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Electric field deyinning of charge density waves
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The pinning of charge-density waves by impurities is considered in systems that exhibit at least short-range
order in three dimensions. Impurities are classified into strong and weak with quite different pinning
properties. The pinning of spin-density' waves is weak and the phase values at impurity sites are almost
random, in agreement with a recent experiment. The electric field required to depin the charge-density wave
is estimated. The coupling between a drifting charge-density wave and carriers either from a remnant Fermi
surface or thermal excitation is considered. Attention is focused on umklapp scattering of carriers by phasons
as a coupling mechanism at finite temperature. The conductivity in the high-electric-field depinned limit can
be large. Dislocations in the charge-density-wave lattice are examined with particular emphasis on the
piecewise motion of the charge-density wave through the motion of dislocations. We also discuss the
generation of dislocations by the analog of Frank-Read sources. The unusual nonlinear conductivity observed
in NbSe3 is interpreted in terms of depinning of charge-density waves. The possibility of observing similar
efFects in other systems is briefly examined.

I. INTRODUCTION

One of the most fascinating aspects of charge-
density waves (CDW) is the possibility of carrying
a current by drifting the electron fluid and the
CDW, a possibility first recognized at the outset
by Frohlich. ' It is generally accepted' ' that be-
cause of impurity pinning a finite-strength elec-
tric field is required to dislodge the CDW. The
oscillator strength in the linear electric conduc-
tivity is shifted to a finite frequency and the result-
ing optically active phase mode has been observed
experimentally. "However, the competition be-
tween impurity pinning and the electric-field en-
ergy has not been examined in detail. Further-
impetus for research in this direction has been
provided by the observation of nonlinear conduc-
tivity associated' with CDW formation" in NbSe3.
It is tempting to interpret the nonlinear conduc-
tivity as evidence of depinning of CDW. In this
paper we study nonlinear conductivity associated
with the depinning of the CDW.

We begin by elucidating the nature of impurity
pinning in CDW systems. An extension of these
ideas to the spin-density-wave state enables us
to explain a recent observation" of a distribution
of phases at impurity sites in Cr. In Sec. III we
estimate the characteristic electric field to dis-
lodge the CD% as a whole. In Sec. IV we consider
the coupling of the drifting CDW and the free
Fermi surface or thermally excited carriers.
Some of these questions have been studied recently
by Boriack and Overhauser. '" We emphasize
umklapp scattering by'phasons as an effective cou-
pling between the two systems, and write the
phenomenological equation for the drifting of the
coupled system. In Sec. V we consider the situa-

tion below the characteristic field and study the
possibility of moving one part of the CDW relative
to the rest. This naturally leads to the study of
dislocations in the CDW lattice. We consider
various mechanisms for the generation of such
dislocations, especially the analogs of Frank-
Read sources. " In Sec. VI we discuss the ex-
perimental observations on NbSe3 in the light of
our results.

There has been a considerable amount of work
on nonlinear excitations in one -dimensional sys-
tems pinned by a periodic potential. These ex-
citations are solitons and can be excited thermal-
ly"'" or created by quantum-mechanical tunneling
in a large electric field. " However, the soliton
conduction mechanism does not permit one to get
around the impurity-pinning problem. " As we
shall see, dislocations in the CDW lattice may be
thought of as generalization of the nonlinear excita-
tion to three dimensions. Such excitations cannot
be thermally generated in the three-dimensional
system that we discuss in this paper and we con-
sider the most likely source to be extrinsic, e.g. ,
Frank-Read sources.

For the purpose of this paper it suffices to treat
the CDW phenomenologically. The charge density
is given by

p (r) = p+ p, ( q ~

cos[Qz+ rP(r)],

where we have considered a single Q state in
three-dimensional space and p(= ( g ~

e'~) is the CDW
order parameter normalized to unity at T = 0. The
phase variable/ (r) denotes the locationof the CDW
relative to the lab frame. Phenomenologically we
think of the CDW as a charged lattice (e.g. , a
Wigner lattice). Therefore when it moves it car-
ries a current
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~= p. peA/Q ~ (1.2)
e

The collective density p, equals unity at T= 0 for
a Peierls insulator and not the amplitude of the
charge modulation. It is progressively reduced
for higher temperature in the manner discussed in
Sec. IV. As the CDW moves the lattice distortion
must move with it. As a result we can associate
an effective mass m* with the CDW. " The tem-
perature dependence of the effective mass as well
as p, is calculated microscopically in a companion
paper. " An electric field 5 in the z direction
couples to the phase via the following additional
term in the Hamiltonian

&.puff p»

where p, « is an effective density to be discussed
in Sec. IV. It is to be understood that the 8,
field couples to the free-carrier density in the
normal way.

us consider a Ginzburg-Landau expansion for the
order parameter

(2.2)

where t= -(T —T,)/T, and $„, f„, $, are the co-
herence lengths. In all CDW's observed to date,
with the notable exception of the 4IIb layered com-
pounds, "the low-temperature state consists of
CDW's with transverse ordering greater than the
interchain or interlayer spacing. Such system
must be considered as three dimensional as far
as the Ginzburg-Landau expansion is concerned.
Indeed by rescaling the length scale in the trans-
verse directions, x'= ($,/$„)x and y'= (0„/$,)y,
Eq. (2.2) can be treated as an isotropic system:

