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Attenuation of Rayleigh waves by point defects
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A Green's-function method has been used to obtain an expression for the mean free path of a Rayleigh

wave propagating along a planar free surface of an isotropic elastic continuum and scattered by a mass

defect. The change in density associated with the mass defect is assumed to be hm5(%-%0), where %, is the

position vector of the defect and Am is the mass change. The Green's function is evaluated for an isotropic

elastic continuum with a stress-free planar surface. Using this Green s function, the continuum equations of
motion are formally solved for the particle displacement of the scattered wave in terms of the particle

displacement of the incident wave. The Poynting vectors are then calculated for the incident wave and the

scattered wave. Explicit results for the scattered-wave Poynting vector are obtained in the asymptotic limit

of large distance from the mass defect. The mean free path is then obtained from the ratio of the magnitudes

of the incident Poynting vector and the asymptotic scattered Poynting vector. The results are compared with

those of other workers.

I. INTRODUCTION

The development of electronic devices using
surface elastic waves has stimulated consider-
able interest in the fundamental properties of
these waves. Important among these properties
is the rate of scattering of surface waves due to
their interaction with various types of defects and
with other phonons. The scattering rate can have
a significant influence on the performance of de-
vices.

Theoretical investigations of the anharmonic
scattering of Rayleigh waves have been carried
out by a number of workers. Using a Green's-
function procedure, Maradudin and Mills' treated
the isotropic case using a lattice-dynamical mo-
del and found that the damping constant is propor-
tional to +„T' at low temperatures, where ~~ is
the Rayleigh wave frequency and T is the absolute
temperature. These results were extended to an-
isotropic crystals by King and Sheard. ' Qn the
experimental side the co„T' dependence was veri-
fied by Salzmann et al.' for several surfaces of
quartz.

The effect of defects on the damping of Rayleigh
waves was investigated theoretically by Steg and
Klemens' for the case of a point-mass defect hav-
ing a mass change &m. They used perturbation
theory and found that the relaxation rate is pro-
portional to (&rrt)'tu'„. Somewhat later, Sakuma"
reexamined the problem using the Chew-Low scat-
tering formalism and the complete set of normal
modes for a semi-infinite isotropic elastic med-
ium constructed bit Ezawa. ' Sakuma confirmed
the +„' dependence of the scattering rate at suffic-
iently low frequencies, but in addition, found re-
sonance structure for a defect with a lighte~ mass
than the host atoms. This work has been extended

to the case of random density fluctuations on the
surface by Nakayama and Sakuma. '

In the present paper the Green's functions for a
semi-infinite isotropic elastic continuum with a
stress-free planar surface' are used to calculate
the inverse attenuation length of a Rayleigh wave
scattered by point-mass defects. In Sec. II formal
expressions are derived for the amplitude of the
scattered wave. In Sec. III these expressions are
evaluated explicitly in the asymptotic limit of
large distance from the mass defect. In Sec. IV
the inverse attentuation length is evaluated. Nu-
merical results are presented in Sec. V. A dis-
cussion and comparison with. previous work are
given in Sec. VI. As we shall see, our results
concerning the resonance structure differ signifi-
cantly from those of Sakuma.

II. SCATTERING OF A RAYLEIGH WAVE BY A MASS

DEFECT

In the presence of a mass defect situated at the
point%, =(0,0, x») in a semi-infinite, isotropic,
elastic medium occupying the half space x, )0, the
equations of motion of the medium can be written
in the form

-p — u + a8gV u, +
Bf' ~ Bx BxOuV 8 V

B'AV

Ot Qit, V

g V

BB=—pQ L „(%,t)u„=b.m6(% —%o) u, (2.1)

where u„(x, t) is the ct Cartesian component of the
displacement field at the point x at the time t,
p is the mass density of the medium, and &m is
the increase in the mass of the medium due to the
introduction of the defect. In writing Etl. (1) we
have assumed that the elastic moduli (C e„„(%))
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are position dependent and are given by

(2.2)C,„„(%)=e(x,)C p„„,
where the jC„B„„)are the usual, position-inde-
pendent elastic moduli of the medium, and e(x, )
is the Heaviside unit step function.

We now introduce a Green's function
G ~(x, %; t- t') as the solution of the equation

with the solution

G„(x„%,; p))u, (%„~) (2.10)
p

established in the Appendix, that G 8(x„X,; p)) is
a diagonal matrix. In this way we obtain the eq-
tion

u (x„p))=u@)(R„~)

g L „(R,t)G„p(%, %', t t') =-6,6(% %')6(t t'),
)

u "'(R„p))
1+ (&)))p)'/p)G (%„%p;p))

' (2.11)

(2.3)

subject to outgoing wave or exponentially decaying
wave conditions as x3 —~. In terms of this func-
tion we can rewrite Eq. (2.1) as an integral equa-
tion.

u (%, t) = u„" '(x, t) +
~m

When we substitute this result into the right-hand
side of Eq. (2.9), we find that the amplitude of the
scattered displacement field is given by

u"'(%, p)) -=u, (%, p)) —u,"'(x, &d)

+Pl QP
G,p(x, R„(,))TB,(x„r,,))

8r

x dt'G p(%, %', t —t')

82
x|)(%'-%p) „u8(%', t'), (2.4)

X u„"I(k„p)),

where the scattering matrix is given by

T x, ~)= u8
1+ (&rnaP/p)G, (R„x„p))

N8

D (xp' h1)

(2.12)

(2.12}

where u"'(x, t) is a solution of the corresponding
homogeneous equation,

Q L,„(%,t)u„")(x,t) =0, (2.5)

and in the present context represents a Hayleigh
wave propagating along the surface x, =0 of the
semi-infinite elastic medium.

