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Coherent locator approach to lattice vibrations in alloys with diagonal
and geometrically-scaled off-diagonal disorder
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A single-site coherent locator approach to lattice vibrations in alloys. with both mass disorder and force-
constant changes which obey geometric scaling has been proposed by Grunewald. We show that this theory
reduces to a virtual-crystal form for the special case of "equal" mass and force-constant changes, and that it
fails to give satisfactory spectral limits for one- and three-dimensional model alloys.

I. INTRODUCTION

Some years ago, a major advance in the theory
of alloys was made with the introduction of the co-
herent potential approximation (CPA). As orig
inally presented by Taylor for phonons and by
Soven' for electrons, the CPA was a single-site
mean-field theory for diagonal disorder only, that
is, for mass changes for lattice vibrations and
for random site-diagonal energies for electrons.
Changes in the interatomic force constants or
transfer integrals were not included in the CPA.

Subsequent to this early work, a number of
)methods were proposed to include off-diagonal
disorder within the framework of a single-site
CPA approach. For lattice vibrations, the pres-
ent authors' extended the CPA to include force-
constant changes as well as mass disorder for al-
loys in which the force constants superimpose lin-
early. In simple binary alloys of the form A,, 8„
the assumption of linear superposition is the so-
called additive limit, in which the AB force con-
stants are the arithmetic average of the ~ and
BB force constants, @»=-,'(4»+ @»).

Somewhat more work has been done to include
off-diagonal disorder for electrons in alloys.
Fukuyama et p/. presented the electronic version
of the CPA in the additive limit after the corre-
sponding treatment for phonons had appeared.
Earlier, Shiba described a single-site coherent
locator approach for the case in which the inter-
atomic transfer or hopping integrals scale geo-
metrically, @»= (@»@se)'~'. Blackman, Ester-
ling, and Berk' generalized the coherent locator
treatment to include arbitrary changes in the
transfer integrals. Perhaps the most general
single-site theory for electrons in alloys is the
muffin-tin CPA of Soven', this has only recently
been implemented by Stocks and co-workers, ' and
there is no obvious analog for phonons.

Except in the additive limit, ' it has not been
clear that the coherent locator approach can be

applied to lattice vibrations. As will be discussed
directly, the reason for this is that translational
invariance imposes an additional formal constraint
for phonons that is not required for electrons.
Grifnewald" has recently proposed a coherent lo-
cator treatment for lattice vibrations in the geo-
metric limit, i.e. , for the case in which the off-
diagonal force-constant matrices scale geomet-
rically. In Sec. II, we review the basic features
of Griinewald's theory, and describe how it re-
duces to analytically soluble equations for the
special case of "equal" mass and force-constant
changes and for disordered linear chains. Sec-
tion ID is devoted to comparisons between essen-
tially exact results for linear chains and those ob-
tained by using the coherent locator approach.
Conclusions and some results for three dimensions
are discussed in Sec. IV.

II. THEORETICAL MODEL

The problem encountered in attempting to extend
a single-site coherent locator approach to pho-
nons in alloys is that translational invariance must
be obeyed. Let C (I, l') be the force-constant ma-
trix connecting sites $ and /' in the alloy. Then in
order that no vibrations be excited in a uniform
translation of the crystal, the force constants must
satisfy the sum rules

C (I, I) = —g e(l, I') .

If there is disorder in the off-diagonai (inter-
atomic) force constants, '

then this is necessarily
reflected by changes in the diagonal (intra-atomic)
terms in the Hamiltonian. No such formal con-
straint is operative for electrons. In the additive
limit for phonons, Eq. (1) is satisfied automatical-
ly by appropriately defined perturbations associ-
ated with single sites. ' In general, however, and
in the geometric limit, it is not possible to rep-
resent the force-constant changes in the alloy as
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a sum of perturbations associated with single
sites.

In GrQnewald's coherent locator approximation
for the geometric limit, which we will call the
CPA-G, all of the correlations between off-diag-
onal and diagonal disorder which follow from Eq.
(1) are not included. Instead, Eq. (1) is used to
derive two sum rules for the configurationa1. ly
averaged Green's functions in the alloy. Imposing
these as additional constraints on the coherent
locator development leads to a closed set of equa-
tions from which the site-diagonal, CPA-G self-
energy can be calculated. We will give a very
brief outline of the approach in the next few para-
graphs.