II. COUPLING TO IMPURITIES

An impurity atom located at r, can be described
by a potential v(r —r, ) which is the difference be-
tween the potential at the impurity site and the po-
tential of the host atom. The interaction energy
ls

&=fo(f.h, /f', )

dx dg dz -t + — +» V

(2. 3)

drv l —r ~ p r

= p, [(~Re feee(r)e'e e"e"'~"'

To this we add the pinning term due to a single
impurity at the origin. From Eq. (2.1) we obtain

(2.4)

=p, lq~lv(Q)cos[Q r, + p(r,.)]. (2. 1)

In a Peierls system p, /p=&, /Xe~, where &, is the
energy gap at T = 0 and X is the electron-phonon
coupling constant. In a typical case p, /p may be
0.1. For charged impurities, i.e., impurity from
a different column of the Periodic Table, v(Q)
'= [4ve'/~„(Q)]Q ', where ~„(Q) is the dielectric
function which includes excitation across the
Peierls gap. At a large wave vector Q such
screening as well as carrier screening is small.
Thus we may estimate that p, v(Q) for charged im-
purities may be of the order of several tenths of
eV. For isoelectronic impurities or impurities
located away from the conducting chains [such as
Br disorder in K,Pt(CN), Br, , 'nH, O (KCP)] the
impurity potential is considerably smaller.

The impurity coupling (2. 1) has two conse-
quences. First, the local phase y(r, ) has certain
preferred value; second, the linear coupling to the
order parameter implied by Eq. (2. 1) leads to a
local enhancement of the ordered phase. This
effect has been discussed by McMillan. " Let

Let us choose the overall phase such that the solu-
tion far away from the impurity is real. Then P
is the preferred phase at the pinning site. For
small v we can linearize

q(r) = t'"+ y'

so that g' obeys

f.(h.&,/$'. )[ f'.&'0'+2f-Q'+ tt '*)]= p v8 "&(r).
(2. 5)

The solution of this equation is

Ref' = e cos p($,/~)e " ' ' '

and

Imp'= e sing($, /x),

where

(2. 6)

(2. 7)

(2.8)~= p,v/f. $.5,5.
and $(T) = $g '~'. The solution must be cut off at
small r because the pinning potential is in reality
not a 6 function and more importantly because the
length scale of the variation of g cannot be smaller
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I 1/2 fo(xfw&s~ 0 ~ ~In-i/2(~ ~
)-&/2

3 VPI. j
(2. 10)

On the other hand, if && f,
' ' the linear solution

described earlier breaks down. The order pa-
rameter then assumes an enhanced value at the
origin which will saturate at some value which is
relatively independent of t. At the same time the
phase at the origin will be pinned at P arid inter-
polates smoothly to the value at infinity. The
pinning behavior of these strong impurities is
quite different from the weak impurities.

Let us now make some estimates on the criterion
given by Eq. (2.9). We will consider a, quasi-one-
dimensional problem. In this case f,= 4'o/e~Q,
where Q= a~,a, is the volume of the unit cell.
For a quasi-one-dimensional problem, if („&a„,
$, (a„ fo$„$,$, should really be replaced by
foa,a, P., Using the relation f,/a, =ez/&„ we ob-
tain foa~, $o = bo and the criterion (2. 9) becomes
simply vp, & h(T). Since vp, is estimated to be

than $„ i.e., $',
I vgI

' must be less than or equal
to

I
PI'. This latter condition implies that Eqs.

(2. 6) and (2.7) are valid only for r & g, . The con-
dition of validity of the linearized solution is that

I
q'(0)

I
& t'" or

(2. 9)

For e«t' ' we find that the phase at the i&+purity
site is largely determined by the phase at infinity.
The pinning potential is approximately vp, cosP
with corrections of order &vp, . In three dimen-
sions the elastic energy cost increases with the
size of the spatial variation about the impurity.
As a result there is a minimum elastic energy that
one must pay to interpolate the phase between P
at the origin and zero at infinity, and that mini-
mum energy is of order fot$„$,$,P'. On the other
hand the energy to be gained from the impurity is
p,vt'/'. When Eq. (2. 9) is satisfied the gain in

impurity energy is simply not sufficient to over-
come the elastic energy and the phase assumes its
value at infinity everywhere.

While an individual weak impurity is unable to
pin the phase as the preferred value, a collection
of these weak impurities can still pin the overall
phase of the CDW. "'" Such pinning is described
as weak pinning by Fukuyama and Lee." Ba'sically
the phase varies on a scale L, much greater than
the impurity spacing n&' ', where n, is the im-
purity concentration. It gains energy from the
fluctuation in the impurity potential of the order of

-vp, I |I/ I (((,6,/K, )~'n; I"'.
It pays an elastic energy equal to f, I

PI'$, ),I..
The length I- can be obtained by minimizing the
free energy per unit volume:

III. ESTIMATES OF DEPINNING FIELD

Let us consider a large volume of CDW and ask
what is the electric field required to dislodge the
entire volume from the impurity pinning and move
it bodily. An upper bound can be obtained by
keeping the CD% rigid and simply comparing the
total electric field energy with the pinning energy
per unit volume. We have to treat the strong and
weak impurities separately. From the arguments
leading to Eq. (2.10) we see that for weak impur-
ities the pinning energy per unit volume is given by

f„.= fo I e I
'].(,I /(&'(—„(,/(', )

=
I & I'f.(&.&.( n;)'(~/I e I)' (3.1)

The last factor ~/I g I
is by definition less than

unity. The quantity $,f„$,n, is extremely small.
For a quasi-one-dimensional system, taking („
= a„, (,=a„and $, =100a„and an impurity con-
centration of one part in 10', $,$„f,n, =10 '. On
the other hand, from Eq. (1.3) the electric-field
energy per unit volume when the phase is ad-
vanced by 2n is given by

f(8,) = epp, «8,(27//Q) . (3.2)

tenths of eV, for most systems we see that charged
impurities will qualify as strong impurities where-
as isoelectronic impurities will generally be weak
except very near T,.