With the Fourier decompositions

u, (R, t) =u, (%, p))e-'"',

u ~ (K t) =u@ (K, &d)e

(2.6)

G„(x,%', n) =

G (x x't-t')= G (I x'-g)e '"" '' (2 7)
dQ

For the system under consideration it is also the
case that the nonzero elements of this matrix obey
the relations T» (Rp, &u) = T»(x„&o)e T»(x„p)). With
the aid of Eq. (2.8), the scattered field takes the
form

u"'(x, p)) =-
4m'-p

d'k e' 'I "II
II

g t)(k))&p (x~xpg) {p )(g(~ ) t) p)

The Fourier coefficients jg 8(k„u& ~x,x,')) can be
expressed in terms of another set of coefficients
jd, p(k„(u ~x,x,')) by

(2.14)

g.,p(k„p) ~xsx,') = Q d„„(k))(olxsxs)

x s,.(i„)s„,(k„), (2.16)

where the real, orthogonal matrix S(k„) is given by
(2.6)

where x„=(x„x2,0} and fr„=(k„k„0},we can re-
write Eq. (2.4) as

a, 0)
k, 0

0 0

8(k„)=i -k, (2.16)

u (%, p)) =u,")(%, p))

+M (g7

G,p(x, xp; p))up(x„p)) .
P 8

(2,9)

To solve Eq. (2.9) we set x =Xp and use the fact,

The nenzero elements of the tenSor d, p(k„P)
~
x,x,'),

iz' dll d13 d22 d31 d33 have been calculated recent-
ly for a semi-infinite, isotropic, elastic medium
occupying the upper half space x3)0.' Consequent-
ly, all of the functions entering the right-hand side



19 ATTENUATION OF RAYLEIGH %AVES BY POINT DEFECTS

p p (2.19)

with v=1 —cz/2c&, p&=(1 —cz/c&), and

p, =(1—c~z/c', )'~'. The other quantities entering
Eq. (2.18) are defined by

+=c k"' P =k"'p P =k"'p (2.20)

The results expressed by Eqs. (2.17) and (2.18)
have the consequence that

of Eq. (2.14}are known, and the scattered field can
thus be calculated. We will return to this aspect
of the problem below.

For the incident wave we assume a Rayleigh
wave propagating in the positive x, direction. If
we write the amplitude u "'(x, ~) in the form

u' '(% (o) =u@'(k,',"~~x )e' " '*», (2.17)

with k,',"=(k' ', 0, 0), the amplitudes u"'(k,", '&u~xs)

are found to be

u, '(k, ',"&u ~x,) ~A(e ~~+ —o'e ~&"s), (2.18a)

u"'(k"'&six ) =0 (2.18b)

us' '(k, ', 'u&~x, ) =ip,A[e ~&"& —(1/a)e &"3], (2.18c)

where A is an arbitrary amplitude. The remaining
quantities inEqs. (2.18)are expressed interms of c,
and c„the speeds of longitudinal and transverse
waves in the isotropic elastic medium, respectively,
and c„is the speed of Rayleigh waves. This is obtained
from the equation

sent their derivation in some detail.
We begin by substituting Eq. (2.15) into Eq.

(2.22):

x S„(k„)S„q(k„). (3.1)

I,'&(x;x„~~) =I, +I, ,

I2u '(%; x»
~
(g) = I, - I, ,

I,~ '(%; x»
~

(u) =I, ,

I,"'(%; x»
~
v) =I, ,

Ime '(%;x»
~
(o) =I, ,

Ie'(% x~(o) =I, ,

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.2e)

(3.2f)

where the simpler, auxiliary integrals Iy I8
are defined by

(3.3a)

(3.3b)

%hen the explicit expressions for the matrix ele-
ments (S„(k„)Jare employed in Eq. (3.1), the six
integrals I+ '(x;xo,

~
~) which are required for the

determination of the scattered wave are given by

d P(~
g'"}}'"(}cos(p dls ~~~(d x3xps (3.3c)

where

(2.21)

(2.22)

d Q~} e ~~ cosp sing d» k'}f Q7 x3xp3 7

I, = d 'k„e'"~~' "~~ cosy siny d»(k „~~x,x»),

(3.3d)

. (3.3e)

The resonance denominators D (X,; &u) are evalu-
ated in the Appendix, so that it is only with the in-
tegrals I~'(x; x»

~
v) that we will be concerned with

in what follows.

(3.3f)

(3.3g)

III. SCATTERED DISPLACEMENT FIELD

In this section we obtain the asymptotic behavior
of the integrals I+ '(R; x»

~
&u) defined by Eq. (2.22),

for x far from the point (0, 0,x»). In Sec. IV these
results will be used to obtain the elastic Poynting
vector of the scattered displacement field, and
from the latter the attenuation length of Rayleigh
waves due to scattering by mass defects.

Since the results of this section are central to
the calculations in the rest of this paper, we pre-

(3.3h)

Next we represent the vector % as

R „=x„(cosy„siny „0} (3.4)

and evaluate the integrals over y in Eq. (3.3) in
the limit of large x„by the method of stationary
phase. The results are
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2r 1/
e /4 cos2yx s ll &

II

2& 1/2
i w /4 Sin22 X s 22&

II

2~ 1/2 .I - — e "/4cosy Jx s 13'
II

1/2
I4- — e " 'siny, cosy, J»,

II

(3.5a)

(3.5b)

(3.5c)

(3.5d)

f (k) =f(k0) + —,'(k —k0)'f '(k, ) + ~ ~ ~,

where

i =—(d II

0 c (x2+R2)l/2

f(k, ) =i —(x2+R')' '
. t

x2+R2q3/2f ie(k )
2(d R

(3.lla)

(3.1 lb)

(3.11c)

(3.11d)

p& l/2
I - — e "/4cosy J7 x s 31~

II

where

&&/4J
II

2m '"
I5- — e "/' siny, cosy, J»,

II

2m 1/

(3.5e)

(3.5f)

(3.5g)

(3.5h)

Since k, is in the interval (0, ~) [in fact, it is in the
interval (0, &0/ct)], we can replace the integration
interval (0, ~) by the infinite interval (-~, ~), in
the limit of large x, and x„with an error which
is of higher order than the terms we retain. In
this way we obtain

k1/2
exp i —(e'„eii')"')

t kp Ct

i e, (e'„+ie')' &')e

)x dke~
2 (d R

j t)(X' X03 i
(())— dk k'"e"""d„,(k(d ~x,x») . (3.6)

te/4 2 1/2=i, , „„,e '

exp 3 —(x'„+R )
(xii+R ) ct

where

(k2 2/e2)l /2

X(e tt 3 03(+e +t 3 03 )

(3.7)

(3.8)

The correct analytical continuation of nt from the
region with k) &0/ct to the region k «d/ct i s
achieved by taking the branch cut along the neg-
ative real axis, and assuming ~ to have an infin-
itesimal, positive imaginary part.