The time transform of the displacement-dis-
placement Green's function, denoted by G(l, l', (d),
satisfies the equation

6(l, l')I

= g [M(1)(d'~(1, 1,)l -C(1,1,)] G(l„l', (d), (2)

where M(l) is the mass of the atom at site l, (d is
the frequency, and I is the unit matrix. Let A(l)
be any quantity which depends on the type of atom
which occupies site l, and N be the number of
atoms in the crystaL If we multiply Eq. (2) by
A(l')/N, sum over l. and l', use Eq. (1), and take
the configurational average, we obtain

As already noted, Grifnewald's two choices for
A,(l) are A, (l) = 1 and A,(l) = M(l), but in fact any
two (different) functions A,(l) of the site-occupa-
tion variables yield the same results.

For cubic crystals, the effective-medium
Green's function |"is defined in terms of a site-
diagonal, scalar self-energy e(~) and the host
force constants pe~'(l, II) by

4'~~(l—, l,)]' G(l„ l'; (g),

where I is the host mass. The self-energy in
turn satisfies the self-consistent equation

cb, c(h —e)
1-ca (1-cb)'

+
~
~((o)+,

i &(u))+1,~ ( &u'f((0) (9)
cb, ) - P+cd)

Here @=1—M,/M, b, =1 —X, and p=(1-c)/X —1.
The concentration of defects is c, and f(~)
= MG (0, 0; (d).

Consider now the special case of "equal" changes
in the masses and force constants, that is,

(3)

GrQnewald's Eqs. (2.16) and (2.17) are equivalent
to Eq. (3) for the choices A(l) =1 and A(l) =M(l).

With geometric scaling, the interatomic force
constants can be written in the form

e=6; . Mg/M=A. .
For this case p= 0, and Eq. (9) reduces to

0= [e(~)+ ce/(1 —c~)]

x {1+[~((d)+ ce/(1 —ce)](d'f((d)].

(10)

(4)

where X(l) =1 if there is a host atom at the site l,
and X(l) = X for a defect atom at l. Grfinewald's
coherent locator expansions for the four Green's
functions G, H, H, and E'(dispiacement-displace-
ment, displacement-momentum, momentum-dis-
placement, momentum-momentum} can be reduced
to an expansion for a single Green's function de-
fined by

9(l, l'; (g) = X(l)G(l, l', (d)&(l') ~

A mean-field CPA-like Green's function G(l, l; ~)
is then constructed by requiring that (Q(l, l'))
= G(l, I') for l= l', and that Eq. (3) be satisfied for
two choices of A(l):

By retracing the derivation of Eq. (9) for &= b, , it
can be established that the proper root to choose
from Eq. (11) is

c(~}= -cE/(1 —ct), (12)

which is simply a constant independent of ~. This
surprising result, which is true for one, two, and
three dimensions, can be confirmed analytically
for one-dimensional alloys. In one dimension,
as will be discussed shortly, Eq. (9) becomes a
cubic equation for e(~}. For c= b, , the expression
in Eq. (12) is a double root of this cubic equation,
and the third root, which is also real, gives a
vanishing alloy density of states for a11 u&.

Corresponding to the real self-energy in Eq.
(12}, the density of states for the alloy for e= b,
is found to be

G(0, 0; (g) = (9(1, l; (o)},
1 f( ( ))= (( „., (~(;,), (13)
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where v,«(~} is the density of states for the per-
fect host crystal of atoms of mass M coupled by
force constants C 'f'(I, l'). Equations (12) and (13)
have the same form as virtual-crystal results: the
self-energy is real, and the alloy appears like a
perfect crystal with (real) masses or force con-
stants modified from their values in the host. Pho-
nons in the alloy for the special case &= 4 are not
broadened, but have infinite lifetimes. The alloy
density of states given in Eq. (13) is that for a
perfect crystal comprised of atoms of mass M'
=M/(I-cc) and force constants C'«(l, l'). If ~,
is the maximum host-crystal frequency, then ~,'
= +041 —cE is the maximum frequency predicted
for the alloy. We emphasize that Eqs. (12) and

(13) are general results for the special case @=6,
and are not restricted to one-dimensional alloys.

For one-dimensional alloys with first-nearest-
neighbor interactions, the function f(~)
= MG(0, 0; ~) can be evaluated analytically,

(d f((d)
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FIG. 1. CPA-G (smooth curve) and exact results (his-
togram) for equal mass and force-constant changes,
&=4=1 —X. In these and all succeeding figures save
Fig. 7, results are plotted vs (co/coo)2, where coo is the
maximum frequency in the host crystal. All densities
of states shown are normalized to integrate to unity.