The situation is quite different for spin-density
waves (SDW) such as in chromium. In this case a
charged impurity will not couple directly to the
SDW but only to the second-order harmonic CDW
that coexists with the SDW. Clearly this will
lead to a much smaller coupling and to values
which will be in the weak pinning regime. Fur-
thermore the coupling will be of the form cos2(p
—P) for the CDW harmonic and this is analogous
to the random-anisotropy problem, "rather than
the random-field problem" discussed above. For
both these reasons, it is to be expected that the
SDW will not be strongly pinned to individual im-
purity sites even for dilute impurities. If so, the
phase will not attain its preferred value p at in-
dividual sites. Instead, the values of the phase of
the SDW will be random at individual impurity
sites. This explains the rather unexpected ob-
servation of Teisseron et al." that in the SDW

phase of Cr doped with Ta to one part in 10', the
spin density at individual Ta sites was random and
did not take a unique value. This is exactly what
happens in weak pinning where the individual im-
purities do not maximize (or minimize) the local
density as in strong pinning, but rather the phase
only pins to large-scale fluctuations in the im-
purity density.
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Equating Eqs. (3.1) and (3.2), we obtain at low
temperature (p,« =1) .

e $,(2v/Q) =(A',/e~)10 V. (3.3)

IV. INTERACTION BETWEEN THE DRIFTING CDW

AND NORMAL CARRIERS
In the presence of a remnant Fermi. surface, or

of thermally excited carriers across the gap, it

Taking 620/cz = 0.1 40 = 10 ' eV and e = 1, this trans-
lates into afield =10 ' eV on the atomic scale, or 10
eV/cm. Based ontheseestimates we concludethat
weak impurities can be depinned by extremely
weak fields. The reason is that in three dimen-
sions the domain size L is extremely large and a
weak electric field provides an energy proportion-
al to the large volume. The same reasoning
leads us to believe that thermal depinning is un-
likely in three-dimensional systems. As the
temperature is raised the CDW remains pinned
up to the CDW onset. There is no sepa, rate tran-
sition analogous to the spin-glass transition above
which the local value of the phase becomes ran-
dom.

The strong impurity has quite different pinning
properties. In the presence of an electric field
the phase (t)„ far away from the impurity site will
increase while the phase at the impurity site re-
mains pinned at P. This will cost elastic energy
of the order of

~
$(0) ~'f, $,$,f,(Q„—(t))' Howe. ver

the energy of the lowest-energy state must be
periodic in (t)„—$. As (t)„continues to increase,
the solution near the impurity site is metastable
and eventua, lly jump to the stable solution, provid-
ing pha, se slippage of 2m between the pinned pha. se
and (t)„. Such phase slippage may proceed by tun-
neling, thermal activation over barrier, or direct-
ly for a sufficiently large electric field. As an
estimate for the depinning field we may balance
the elastic energy per impurity with the electric
field energy, setting

(3.4)
I

In a quasi-one-dimensional problem for n,. of the
order of one part in 10', we obtain at low tempera-
ture e 8,(2w/Q) = 4,n, =10 ' eV or 1 eV/cm which
is much larger than the depinning field for weak
impurities.

Near T„as we remarked earlier, a local
~ P~

is induced at the impurity site. The ela.stic ener-
gy required for phase slippage is presumably a
complicated function of ~ which is somewhere be-
tween a function linear in & (if we ignore the local
enhancement of

~ g ~
) and a function independent of

As we shall see in Sec. IV p, « is linear in &
nea, r 7.', . Thus the depinning fieM 8 should
diverge as &" where 0 & g (1 a,s T —T,.

is necessary to clarify the relation between the
drifting CDW and the quasiparticle contribution to
the current. Let us go to a frame moving with the
drift velocity D of the CDW so that the CDW is
stationary (referred to as the CDW frame below).
In this frame the single-particle energy E(k) is
the sta,nda. rd one, i.e.,

where $»= —,
' (e„-,g -&;) and r»= —,

' (e„-,g+e;) and

Eo(k) = $'»+ b,'. The occupation of the states will
be determined by the balance between the external
field on the one hand, and the relaxation to the
lab frame on the other, as well as possible relaxa-
tion to the moving GDW frame. We follow Boria, ck
and Overhauser" and make the simplifying ap-
proximation that the occupation (in the extended-
zone scheme) is given by

V= Dp, + Kp„,

where

(4. 3)

(4.4)

and p, =1 —p„. This expression for p„/m is the
usual one that determines the plasma frequency
of carriers in semiconductors. This must be the
case because if D=O, i.e., if the CDW is pinned,
t'his problem becomes identical to the usual semi-
conductor or semimetal.