Each of the two integrals in Eq. (3.7) is of the
form

kl
ef(k)

nt
(3.9)

where

f (k) = ikx R(k2 (02/c2)l /2

with R either ~x3 —x03 ~
or (x, +x„). We expand

f (k) about its stationary point k„

(3.10)

In what follows we focus our attention on the in-
tegrals J 3(x;x03~(d).

The simplest of these is J», and its evaluation
illustrates many of the ideas to be used in the
evaluation of the remaining integrals. From the
results of Ref. 9 we have that

k/
i kXII

nt

(3.12)

We now make the assumption that x» is small in
comparison with x=(x'„+x',)'/'. The two values of
(x'„+R')'/' can therefore be expanded in powers of

x»/x with the result that

(x'„+R')'/' =x + (x,/x)x„+ -,' (x'„/x')x', , + ~ ~ ~, (3.13)

where the upper (lower) sign obtains when

R = (x,+x») (R = ~x, -x»~ ). We will retain the term
linear in x„ in the exponential factor in Eq (3.12), .
but only the term of zero order in x» in the deno-
minator of the prefactor. The justification for this
assumption, which it should be emphasized is con-
venient but not essential, is the following. In the
expressions (2.21) for the amplitudes of the scat-
tered displacement field, the integrals I(3)(x;x03 ~(d)

appear multiplied by the amplitude tt2(')(k(0)(0 ~x03)
of the incident Rayleigh wave at the impurity site.
From Eqs. (2.18) we see that these latter ampli-
tudes decay exponentially with increasing x03 so
that it is only for x» z p,', where p, ((p, ) is de-
fined by Eq. (2.20), that any significant scattering
of the incident Rayleigh wave by a mass defect can
occur. In evaluating the scattered field far from
the impurity site, we assume that k~» 1, where

k, is the wave vector of the incident Rayleigh
wave and is comparable to the wave vectors of
the scattered waves, as we will see. If k,x»1
and x» (p,', it follows that x» «x, and the ap-
proximations we are making should lead to little
error in the scattered displacement field. To
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x cos c xt
(3.14}

It follows, therefore, that the integrals I, and I,
are given asymptotically by

eiktX
I, ——~ sin'&/&, —cos(k,x„cosg,),

Ct X
(3.15a)

this approximation we obtain finally for the in-
tegral Z»(x;x„~&d) the result that

-ca /4 t (u/ct )&i (2&&x )'/'
22 t 03 c2 xt

where we have used the fact that
'

X)) =X Sing~~ X3 =X COS~~

and have defined

k& = &&&/c &,

(3.16}

(3.17)

We now turn to the remaining integrals
&,«(x; x»

~
&o) with c&, p =1,3. The Green's function

d «(k&« ~x,x») for n, P =1,3 can be written as'

2m- etytx
I,-——,sin&)&, cos&/&, cos(kp» cosg, ), (3.15b)c, x

0I )x3
d «(k&d ~x x ) =d' (k&o)e & "«-"0«' ~ [d &(k&L&)e-~&"os+d & &(ko&)e-~ Pa«J

Oi tx3
+d„«'(ko&)e '"3 " + [d "«'(k &u)e "&"o«+d"'(ko&)e '@os]

+
(3.16)

where &x, has been defined in E&l. (3.8}, while

(k2 2/c2)1/2 (3.19)

is given asymptotically by

1 (2' )'", e'"&"
Z~&(% x i &o)- —. &4 e-tkt 03 C08es

i 2c't

4Q &Q &cgk k (&d —2c &k )(o&&+ k )
4c&,o&,(uF —2c«k') (3.20) ( cos'8, -sing, cosg, &)

&
—sing, cos8, sin'8,

We have factored out the coefficient x,' explicitly
in E&l. (3.18), because x,' has a simple pole at k
=kz-—(&d+i0)/cz, where cz((c,) is the speed of
Rayleigh surface waves. Explicit expressions for
the coefficient functions d,"«&(k&d), i =1,2, .. .., 6 are
given in Table I.

The asymptotic forms of the two integrals con-
taining d„o«&(k&,&) and d~«&(k&o) can be obtained im-
mediately with the aid of the results we have al-
ready obtained. In the former case it is necessary
only to replace c, by c, in the preceding analysis.
Thus we obtain immediately that the integral

(s.ssb)

We turn now to the integrals which contain the
factor x,' in their integrands. We wil, l work out

TABLE I. Coefficient functions d~('~g(&co) appearing in
Eq. (8.18). The factor k is k = «, o.', /k .

(4) (5)

J s«&(%;xo«~ &d)-= dk kl /«e&kx~~ d && &(k&d}e-n &
& F3- t&«&

(3.2la) 4') =(1/~)dW =-," „2-

with (&x, P = 1,3) is given asymptotically by

(27/x P /2 . e&k& "e &kP03 coa&&-8

J o'(x. x [~)-— " e " '
2c' x

dg =-dg =dl =-dQ = —
2 sgn(x3 x&&3)

ik
2'

where

k &:&&&/c
&

xi
( sin'g, sing, cosg,)
i, sing, cosg, cos'8,

(S.21b}

(3.22)

d&&')=-d(')= "2 —'
2'

d['3 =-dN =,'„'2

In a similar fashion we find that the integral

j (%'x i o&)= dkk e "»d@'(k&o)e ~& @ "o«
ag & 031 e8

4 =dII =d5 =- „'„2
~kdl =«I =
2&tM
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one of them explicitly, and will simply quote the
results for the remaining three. The integral we
consider is

by the method of stationary phase. If we denote by
k0 the stationary point of the function

J~,&(%;x»!u&) =
/Z

0! &+3 d (3 &(ko&)e 0 &xpa
o8

(3.24)

z/z
f (k& E'kx,„=- (k' - —, x,

l

=f(k,)+ —,'f "(k,)(k k, )'+ " (3.26)
To evaluate this integral in the limit of large x we
divide the range of integration (0, ~) into two parts:
(0, o&/c, ) and (o&/c„~), and consider the resulting
two integrals separately.

