
this model' and some typical results are given in
Tables I and II for a system exhibiting only seven
diffracted beams. The calculations appear to give
very good results (in the sense thAt the sum of all
intensities is unity and the diffracted intensities
are stable) for a wide range of values of k (Ref.
8). (Good results are obtained for values of k as
large as 1.5 or greater. }

As shown in the first column of 'Table II, the re-
sults become better and better as the dimension
cV of the system (18) is increased, in agreement
with the convergence arguments above.

Next we discuss the MMM method of applying the
boundary conditions, the results of which are given
in Egs. (22) and (23). Inverting Eq, (22) for F„
gives

Considering only the diagonal elements of (43),
me obtain an inequality by taking the absolute val-
ue of each of the matrix elements:

(c„' )-'[ [c„'«I» ~ (44)
M

We now look at Eg. (44) in the limit of large ~N ~.
We replace

~ C««
~

by the largest element in the
column N which in th. is limit can be written as n/
M' (M =N). We replace

~

(C«J-'
~

by the largest
element in the corresponding row N which is de-
noted by P. Both of these operations leave the in-
equality unchanged but have the effect of making
the summand independent of M. Since there are
M terms in the sum we are left with

MP(n/M2) &1 (45)

or

P &M/o, ;

that is to say, there is at least one element in the
, Nth row of (C„'„)' whose magnitude diverges at
least as fast as M for large value of M. We note
that this proof does not specify which element
diverges, and does not rule out the possibility
that all elements in the Nth row of (C„'„)' could
increase as M for large M. In fact this is quite
likely the true behavior since all of the elements
in the Nth rom of column of C~„are roughly of the
same magnitude in the limit of large ~M ~. Thus
the difference between the exact case of Eq. (3S)
and the MMM coridition is that the divergency
does not affect just the diagonal elements of the
matrix (C'««) ' of Eqs. (40) and (41), but in fact
could involve all the elements in the outer rows
of the inverse matrix.

If we now examine the F» coefficient from (41)
we see that the above arguments make it plausible
that they vary as N for large ~N ). If this is the
case then the summand of Eg. (20) [with A~ «(ka, )
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TABLE III. Comparison of the exact, MMM, and
Rayleigh boundary conditions for different amplitudes
h of the triangular corrugation profile, all other para-'

meters being the same as in Table I. In all cases the
dimension of the system is given by N = 25.

Exact
U

MMM
U

Rayleigh
U

0.025
0.05
0.075
0.1
0.15

1.0000
1.0000
1.0000
1.0000
1.0000

0.9999
0.9979
0.9863
1.0690

154.4187

1.0001
1.0021
1.0229
1.1727
6.7267

given by (42)) will vary as 1/N and the summation
may give a divergent result for the diffracted-wave
coefficient C~. To prove that the C~ are divergent
requires more detailed knowledge of the matrix
(C„'~) ' tnamely, the explicit behavior of (C„',) '],
but we have shown that a divergence is possible in
this case, whereas with the application of the
boundary conditions on the surface the results are
definitely convergent.

The numerical results seem to substantiate the
above conclusion that the MMM boundary con-
ditions never give convergent results for the tri-
angular corrugation. It appears that reasonably
good approximations can be obtained for small h

if the matrix equation {22) is truncated at a rela-
tively small dimension; however, if the dimension
of the matrix equation is increased the convergence
becomes worse. For large values of h conver-
gence cannot be obtained for any dimension. Table
II gives a comparison of the MMM result with the
exact case of the seven diffracted beam system
with h =0.05.

It is seen that the best results occur for a ma-
trix of dimension approximately 25 and for larger
dimensions the method fails. When the unitarity
is good the intensities of the diffracted beams are
nearly the same as in Table I, the differences be-
ing within the unitarity defect. Table III compares
the calculations for the same system but with dif-
ferent values of h. It is seen that the MMM meth-
od does not appear to converge at all when h =0.1
or larger.

The situation of the Rayleigh case can be treated
along the same lines as the discussion of the MMM
case above. If we solve for the source function
using Eq. (26) and (27) we find that the limiting be-
havior of C~"„' is similar to C~~' above, that is,
there are elements in the inverse (C"„„)' that di-
verge at least as fast as M for large M. Thus we

would expect the behavior of the numerical calcu-
lations of the Rayleigh case to be roughly the
same as for the MMM case.

Tables II and III show this to be the case; the
results are never convergent and for 0 &0.1 even
approximate results cannot be obtained. We also
find that the convergence of the Rayleigh method
is substantially worse for large angles of incid-
ence. There is of course no reason why we should
expect the Rayleigh method to converge for this
corrugation profile since clearly the boundary con-
dition of Eq. {4) cannot in general always be sat-
isfied. There have been other indications, using
an entirely different approach, that the Rayleigh
method may fail for the case of the triangular
corrugation. "

V. CONCLUSIONS

We have presented here a discussion of three.
different methods of solving the corrugated-hard-
wall problem: an exact method of applying the
boundary conditions. on the surface, the application
of the boundary conditions on a plane inside the
surface (MMM method), and the Rayleigh method.
Several calculations have been presented for each
of the methods for the particular case of a tri-
angularly corrugated surface.

The application of the boundary conditions on
the surface is a necessary and sufficient condition
for a solution to the problem and we are able to
demonstrate explicitly for the triangle corrugation
that the solution converges.

The MMM method of applying the boundary con-
dition g -=0 below the selvage region of the surface
is' a necessary condition on the wave function but

may not be a sufficient condition (that is, it must
be proved for each surface corrugation that it is
also a sufficient condition). However, if this
method does produce a convergent solution it must
be the exact solution according to the uniqueness
theorem for the wave equation. Thus we must
conclude that either the MMM boundary condition
produces the correct solution, or it produces no
solution at all (i.e., it diverges). We have shown
in Sec. IV that there is reason to suspect that the
MMM method diverges for the triangular lattice,
and this hypothesis is supported by the numerical
calculations.

For strong corrugations the method does not
converge at all; while for weak corrugations good
approximate results are obtained if the dimension
of the system is truncated appropriately, but if
the dimension of the system is increased event-
ually the solution becomes unstable. Garcia and
Cabrera have also presented numerical results
which seem to indicate that the MMM method does
not converge for a variety of other corrugation
profiles as well, especially in the case of large-
amplitude corrugation. 4
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The Rayleigh method is in a slightly different
category from the other two since it consists of
extending the asymptotic form of the wave function
up to the surface and then applying the boundary
condition. Thus in general, the Rayleigh condition
is not even a necessary condition on the wave
function and it must be proved in each application
that' it can produce a solution. (Proof of a solution
has been shown only for the case of a sinusoidal
profile of small amplitude). Similar to the MMM
case, the calculations presented here seem to in-
dicate -that the Rayleigh method is not convergent.
for the triangular profile. The numerical calcu-
lations of-Garcia and Cabrera have pointed out
difficulties involved with a number of other pro-
files.

We conclude that if one of these methods pro-
duces a solution it must clearly be the correct
solution. The fundamental question is to show
that the method produces a convergent solution.

As a final note we would like to point out again

that even under conditions in which the MMM or
Rayleigh methods may not be strictly convergent
they can often be made to give reasonably approxi-
mate results by suitable truncation. This could be
an important point from the standpoint of numer-
ical calculations because these two methods are
very fist. The exact method of applying the bound-
ary conditions on the surface is substantially
slower because of the intermediate summation
over G in Eg. (19). On the other hand, with the
numerical procedure developed by Garcia and
Cabrera the calculation is relatively fast and easy
to handle and consequently it would be preferable
to use the exact condition.
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