It is instructive to look at Eq. (4.4) in a dif-
ferent wsy. Suppose there is no scattering. In
the presence of an externa, l electric field 8 in the
z direction the crystal momentum is accelerated
by mK= e4. Therefore the gain in momentum by
the single particle after a time t is given by

f„=f(E„)—m(K-—D) —, (4. 1)
gk ~&'

where K and D are in the z direction and m is the
band mass. This can be viewed as an expansion of
QE(k -m(K —D)), i.e., the single-particle distri-
bution is centered at K —D in the CDW frame.
Since k transforms like a, momentum under a.

Galilean transformation we see that P,k,f»
=m(K-D) in the CDW frame and is equal to K
in the lab frame. Equation (4. 1) is the usual ap-
proximation for the Boltzmann equation and leads
to Matthiessen's rule, i.e., the additivity of var-
ious scattering processes.

The average velocity carried by such a, state is
given by (in the following we suppress the N '
factor in front of Q»)

2

V= Q ~ f,= -m(K -D) Q ( (4 2)

in the CDW fra, me. In the lab frame we have
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m g — f(k —eSt) =-megt g ~
= Bf

~- Egk

= eg tp„.

The remainder of the momentum density fed into
the system is then egtp(1 —p„). This remainder
must have gone into accelerating the CD% as a
whole. Therefore the force field on the CDW is
given by (1 —p„)eg. It is natural to interpret ep,
= e(1 —p„) as the fractional charge density as-
sociated with the condensate. To study the behavior
of p, near T, it is convenient to use the relation

Q2
[1-f(-C+E.) -f(S+E,)].

», e

For &«T we can expand

1 f( 0+E—) f—(l'+E—) = —,
'

PEo

for regions in 4 space where f «T. The remain-
ing region gives negligible contribution and we
find that p, is linear in & near T,.

Our expression for p, is in agreement with
Boriack and Overhauser's y in the proper limit
but it is in disagreement with Allender, Bray, and
Bardeen" who obtained an answer analogous to the
superfluid density in He and in which p, -&'. The
difficulty with their argument is that they work in

the lab frame with a time-dependent CDW poten-
tial. . They obtain an eigenvalue spectrum A, '(E)
=E(k mD) + D 'k, which does not have the proper
Galilean transformation properties of an energy.
As Boriack and Overhauser' pointed out, the en-
ergy as defined by the mean value of i B/Bt is not
A,

' but E(k —mD) +mD BE/Bk. Once this is prop
erly taken into account, their result can be brought
into agreement with Eq. (4. 4).

In the presence of scattering there is an addition-
al force on the condensate arising from the rela-
tive motion of the single particle and the CD%.
Boriack and Overhauser" have considered the
problem at low temperatures when impurity scat-
tering is the dominant mechanism. At higher
temperatures when the conductivity is temperature
dependent we have to consider additional scatter-
ing mechanisms. This leads us to consider um-
klapp scattering of the single particles by phasons
of the CDW. We assume that the phasons are in
thermal equilibrium in the CDW frame. This is
a good approximation for kT«ar, (where &u, is
the bare phonon frequency at Q) so that the mixing
between the phason and the ordinary phonons is
not strong. This problem is quite similar to
ordinary umklapp scattering in polyvalent metals
where Lawrence and VYilkins" have shown that
umklapp scattering is dominant. The time rate of
change in momentum in the single-particle sys-
tem (which must go into accelerating the CDW) is
given by

hp —v )~, (6(E -E ~
—~,)[f (I -f~ )(I+~,) —(1 —f„)f.&,))

+ (E» -E» + ~.)[f»(l -f» )&, —(I f»)f» (I+&,)-9, (4. 5)

where it is understood that k'=k+q+ 6 and 6 is
a reciprocal-lattice vector associated with the
CDW. The transition probability is given by

Using the ansatz Eq. (4. 1) in Eq. (4. 5) we ob-
tain the time rate of change in momentum per unit
vol.ume

&»». = (1 -m/m*)((u, /(u, )M' (4. 6) r p/r t=(pp„/~)m(z —a),
where

(4. 6)

M =gvzqn. /Eo(k) . (4. 7)

In Eq. (4. 6) the scattering rate W'»» contains the
spectral weight' of the phase mode (1 —m/m*);
w, and ur, are the bare phonon frequency and the
phase mode frequency, respectively, and M is the
matrix element between the phonon and the quasi-
particle. It can easily be worked out in terms of
the electron-phonon coupling constant g via the
Bogoliubov operator and is given by Eq. (4.7).

7
Ak'

~+eBf

Bf

)
(4.9)

The order of magnitude of 1/7 is estimated in the
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Appendix. Since the phason is defined only for
q ($,' it is clear that )'v must be restricted to be
within $,' of )'v~ as well. In a quasi-one-dimension-
al situation where part of the Fermi surface re-
mains at low temperature, only the part of the
Fermi surface that is within & of the gap will con-
tribute to v' '. In this case v' ' is estimated to be
p„v '-A. (&'/&u, )F, where A=g'/&u, e~ is the dimen-
sionless electron-phonon coupling constant and E
is a geometric factor related to the fraction of the
Fermi surface within & of the energy gap. Near
'T„p„w goes to zero linearly with &.

The total force per unit volume accelerating the
CDW is then given by

Fn ——epp, g+ pp„v' m(K -D) . (4. 10)

Since total momentum is conserved in the umklapp
scattering, a similar term must appear in the ac-
celeration of the quasiparticle,

v~'K —v' '(K —D) + el/m, (4. 11)

where we have included a term which relaxes the
momentum to the lab. The source of this relaxa-
tion may be impurity scattering or scattering by
the ordinary phonons which are in equilibrium in
the lab frame.