A. Contribution from the interval (0, o&/ct )

We evaluate the integral

t0/c) yz /zJ""(xx I o&) = dk e'""~~-~ &"a
e6 & 03 I

0 +

we find that

ko =(o&/c, )(x„/x) & o&/c, ,

f (ko) =ik,x,

f "(k,) = -i(c,/o&)(x'/xa) .

(3.27a) .

(3.27b)

(3.27c)

xdoa&(ko&)e (3.25)
%e therefore obtain for the large-x limit of the
integral (3.25)

yl/zJ' "(x x !o&)- do'(ktp)e &"oa
08 & 03 eg 0

1 (2&rx )'"
2 2c

Z C
dkexp --. ~ ~ 0'

2 Q) X3

tt&a+ 4»av sin'8, cos8,
L, -sin8, cos8,

s in8, cos8,'&&

cos'8,
(3.28)

where

v = (1 —X' sina8 )' '
tt& = 1 —2».' sin'8

X ='c,/c, &1 .
(3.29)

is given by 2mi times the residue at the simple
pole the integrand possesses at the zero of ~, at
k =k„=(o&+i0)/c„. In the vicinity of this pole we
have the expansion'

We have used the results of Table I in obtaining
this result.

2(d 1

c&tR (k - k„) (3.32a)

B. Contribution from the interval (u/c&, )
To evaluate the contribution to J"a&(x;x»!u&) from

the integration range o&/c, & k& ~, we regard k as
a complex variable and consider the contour inte-
gral

yz /zg" (x x ! o&) = dke""~~- &'a
e8 & 03 I

c, +

where the dots stand for analytical terms and,

B y 2 t g 9

(3.32b)

Consequently. , we obtain immediately that

x d„"a'(ko&)e-" & "», (3.30)

where the contour C, is shown in Fig. 1. The in-
tegrand can be made single valued inside and on
this contour by a proper choice of branch cuts.
Then by employing the same arguments that were
used in Ref. 9 in connection with the evaluation of
a similar integral, in the limit as the circular
portion of the contour recedes to infinity the inte-
gral

OO pl /z
Jt'o&(% x ! to) = dke' "~~ ePa

Ng & 03
G7/ C~ +

x d "a&(ko&)e ~ &"oa (3.31)

Rek

FIG. 1, Contour for the evaluation of the integral in
Eq. (3.30).
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(3.33)

In the same way we. obtain the asymptotic behaviors of the remaining integrals. We omit the details and

merely present the results. We have that

„a&/2J' )(% x !(d)= dke' "lie ~Ps d@&(k&d)e oi"-os
a8 & 03 a8

0 + 1

g C)
— cos0, sin8, e " '

x S S.

+ 2
— e "e (3.34)

OO y1 /2
8 "a'(1(;+o

I
o)) = dke("lie ~&"s d&o&(k(o)e-o& o3

0 + '

] (2)&~ )(/2 e io(x
esse, slee, e' ssP, le(S, &

—x ~S' —sic'8 ~' ')
t t

4&(8,)cose, !)('-sin'8, !'~'(l-csin'8, )
4e(8,) sin'8, cose, !

)(' —sin'8! '"+ (1 —2 sin'8, )cos28,

xI
&(' sine, /e(e, )!)('-.sin'e, !'" 1 I

( -tane, sine, /c (8,)!x' - sin'8, !
'&' tane, )

+ — e "e""e 'i"' """(I/p t) )!' (3.38)

where we have introduced

1, 0&sine, &X
e(8, =

i, X& sine, & 1;
g

1 /2
J'(o&(g g I (o) = dke'("lie cctcc3 d&o&(k(o)e-cp(cco3a8 ~ 031 a8

0 +

(3.36)

(2~~ )1/2 eiktx
e-i.ff /4 g & (c() / ct )&03 casey

i 2e't x

4a(8,)sin'8, cose, I)(' —sin'8, I' ' —(1 —2 sin'8, )cos28,
!

4&(8,)sin'8, cose, I)(' —sinoe, I"'+ (1 —2 sin'8, )cos28, ( sine, cose,

-sine, cose,)
sin'8,

&„„-s,&, o, ) (2~) +4&i&( (p(
x&pt

+u&(ts )(g ~) +6 (R )(x &} (3.38)

The results of this section when substituted into
E(I. (2.21) enable us to write the amplitude of the
scattered displacement field u"'(x, o)) as the sum
of four contributions:

u&s)(if (o) =u&')(X, (o)+u&'P)(g (o)

In Eq. (3.38) u ")(%, (0) is the amplitude describing
the scattering of the incident Rayleigh wave into
bulk longitudinal waves; u«~)(%, &o) [u&")(x, (o)] is
the amplitude for scattering into bulk transverse
waves of P polarization (s polarization); and
u ~)(R, &d) is the amplitude for scattering into other
Rayleigh waves. The explicit expressions for each
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ik)x'
(l )(» )

X 47fPC)
(3.39a)

of these amplitudes have the following simple
forms.