We can now study two limiting cases: (i) the
CDW is pinned, so that D= 0, and (ii) the high-
field limit in which the CDW is depinned and the
conductivity is again linear. In the first case we
set D=O and solve Eq. (4. 11) for K. Inserting
the result in Eq. (4. 10), we obtain

Fa = epp~fc@ ~ (4. 13)

where p, « ——p, + p„/(1+ v/v, ). Thus we see the
coupling of the CDW to the electric field depends
on the ratio v/v~ Near .T, v' ' approaches zero and
F&=ep, g, where p, itself is linear in &. At low
temperature, v'„and v' may be comparable. If v '
dominates, F~ approaches eh. At very low tem-
perature, 7' ' vanishes like T' and pe ff pg.

In the opposite limit we assume that the CDW is
depinned. Then we can write the following equation
of motion for the change in the collective contribu-
tion to the momentum nz*p, D:

p„D= ——D ———" (D —K) +
p, m+ m*' (4. 13)

where we have added a phenomenological decay
time wL) for the damping of the CDW to the lab
frame. The source of damping may be mixing of
the phason with the ordinary phonons which have a
finite lifetime, ' or it may be radiation of phasons
at impurity sites, or it may be the kind of impur-
ity damping discussed by Boriack and Overhauser. "
Equations (4. 11) and (4. 13) can be solved to ob-
tain

where v* '= v' '(p„m/p, m«). The conductivity can
be readily obtained by combining these equations
with Eq. (4.3). It is interesting to point out here
that the qualitative nature of the solution depends
on whether the phason scattering is the dominant
process. If v, '» v' ', i.e., the relaxation to the
lab is the dominant process, e.g. , when the con-
ductivity is impurity dominated, " the conductivity
is dominated by normal carriers if v~«( m/
m)v~' and by the drifting CDW otherwise. A more
interesting situation obtains if v'~' «7' ' and 7'&'

«v* '. In this case we have
~

D —K~ /K«1 and

+ /P
~

(4 16)
m 1+v„p,m%gp„m i

The CDW and the normal carriers are drifting at
similar rates. In particular the expression in
parentheses in Eq. (4. 16) may be of order unity
leading to a total conductivity of the order of the
normal conductivity in the absence of the CDW.

V. DISLOCATION IN THE CHARGE-DENSITY-WAVE

LATTICE

Suppose the electric field is smaller than that
required to move the CDW as a whole as discussed
in Sec. IV. It may still be possible to move part
of the CDW relative to the rest. This will require
the presence of dislocations in the CDW lattice.

We shall restrict ourselves to the single-Q CDW
state. The Burgers vector can only be parallel to
the Q vector, i.e., in the e direction. Suppose we
ignore amplitude fluctuations and consider a re-,
gion in space far away from strong impurities.
The free energy reduces to

fEA l 0 l

'fd~'dv'=«(&@)'. (5. 1)

For a straight line dislocation the solution is
simply P = 6, where 6 is the angle in the plane
normal to the dislocation. Then energy per unit
length is

&=f,~„g, q~'ln(Z/g, ), (5.2)

where R is a large-distance cutoff typically equal
to the distance to the nearest dislocation with the
opposite Burgers vector. It is instructive to ex-
amine two examples of dislocations. The first is
a dislocation loop lying in the x-y plane. Since

(4. 14)

eg (1 1 m 1 1 f'1 1 1 1
K ——

I

—~+ + —
I
—+—+——

m (v* vp m* v' v& kv* vg v'D

(4. 15)
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FIG. 1. Projection of two dislocation loops in the x-g
plane. Solid lines are the contour of constant phase in
units of 27t.

the Burgers vector is in the z direction this is a
purely edge-type dislocation. Its projection in the
x-z plane is shown in Fig. 1. The line 4B is the
projection of a disk of an extra wavelength of the
CDW. If we consider two loops with opposite
Burgers vectors as shown in Fig. 1, clearly the
phase within the volume bound by the two disloca-
tion loops (the area ABCD in the projection) has
slipped by 2m relative to the outside. An electric
field will tend to pull the two loops apart in the z
direction. Suppose the radius of the loop is 8 (in
the scaled isotropic space) and the distance be-
tween the loops is z. The gain in energy from the
electric field equals

p„,pa:R" (2 /e)(~, &,/~:)

Minimizing the total energy we find that it has a
maximum at a value z„

~.=f.&'.
I c I'/p„, 7fi.(2./e)~. (5.3)

For values of z )zo the electric field energy
dominates and the disks will run away from each
other whereas for z &z, the disk will collapse and
annihilate.

A second example is a rectangular dislocation
loop in the x-z plane such as ABCD shown in Fig.
2. The segments AB and CB parallel to z are
pure screw dislocations. If we consider tmo

This is opposed by the elastic energy which causes
an attraction between the two loops. This is
analogous to the force between tmo parallel dis-
locations in a crystal. It can be evaluated in a
straightforward way similar to the calculation in
the limit when the crystal is replaced by an elastic
continuum. " The attractive energy has a log-
arithmic dependence on the distance z, as in the
solid, and takes the form

f.(.$.»&
I 0 I »(&/(.)

FIQ. 2. Solid and dashed lines are the contours of con-
stant phase for the layer above and below the plane in
which the dislocation loop ABCD lies. The segments AB
and CD are screw dislocations whereas gC and AD are
edge dislocations.

loops spaced by y, in the y directions with opposite
Burgers vectors, it is easy to see that the volume
bound by the two loops has slipped by 2m relative
to the rest of the CDW. It is particularly inter-
esting to consider a layered system such that the
CDW is weakly coupled in the y direction, i.e.,
$, &a, . In that case we can imagine the disloca-
tion loop to be between layers. Then the disloca-
tion loop describes the slippage of some layers
relative to the bulk. The dislocation loop plays
the role of a domain wall. Insofar as the station-
ary layer provides a periodic pinning potential to
the slipped layer, the dislocation picture can be
considered as a three-dimensional generalization
of the soliton (or domain-wall) idea discussed by
Rice et al."in one dimension. Again, it is easy
to show that for a sufficiently strong field the dis-
location loop will expand in both the x and the y
directions, thereby causing phase slippage and
carrying a current.

However, examination of Eq. (5.3} shows that for
electric fields too weak to depin the CDW as a
whole, z, and R have to be enormous before the
dislocations will grow and run away. Such large-
scale objects preclude the possibility of thermally
nucleating dislocation loops. . In a real system
there may be dislocation loops that were created
in the process of condensation of the CDW. Gen-
erally, however, these dislocations can be used
only once and are eliminated as they run into the
surface of the sample or grain boundaries. This
same problem arises in consj.dering the shear in
ordinary crystals. An ingenious proposal for dis-
location sources was proposed by Frank and Read"
Bnd should be applicable to the CDW lattice as
well. Let us consider a rectangular dislocation
loop with sides x,' and y,' located in the x'-y' plane
as shown in Fig. 3(a). We assume that the corners
of the loop are pinned. A pinning mechanism may
be regions in space where the CDW has reduced
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'FIG. 3. (a) Dislocation loop in the x-y plane, segments
of which can act as a Frank-Read source. (b) Shows the
operation of a Frank-Read source. The dashed line is
the semicircle that separates stable and unstable solu-
tions.

fA.&. I
yI'x (-,' g)»(x'/(. ) .

In terms of the length in real space x,= (f„/$,)xo
and y, = (g,/$, ) y,', and using the quasi-one-dimen-
sional expression for f, and f„we obtain the
chara, cteristic field

( )I f, I ( i' z„z„
pnT xylo I t, &

(5.4)

For a quasi-one-dimensional system f, = &',/&~A,
myabe considerably less than a„, a, and

for x,/a„,&0/a„=100, the characteristic electric
field may be quite small, -l eV/cm. For fields
exceeding Eq. (5.4) the bowing out continues in
the manner shown in Fig. 8(b), and the segment

amplitude which will attract the core of the dis-
location line. I et us focus our attention on the
segment A.B lying along the x direction. Upon ap-
plication of an electric field the segment will bow
out as shown in Fig. 3(b). The balance is between
the energy gained from the electric field and the

. elastic energy which is proportional to the length
of the arc. The problem is analogous to that in
crystals where-the driving force is an applied
stress and as in that case,""the boundary of
the region of stable bowing of the segment AB
occurs when the segment is a semicircle and the
radius of the circle is just equal to one-half the
length of the segment x,', separating the stable
and unstable solutions. The electric field required
to produce an unstable solution is fpund' ' 6

by
balancing the energy gained from the field

(2m' (x,i', 1'g„~„i

'&Qj g2 &

and the dislocation energy

VI. DISCUSSION

Vfe would like to discuss the experimental results
on NbSe, in light of the above theoretical consider-
ations. It is found' that the nonlipear conductivity
can be very well fitted by the form

a(g) —a y a,e-&01&, ( )

Furthermore 8, is tempera, ture dependent, behav-
ing like t 'i' Just below each of the two transition
temperatuxes. ' The minimum g, is of the order' of

can operate as a source of dislocation loops ex-
panding outward. At the same time the segment
DC on the opposite side of the rectangle operates
as a Frank-+cad source in an identical manner.
The two expanding loops then define an expanding
domain of slipped phase.

As the dislocation loop expands it may encounter
a, strong impurity. The dislocation can get around
the impurity in several ways. If the dislocation
is screwlike it can cross-slip to a. different glide
plane. For dislocations that are edgelike it will
have to climb (motion normal to the Burgers vec-
tor). In ordinary crystal, climbing requires
migration of vacancies or interstitials. In a CD%,
a climb can be accomplished by converting collec-
tive density to normal carriers. Such a conver-
sion wiQ take place when an edge dislocation hits
a wall or gra. in boundary or when it is stopped by
a, strong impurity that it is unable to get a,round.
The conversion of a, normal electron to a, collec-
tive density at one end of the s~ple a.nd its trans-
port by dislocation motion some distance down the
sample constitutes a parallel channel of transport
and the conductivity should be additive. The mag-
nitude of the conductivity that this mechanism can
provide is very complicated even to estimate, and
Eq. (5.4) is to be understood as the minimum elec-
tric field required for the operation of a source of
a particular dimension and hence the opening; up
of a new channel for conduction. As the electric
field is increased, more and more Frank-Read
sources operate, until a field is reached when the
CDW is depinned and drifts as a whole, we thenar-
rive at the situation described in Sec. III.