(8 x ) e-ikix» cokkk
2 . S& 03

w2 —4%.3v sin28, coso,
2+4X3v sin28 cosos

u"'(K"'& Ix )
D~(xp~ h))

D3 XP] Q)

p (g X ) e-ikixok cksek
sr 03

(3.39h)

+ e ikikx03 s 3 39duj'+4K'n sin'g, cosg, '

2 i Qtx
(tp), , ~~& (p) e

u ~X„&g = —.—
2 Qt

4'ITPC t X

x (x, cosg, cosy,

+x, cos8, siny, —x, sing, ), (3.40a)

„,~. A@2 —413v sin28, cos8,
M)2+ 413@sin20, cos0,

4Xmv cosg,+ eiktvxp3
so'+ 4X3e sin28, cos8' "

(3.39c)

u"' k"'(u Ix

u' '(k"'(01x ) sing, G,(g„x„), (3.401)
g)3(XP~ )

4 sin28, cos28,
G, (g „x„)= e ""oi'3-" +epx[i&(8)k,p(»X' —sin'8, ~'~']

4&(8,)sin'8, cos 8, I
X2 —sin'8, )' ~' - cosk28,

4e(8,)sin'8, cosH, IX' —sin'8, 1'"+cos'28,

Gk(g„x»)=e '"i"» ' k+exp[i&(8, )k@0, X' —sin'g, ~'i']- 4@(8,)cos8, 1k' —sin'8, 1'i' cos28,

(3.40c)

4k(8,)sin'8, cosg, I
&' —sin'8, 1'~2 —cos328,

+ 8tktx03 cps
4k(g, )sin'8, cosg, I

X' —sin'8 I'"+cos'28,

u ""(x,&u) =
2 (x, siny, -x, cosy, ) ',",» siny, cos(k, x» cos8, ) .

27t'PC t X D~~X, g))

(3.40d)

(s.4l)

&2 8ik&x„
u '(x, ~) =2 —,' u»&—, {(x,cosy, +x, siny, +x,. ip, )e k& @—q[x, cosy, +x, siny, +x,(i/p, )]e i 3], (3.42a)

1
Q

2R 27t p C'"C2 p ga t P~

X COSy (e iii~03 ge B Ã 3)f01 ~~ » jp e l3ixOk S ' 03 (S.42h)

We now turn to the determination of the elastic Poynting vector of the scattered displacement field, and
from it the inverse attenuation length of a Rayleigh wave in the presence of point defects.

IV. EVALUATION OF THE INVERSE
ATTENUATION LENGTH

(4.l)

The first step in the evaluation of the inverse
attenuation length is the calculation of the elastic
Poynting vector for the incident and scattered
waves. In their paper concerning the attenuation
of Rayleigh waves by surface roughness, Mara-
dudin and Mills derive the following expression
for the complex Poynting vector g' of an elastic
wave propagating in an isotropic medium,

K —(K„ t;„L,),

where

BQ2 BQ3
fi ——2 pu+ ci(V u) —2ck

BX2 BX3

BX2 BXi BX3 BXi

and the expressions for g'2 and g, can be obtained
by cyclic permutation of the subscripts in Eq.
(4.2). We shall assume that the displacement
components u vary with time as exp(-i&et), so
that u„*-exp(i&et) and u„*=iidu* Then Eq.. (4.2)
can be rewritten as



ATTENUATION OF RAYLEIGH %AVES BY POINT DEFECTS 3989

g', = --, i(dpu,* c', (+ u) - 2c',
Bx, Bx,

BQ~ BZt2 BQ& BQ3-2 $+PCg (M2+ + +Q3+ + ~

BX2 BX~ ' BX3 BX~

(4.3)

We take up first the Poynting vector of the inci-
dent Rayleigh wave f'(i). The displacement field
for the incident wave is given by Eqs. (2.17) and
(2.18). We have taken the direction of propagation
to be the 1 direction, so the only component of the
Poynting vector of interest is P(i). The latter is
given

8. Scattering into p-polarized transverse bulk waves

For this case the derivatives of the scattered
displacement field components with respect to the
coordinate components can be written as

su "~'(x, (d) ik, x~ (,~),
BX X

(4.9)

P(tp) = (am)'(d' ~uP
'

~

'x/32m' pc', x'. (4.10)

C. Scattering into s-polarized transverse bulk waves

in the limit x -~. The corresponding contribution
to the Poynting vector can then be expressed as

e- Bvs g e-(8&+8( &3+ g e 8("s)ll + lf t't

where

2 2cz ct
~ll =2+ 2 1 —4 ~2Ct Cl

(4.5a)

2+ R cB Pl2cB 2ct 4 5b
2Ct Cl 0

(4.5c)

We now consider the contributions to the Poyn-
ting vector of the scattered wave associated with
the different types of waves constituting the lat-
ter.

Bu (x, (0) ik(xg ((~&,
BX X

Using Eq. (3.41) we see that the Poynting vector
from s-polarized transverse bulk waves takes
the form

(4.11)

t "'(ts) = (bm)'(0 ~u"' ~'x/8w' pc'x'

where

u"' k"'(d lx

D,(zo~ Mj

(4.12)

D. Scattering into other Rayleigh waves

In the limit x -~, the expressions for the de-
rivatives of the scattered displacement field
components with respect to the coordinate com-
ponents can be written in a form analogous to
Eq. (4.9), namely,

A. Scattering into longitudinal bulk waves

The scattered displacement field is given by
Eq. (3.39a). The derivatives with respect to the
coordinate components are found to be

su ( xy (0) N(x((
BX X

8

(4.8)

in the limit x -~. Substituting this result into
Eq. (4.3), we obtain

1 (d
K', (I) = — u(+ [c2((x .u) —2c,'(x, u, +x,u, )]2 c,x

+ 2 2 1+ 1 2 + 3 3 1+ 1 32 ClX

(4.7)

Again using Eq. (3.39a), we find that this con-
tribution to the Poynting vector can be written
in the form

(4.8)

The scattered displacement field for this case
is given by Eq. (3.42). If we compare this result
with that for the incident displacement, field given
by Eqs. (2.17) and (2.18) and use the Rayleigh
wave dispersion relation, Eq. (2.19), we see that
the two displacement fields differ only in the re-
placement

A -2(c,'/c' )(u„/x'~') (4.14)

dE0' =L, dx, g', (i),
0

(4.15)

and in the direction of propag6. tion parallel to the
surface. Consequently, we can obtain the magni-
tude of the Poynting vector by taking that for the
incident Rayleigh wave, Eq. (4.4), and making the
replacement specified by Eq. (4.14).