'%Irate should remark on an additional restriction
for the Frank-Read source to operate, namely,
that there must be no strong impurities within a
radius of —,

'
xo of the source. In the z direction

this means a distance in real space of z, = ((,/
f,)x 0 This is. the reason we restricted our atten-
tion to the segments A.B and DC of the initia, l loop
that lies along the x direction. In a. layered sys-
tem $„(f„ndahence there is a more severe re-
striction on thy segments BC and AD to operate as
Frank-Read sources.



3978 P. A. LEE AN D T. M. RICE 19

1 eV/cm for the 144-K transition and 0. 1 eV/cm
for the 59-K transition. Below about 25 K, 80
increases abruptly and due to heating effects a
voltage greater than 0.5 eV/cm cannot be applied.
X-ray diffraction has been performed' with a cur-
rent running through the sample, and no change
in the superlattice period or intensity was ob-
served. The extremely small electric field
(10 ' eV on an atomic scale) indicates that we must
be dealing with a phenomenon on a large scale.
The natural explanation is that the CDW is being
depinned by the electric field. Since the x ray
is an instantaneous snapshot, it will not detect the
small drift velocity of the CDW. The observa-
tion' that conductivity at microwave frequency ap-
proximates o, + o, further confirms this view, as
ac conductivity is not expected to be so strongly
affected by the pinning. In a strictly one-dimen-
sional problem the frequency-dependerit conduc-
tivity is shown to be of the form a(co) -exp(-&uo/&o).
In three dimensions'the problem is more compli-
cated and a detailed experimental determination of
o(ar) would be very interesting. Our study shows
that the impurities can be divided into weak and
strong ones and estimates made in Sec. III indi-
cate that the weak impurities are easily depinned.
The depinning field for the strong impurities was
estimated to be of the order of 1 eV/cm, not too
different from the measured value. (The higher
temperature transition is expected to require a
larger depinning field because 4, is larger and

p,« is smaller, since a large portion of the Fermi
surface survives the first transition. ) However,
we would expect a more sudden onset of extra
conductivity, and there is no obvious way to under-
stand the exp(- 8,/g ) dependence. One possibility
may be that the CDW is broken up into grains
(which may or may not be associated with grain
boundaries of the real lattice). Each grain has its
own depinning field, and an averaging over a dis-
tribution of depinning fields results in a more
gradual nonlinear behavior, as discussed at the
end of Sec. III.

'

In the dislocation model it is more natural to
expect a distribution in the size x~, of the Frank-
Read sources. A Poisson distribution of the size
(resulting from a random distribution of disloca-
tion pinning sites, for instance) can nicely account
for the exp(-8, /h) behavior since x~, goes like
~ ' according to Eq. (5.4). For a fixed density of
strong impurities, Eq. (5.4) predicts an 8, that
goes like ~gj. However, from Eq. (2. 9) we see
that more and more impurities become strong im-
purities near T,. The increase in strong impurity
concentration will render some Frank-Read
sources inoperative because the expanding dislo-
cation line may run into the impurity before it

becomes unstable. This will. have the effect of in-
creasing &, beyond a linear dependence on

~ g ~.
Another interesting experimental observation is

that the saturated conductivity o, + o, approximates
the conductivity one would expect if the CDW did
not form. As we discussed in Sec. IV, the umklapp
scattering with phasons is the dominant relaxation
mechanism, in which case the normalelectronand
the CDW are drifting at similar velocity. In the
dislocation model there is no particular reason to
expect this behavior and indeed one expects v, to
be much less than the observed value.

The temperature dependence of $, can be under-
stood qualitatively in the depinning model. As
discussed at the end of Sec. III, ~, is expected to
diverge near T, even though the precise exponent
is not known. Experimentally a t ' ' divergence
is reported. " Below' the 144-K transition 80 is
observed to rise slowly even after the order pa-
rameter has apparently saturated. This can be
explained by a temperature-dependent p,«as
given by Eq. (4. 12) arising from the temperature
dependence of the ratio v/v „.

One of the most puzzling features of the experi-
ment is the abrupt rise in g, around 25 K. An ex-
planation we would like to speculate upon here is
that around 25 K there is a lock-in between the
two apparently independent CDWs. The two CDW's
have wave vectors q, =(0, 0.243, 0) and q, = (0. 5,
0.263, 0.5). The harmonics 2q, and 2q, are al-
most identical up to a reciprocal-lattice vector
and indeed a weak harmonic has been observed
experimentally. " If 2q, = 2q, there will be a term
in the free energy &',~,*' which will tend to lock
the relative phase of the twoC.D&'s. Our specula-
tion is that this lock-in occurs at around 25 K
below which &, will have to move against ~,.
Since &, is pinned by a much larger electric field
we expect the depinning field to be dramatically in-
creased. This model will predict a weak anomaly
in the harmonic superlattice reflection around
25 K and that a field of several eV/cm which is
Jig enough to depin the 144-K CDW will depin the
CDW below 25 K. One unsatisfactory feature of
this picture is that it is difficult to explain why
the lock-in occurs only at 25 K when the order pa-
rameter has more or less saturated and does not
occur closer to the onset of the second CDW. .

If impurity pinning plays a strong role in the
conductivity of NbSe, as we have suggested, there
should be a correlation between the characteristic
depinning field g, and the concentration of strong
impurities. In the depinning model we would pre-
dict that g, should increase linearly with the strong
impurity concentration. Recently it has been
noted that g, are different for samples with dif-
ferent room-temperature to low-temperature re-
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sistance ratios. " However, the resistance ratio
is sensitive to both strong a.nd weak impurity con-
centration. As a result, a, quantitative correlation
is not possible. One possible test is to dope the
system with a small amount of charged impurities,
such as Ti. Our picture predicts that even a
small amount, of the order of one part in 10', will
greatly reduce the nonlinear conductivity.

To summarize we have studied the possible non-
linear conductivity mechanisms for moving CDW
in the presence of impurities. Those considera-
tions should be applicable to a,ll CDW systems,
including layered compounds. " However, to ex-
hibit an effect for modest electric fields requires
very pure samples. So far only. one system,
NbSe„exhibits nonlinear conductivity. An electric
fieM depinning of CDW is, to our knowledge, the
only viable explanation for the unusual behavior in
NbSe, . As we see in this paper the qualitative
features and the order of magnitude of the depin-
ning fields are reasonably accounted for. It will
be most interesting if the condensate can be made
to move in other CDW systems. We have already
seen that there is evidence that the SDW in chrom-
ium should be quite mobile; the problem is, of
course, that one- has to find means to couple to it.
In other CDW systems, tetrathiafulvalene-tetra-
cyanoquinodimethane (TTF-TCNQ) is not a suit-
able candidate, except perhaps for the narrow
temperature region between 48 and 54 K,""be-
cause the CDW on oppositely charged chains pro-
vide a periodic pinning potential to ea,ch other. In
KCP we expect a substa, ntial amount of pinning due
to disorder in the bromine sites, which leads to
the surprisingly high pinned phase-mode frequency
of =2. 5 meV. " The depinning field is expected to
be extremely large. A promising class of systems
is the TTF halides and tetrathiafulvalene-thio-
cyanate [TTF-(SCN)0»,]." However, disorder
in the halides and in the SCN may also lead to a
large depinning field. For the CD% in layered
compounds our dislocation picture needs to be
generalized to the state with three coexisting Q
vectors. The basic physics is expected to remain
the same and the layered compounds should be
promising candidates for drifting CD%. We should
mention the very interesting 4' layered com-
pounds, ' where the CDW are apparently uncorre-.
lated from layer to layer. In this case dislocation
pairs may be created thermally within each lay-
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Note added in Proof. Recent developments of
note are (i) the report by Ong and collaborators
[N. P. Ong, BuljAP S 24, 294 (1979)and N. P. Ong,
J.W. Brill, J. C. Eckert, J.W. Savage, S. K. Khanna,
and R. B.Somoano (unpublished)] that e, scales as
n', in samples doped with Ta in agreement with

Eqs. (3.1) and (3.2); (ii) the observation of a thres-
hold field in relatively pure NbSe3 by Fleming and
Grimes [R. M. Fleming and C. C. Grimes, Bull.
APS 24, 386 (1979) and unpublished] which is in
accord with the simple breakaway of the CD% as
a whole from the pinning centers discu. ssed in
Sec. VI; and (iii) the observation of similar non-
linear conductivity below the structural phase
transition in ZrV, and HfV2 by V. M. Pan, I. E.
Bulakh, A. L. Kasatkin, and A. D. Shevchenko,
Pis'ma Zh. Eksp. Teor. Fiz. 27, 629 (1978)
[JETP Lett. 27, 594 (1978)]. If our model is to be
applicable to ZrV„an incommensurate CD% must
be present also in this material, but to date no
such CDW has been reported to our knowledge.

In Eq. (4. 9) the first term corresponds to emis-
' sion of phonons and the second to absorption of
phonons upon a transition from k to k'. By a
transformation k —k' and we can show that the
two terms are equal. Hence

= 2 Q (v —v„)'W „6(E -E .—(g, )
AA'

x —(1+n, —f,, ) .a

aE (A1)

x [1+n„-f(E—(u„)]. (A2)

Let us first examine the low-temperature limit
T «h. Noting that 8f/8E restricts E to be of
order zero, we find the thermal factor [I+n»

f(E —&82')] of order kT/up~~ for Raz &kT and
exp(-&u»/T) for m»»kT. Further we note that
phase mode q is restricted to less than $,' and
&u, & +,. Thus if kT «u„only a fraction kT/v,
of the region in k space will contribute to the
sum. Even for wo & kT, only regions of the Fermi
surfa. ce within & of the gap will contribute, i.e.,
E,g 2b. Equation (A2) is then estimated to be

p„/7= (2g'/e~(u, )ET min(1, kT/(uo), (AS)

where I' is a geometric factor which is roughly
the area of the Fermi surface that is within 4 of
the energy gap

To estimate the order of magnitude of 7' we ob-
serve that ~,= sq, where s = (m/m*)'~'v~; the
phason velocity is much lower than v~ and we may
assume that for most of the scattering that con-
tributes to the sum, v~ =-v~= (/E, and that @ =2k.
The k sums can be converted to integrals over E
and E', and we obtain upon using Eq. (4. 7)

Pn 2 g' + +o
Eo (g), ~ PE.
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dE —,e(2~-E.)—
p B.

j-

where e is the step function. At low temperature

oq/T XET /QP0.

Next we consider the case near T„when & «T.
For the regions of the Fermi surface where g «T,
Bf/BE = PE, after we account for contribution for
the electron and the hol. e pockets. Just as the
estimatefor p, near T„ itisclear that p„/7'is
linear in ~ just by scaling the integrals (A2).
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