The next step in the ca,lculation of the inverse
attenuation length is to evaluate the energy stored
per unit time in the incident and scattered waves.
For the incident wave, the energy stored per unit
time is given by'
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where L2 is the dimension of the sample parallel
to the surface and perpendicular to the direction
of propagation. Substituting Eq. (4.4) into Eq.
(4.15), we obtain

2

per unit time is given'by

l' dg dy x 2 sing (c
0 0

Using Eq. (4.8), this result becomes

(4.17)

Turning now to the energy stored per unit time
in the scattered wave, we present results for
each type of scattered wave separately. For the
longitudinal scattered wave, the energy stored

dz, (~m)'~'
d8, dy, sings

1
u( I

(4.18)
dt 32m21(X;l 0

'
0

The integration over y, can be carried out with
the aid of Eq. (3.39b) yielding

dZ (~)'&u' ' ' u"'(k"'(o lx ) . , u,"'(kI"(d Ix„)
D ~X ~ ~) 2 gP p3

(4.19)

An expression analogous to Eq. (4.17) can be applied to the case of p-polarized transverse scattered
waves. Using Eq. (4.10) for the Poynting vector and Eq. (3.40b) for up', we obtain for the energy stored
per unit time

dZt (dm) (d 2 u( (kiI (d lxo~) u, (kiI (d Ixo )
s D3'Xoy40) 2 SP 03

(4.20)

Finally, for the case of scattering i+to other
Bayleigh waves, we can write the energy stored
per unit time in the. form

X Ij dX3
0 0

(4.22)

Using Eq. (4.4) and the replacement specified
by Eq. (4.14), we carry out the integration over
x, and obtain

For the case of s-polarized transverse scat-
tered waves, we use Eqs. (4.13) and (4.17) and
find for the energy stored per unit time

dZ"' '(Sm)'(o' u"'(k"'(0!x ) 'sink x
(4.21)

I

We a&e now in a position to calculate the various
contributions to the inverse attenuation lengths.
We consider separately the two cases of mass
defects localized at the surface x, =o and of mass
defects uniformly distributed throughout the crys-
tal.

Turning first to the case of defects localized
at the surface, we consider a rectangular patch
of surface with dimensions L, and L» respec-
tively, parallel and perpendicular to the direction
of propagation of the incident surface wave and
with n, defects per unit area. The fraction of the
incident energy radiated into longitudinal bulk
waves is given by

C" =2p(oc,' dye, u„l',
eg 0

(4.23)

dEl dip-
dt

. (4.28)

The corresponding contribution to the inverse
attenuation length is

ll lt tf
Pl Pl + Pg Pg

(4.24)

dz„(dm )'(u'c,'e
dt 4pa' c„' p'(r'

u((o'(kI" (u Ix„)
D,(x; &o)

8( PP 2 u(0)(k(0)+ Ix ) 2

+2p2 e &t~03
a' D,(x„.(o)

x (e ~i~o~- ae &F0&)2

(4.25)

The integration over y, can be accomplished with
the aid of Eq. (3.42b) to yield the result

1/1 '"-f, /1. , (4.27)

Foi defects at the surface, x„=o, we find from
Eqs. (2.18)

I."'(k l" ~
I
0) I'= (+/~') lu"'(k I"~10) l'

lu "(k"'~
l
0)

l

' = (c',/4c ) lW l'

(4.28)

(4.29)

If we use these results and set x03 equal:o zero
in Eqs. (3.39c) and (3.39d) for E,(e„x„)and

E,(e„),xwe can simplify Eq. (4.19) for dZ, /dt
and obtain the res~it
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1 n, (t)m)'(d'ca ' ' sin8, cos'8, &'v' sin'8 p', m'
4vp'c'c'4 ' (4Vvcvsp sic'4 +vv')' iD (0 tv)I' 2 c'I D(0;cI)1' ) (4.30)

In a similar fashion, the contribution of p- polarized transverse bulk waves to the inverse attenuation
length can be obtained from Eqs. (4.20) and (4.26)-(4.29) with the result

1 n, (t2m)'(o'c'„ sin8, eos'8,
16vp'c, e '

~ 4&(8,) cos8, sin'8,
~

X' —sin'8 I'~'+ cos'28, I'

cos'28, 8 p', sin'8, iX' —sin'8, )

(D (0 &u) ['+ c' ID,(0 (d} I' (4.31)

The contributions of s-polarized transverse bulk
waves and of Rayleigh waves to the inverse at-
tenuation length can be evaluated in closed form
using Eqs. (4.21), (4.25), and (4.26)-(4.29). The
results are, respectively,

1 n, (t2m)'(o'c4~
l( 0) 16vp2cD~ ID, (0; (d)12 2

1 n, (am)' '(d'„c

) (B) 32p2g2 2 2 8

p 2

ID (0 tv)I* p,' I ( ;D) 0)tv'I

(4.32)

We now turn our attention to the case where the
mass defects are distributed uniformly throughout
the crystal. It is now necessary to multiply the
energy stored per unit time in the scattered wave
by the concentration of defects n, and to integrate
over xos. The contribution to the inverse atten-
uation length from longitudinal bulk waves is then
given by

1 L2n(, dE, (xD)
t "' dE,/dt, " dt

(4.34}

1 n~(4m)'&@ac „
jt
'" 27t p'c'c'z

1 1 n, (4m)'~'c„
l '"' 4m p'c'Et

1 n~(hm)'(d'
l "R' 2p'8' 4'

(4.35)

(4.36)

(4.3V}

The difference in the frequency dependence of
Eqs. (4.3"-)-(4.3V) and Eqs. (4.31)-(4.33) is easily
understood in a qualitative way. When the mass
defects are uniformly distributed, only those
defects located within the penetration depth of the

The integral over x„can be evaluated analytically
if we ignore the resonance situation and set
D,(x» (d) =D,(x» (d) = 1. However, the results are
long and cumbersome, and one is still left with
the integral over 8 to be done numerically. %e
content ourselves with presenting expressions
which give the order of magnitude of the various
contributions:

l

Hayleigh waves are effective in scattering. The
effective defects can be characterized by a sur-
face concentration n, =n, l.„, where the pene-
tration depth L„ is approximately equal to c /a(.d
Substitution of this expression for n, into Eqs.
(4.31)-(4.33) yields the frequency dependence of
Eqs. (4.35)-(4.37).

Y. DISCUSSION

@(hen the mass defects are localized at the
surface, our results for the various contributions
to the inverse attenuation length of Rayleigh waves
are proportional to the square of the change in
mass introduced by the defect and to the fifth
power of the frequency. In this respect our re-
sults are in agreement with those of Steg and
Klemens' and of Sakuma. " Like Sakuma, we
have also obtained resonance behavior (see Ap-
pendix). However, our resonance behavior is
somewhat different from that found by Sakuma.
He found resonances when the mass-defect cor-
responds to an impurity atom ligher than the atom
of the host lattice it replaces. Vfe find the op-
posite situation —i.e., resonances when the im-
purity atom is heavier than the host lattice at-
om. We believe our result is more reasonable
physically than that of Sakuma. A light impurity,
under proper conditions, will lead to a localized
impurity mode whose frequency lies above the
allowed band of frequencies for the bulk crystal.
The impurity mode frequency therefore lies out-
side the range of Rayleigh wave frequencies. It
is difficult to visualize how there can be a strong
resonant interaction between a Rayleigh wave and
an impurity mode whose frequency cannot equal
that of the Rayleigh wave. A heavy impurity, on
the other hand, can lead to a resonance mode
whose frequency lies within the allowed band for
the bulk crystal. In general, there will be no
problem in finding a Hayleigh wave whose fre-
quency is equal to that of the resonance mode.
We interpret the peaks in the quantities
(D,(0; co) [

' and tD, (0; (d)
)

' to be at the res-
onance mode frequencies of the heavy mass defect.
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The peaks do not occur at the same frequency
because the impurity mode in which the motion
of the defect is perpendicular to the surface lies
at a lower frequency than does the mode in which
the motion of the defect is parallel to the surface.

It is of interest to evaluate the order of magni-
tude of the inverse attenuation length. If we con-
sider silicon with p=2. 5 g/cm', c„=4.9 x 10'
cm/sec, c, =5.3 &&103 cm/sec, and e, =9.5 X103
cm/sec, and assume that the defects are localized
at the surface with n, = 10" cm ' and hm = 10 "
g, we obtain for + =10"Hz the values l"'=3.l

10~5 cm l ~t~} =2.1 + 10~5 cm
cm, and l' '=0.77&&10" cm. In these calcula-
tions, the integrals in Eqs. (4.30) and (4.31) have
been taken equal to unity. We see that for the
defect concentration and frequency considered,
the attenuation length is extremely long. 'If we
increase the frequency by a factor of 1000 to
10"Hz, we then find l"'=3.1 cm, l "~'=2.1
cm, l'"'=2. l cm, and l' '=0.77 cm. These lengths
are moderately short, but the frequency is much
higher than those used in surface-wave devices.

In the above calculations, the resonances have
been neglected. Including the resonances could
decrease the attenuation lengths by an order of
magnitude or more at the resonance frequencies.
One can, of course, also decrease the attenuation
length by increasing the mass change Am or the
concentration n, of defects. In typical situations,
however, it seems likely that scattering by sur-
face roughness will be more significant in de-
termining the attenuation length than will scat-
tering by mass defects.
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APPENDIX

In this Appendix we evaluate the resonance de-
nominators D„(x„&u) (a =1, 2, 3) which enter the
expression for the scattered displacement field,
Eq. (2.12), and which are defined in Eq. (2.11).
We have that

reflects the semi-infinite nature of the elastic
medium and ensures that the surface x, =0 is
stress free. The Green's function G„B(x,x'; e)
diverges as x-x', so that it must be treated sep-
arately and specially. It is to this function that
we turn first.

The Green's function G„3(x, x'; &u} has the Four-
ier expansion

G„8 (x, x'; &u) =
(2 )3

g'a3

x(k cuIx x')e~ 3 (A2)

~e- ~, l» 3
—»3'I} (A3a)

d,",(k„(uIx, x',}=-, sgn (x, —x', }2'
x (e "E~»3»3~ —e "!~» 3»3~) (A3b}

e-nt )x, - x,')
d,",(k3 (uIx3x,') =-

2QtCt

d "„(k3(uI x,x,') = — ~, sgn (x, —x,')

x (e "~~"3-"'~-e-"3~"3-*3~) (A3d)

u2d" (k (uI x x ) (ee-", I 3- 3I e-a, )»3- 3'

)II

(A3e)

The functions o., and nt appearing in these expres-
sions are defined by

Ct, E

(A4a)

where the Fourier coefficients in turn are expres-
sible in terms of simpler functions d„s(k3 uIx3x3'),
which depend on kII only through its magnitude,
through Eqs. (2.13) and (2.14). The part of
d„&(k3&uIx3x3') which gives rise to the Green's
function G„&(x,x'; &u) has as its only nonzero ele-
ments'

d,",(k~, ~l x,x,') =- "~~ (e-"~~"3-"3~
2 o.s

D„(x„v)=1+ (b, m&u3/p) G„„(x„x„+). (A1)
@II

&-
Ct, l

(A4b)

We begin by showing that G„B (x, x; &u) is diagonal
in a and P, and that G„(x,x; &u) = G»(x, x; &u)

&G»(x, x; &u). For this purpose we first note that
the Green's function G„& (x, x'; u) can be written
as the sum of a contribution G"„8(x, x'; m), which
is the Green's function for an infinitely extended
medium, and a contribution EG„S(x,x; &u), which

These definitions can be combined into the single
equation

I
k2 (M + J)2/3c32 ] 1 2 (A5)

where q is a positive infinitesimal, and the branch
cut in the definition of the square root is along the
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negative real axis.
Vfith the aid of the representations

sgn(x, —x,')e n~xx

x e&))x (xx - x&) ~ x

3 3 = e ~ 3 3aIx -x ) I e~ h -x )
2m + g

(A6a)
and Eqs. (A2), (A3), (2.15), and (2.1,6) we obtain
for the elements of the Green's function G"z(x, x; &d):

T( &x - x') .knk8 1 1 6nR
n8 (Xy i (2g)8 d2 k 2 d2/C2 kx —&dx/CR C k —&dx/C

(A7)

In the limit as x-x' this integral diverges at the
upper limit. In order to obtain a finite result in
this limit we must impose a cutoff on the integral.
We do so by confining the integration to the inter-
ior of a sphere of radius k~, the Debye sphere.
Such a cutoff arises naturally in a lattice theory,

I

where k~ is of the order of the reciprocal of a
lattice parameter, but it has to be imposed in
this fashion in a continuum theory. If we utilize
the spherical symmetry of the problem, we ob-
tain

5„~ '~ ', t'1 1 2 1
G„~(x,x;~)=— "', d) )'( —. . . , , + —, ~, ,—,, )jr (C) —(gP f C) Cg —(d /Ct

5 n[) 1 2 &d 1 . k —(d/c 2 kD —&d/c&—,+ —, &~+ — —,ln -~ ~ + —,ln6v c, c', 2 c, kD+&d/c, c, k()+&d/c,

+ '""- —ek ——" —ek ——"
(AB)

where we have used the fact that the frequency co

has an infinitesimal positive imaginary part [see
Eq. (A6)j.

We now turn to the contribution to D„(xo; &d) from
AG„s(x, x'; &d). The latter is given by

EGxx(X, X; &d) =
(2 )

dkdxx(k() &d~xxx3) (Aloe)

On carrying out the angular integrations in these
expressions we are left with the results that

b.G„[)(x, x'; &d) = g ll ~4k g' (x))-xg )
(2v)'

x gd„„(k)[&d[xp')

S)())(~l[5 v8(~ll) q (A9)

aG„(x,x; &d) =aG„(x,x; &d)

dk(( k[[ [ad„(k)[ &d[x, x, )

+&dxx(k)) (dlx, x,H

where ad„, (k[[&d~x,x,') is that part of d„„(k[[&d~x,x,')
which arises from the semi-infinite nature of the
elastic medium. It depends on the two™dimension-
al wave vector kq only through its magnitude. We
now set x =x' and note that the only terms that sur-
vive the integration in E&l. (A9) are those whose in-
tegrands are even functions of k, and k, . In this
way we obtain for the only nonzero elements of
6G z (x, x; &d)

d kaG„(x,x; ~)= f ( )', [k'ed„(kg lx, x,)td
+ O', Sd„(k)) &dlx, x,)1, (A10a)

d2k
LG, (x, x;e)f

~&
)', [k,ad, (@ad (A„w[x, x, l[

)&k', n d)i(k([(dlxxxx), (A10b)

1
AG (x x' &d) =33 ' ' 21r

(Al la)
Ag

dk(, k((6d„(k[[ &dix, x, ) .

(Al lb)

+2e &n&+ " n)&)x

(A12a)

We have again introduced a cutoff on the integrals
over 4)~ to render them convergent at the upper
limit.

The expressions for 4d„„(k((&d~x,x,) obtained
from Appendix A of Ref. 9 are

k~1(

hd„(k)[&d~xxxx) =
2 x (r e '")"x+ere'"&'x,
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«22 (&II Id(X, g, )
&II 1
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G11 (X, X ' 11I) =Q G22 1X,X 11')

(A12c)
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(2u-
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SG»(x, x; &u)

k~
87TQP f

Ckc
gg (2)/ p)& +4g (gg $2)& /2

(gg g&$2)) /2

(gg $2)1/2 (2gg $2)2 4g (~ g2)1/2 (~ +2g2)1/2

(gg g2)1/2 (g kg 2)1 /2

exp —2N-( k&x + exp —2g —g f

S(u —g')'"(M —z'g')'/'(2u —g')
(2 g2)2 4 ( g2)1/R( ~2g2)1/2 exp{ [(+ ~ g ) + (Q —g ) ]k~ )

In obtaining these expressions we have introduced
the notation

(AIS)

Although the integrals in Eqs. (A14) and (A15}
can be evaluated analytically when x, =0, the re-
sults are cumbersome. We have therefore eval-
uated these integrals numerically, as functions of
a&/&u, , for several values of & and knx, . Simp-
son's rule was used, with 100 divisions of the in-
tegration interval (0, 1). A value of 10 '&u, was
chosen for the quantity q, and the integrations were
carried out in complex arithmetic. The square
roots (u —P)'/' and (u —&'f')'/' were always eval-
uated in such a way that their real parts were
positive, which assured the satisfaction of Eq.

(A15)
I

(A4). The results of these calculations were com-
bined with that given by Eq. (AS), and substituted
into Eq. (Al} to yield D„(x„.u&}. Results for
{D,(xo; e){ ' and {D,(xo; &u}{

' as functions of &u are
presented in Figs. 2 and 3 for several different
values of k~, with & =I/MS and n, m~/p =50. In
each of these figures, we see that there is a reso-
nance peak whose frequency at the maximum in-
creases as the impurity is moved from the surface
into the bulk. At the surface, the peak frequency
is somewhat smaller for the impurity motion per-
pendicular to the surface then parallel to the sur-
face. This indicates that the effective force con-
stant governing the impurity motion perpendicular
to the surface is less thin that governing the mo-
tion parallel to the surface. A similar effect is
found'0 in the mean-square displacements of sur-
face atoms.
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