(14)
where ~,= [-44 "'(I, l+1)/M]'~' is the maximum
host-crystal frequency. Substituting this into Eq.
(9}, we obtain a cubic equation for the self-energy.
Once the proper root of this cubic equation for
Z(~) is chosen, the CPA-6 density of states can be
found directly, and compared with the results of
exact calculations.

III. RESULTS FOR ONE-DIMENSIONAL ALLOYS

In this section, we will quickly run through a
number of examples for disordered linear chains,
comparing the densities of states predicted by
Grifnewald's coherent locator approach with essen-

, tially exact results obtained by node .counting" for
chains of 10000 atoms. To provide additional per-
spective, a few examples of mass-defect and ad-
ditive-limit CPA calculations will also be dis-
cussed.

Figure 1 compares CPA-6 and exact results
for the special case of "equal" mass and force-
constant changes, e = 6 = 1 —X. The results shown
are for lighter mass impurities with reduced force
constants at a defect concentration of c= 0.4. The
CPA-6 density of states compares poorly with the
exact results: it is a virtual-crystal-like curve
in which the only effect of alloying is a change of
bandwidth to a value roughly 20% too low. Quite
similar results are obtained for heavier mass
impurities with increased forces for the special
case &=6.

Figure 2 compares CPA-6 and exact results for
force-constant changes only (@=0) at a defect con-
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FIG. 2. CPA-0 and exact results for force-constant
changes only.

centration of c = 0.2 for increased force constants.
In this example, the CPA-6 again yields a spec-
trum appreciably narrower than the exact results.
In addition, the CPA-6 curve has a peak where the
exact calculations show a valley between the host-
crystal band edge and the first impurity peak.

As discussed in Sec. I, the two special cases
of off-diagonal disorder for which extensions of
the CPA have been proposed for lattice vibrations.
are the additive and geometric limits. We have
been using CPA-6 to denote GrQnewald's coherent
locator approach for force constants which scale
-geometrically; the single-site CPA developed by
the present authors' to include additive force-con-
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stant changes will be referred to as the CPA-Fas
Figure 3 gives illustrative CPA-F results for com-
parison with the CPA-G results in Fig. 2. For
the example shown in Fig. 3, there are no mass
changes, the concentration is the same as in Fig.
2, and the force constants in the additive limit
are chosen to give the same pure-material band-
width as the geometrically scaled force constants
in Fig. 2:

elf. 1 2C'ua-" @aa- & C' s @aa- 4'aa- a(~ +1)@aa~

8

V)
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Although it underestimates the maximum frequen-
cies by small amounts, the CPA-F clearly fits
the observed bandwidth for the additive limit better
than the CPA-6 for the geometric limit. Further-
more, the peak in the CPA-F curve coincides with
the host-crystal band-edge peak in the exact re-
sults.

In Figs. 1 and 2, we have shown two cases for
which the CPA-G underestimates the alloy band-
widths. Figures 4 and 5 demonstrate that the CPA-
6 can also predict broader spectra than actually
occur. Figure 4 is for light mass defects with
reduced force constants at a defect concentration
of v=0.2. For this case, the CPA-G density of
states not only extends to frequencies which are
substantially too high, but also exhibits a peak
where none is observed in the exact results. Fig-
ure 5 is for heavy impurities with increased force
constants at a concentration of c=0.5; here, the
CPA-6 curve is featureless, and cuts off roughly
10% above the histogram of the exact results.

We have performed mass-defect CPA and exact
calculations for a single-band case like that in
Fig. 5, using the parameters c=0.5 as in Fig. 5,
X= 1 (no force-constant changes), and e= -0.183
to give the same pure-material bandwidths for the
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FIG. 4. CPA-6 and exact results for light-mass de-
fects with reduced forces.

two constituents (1 and 0.845) as in Fig. 5. The
mass-defect CPA yields a curve that runs smooth-
ly through the histogram of the exact results, with
the correct bandwidth and no spurious structure.

Figure 6 compares CPA-6 and exact results for
a case for which local modes above the host-crys-
tal spectrum are introduced by the impurities.
The CPA-6 fits the exact results reasonably well
in the frequency range of the host crystal, and
produces a broad, smooth impurity band typical
of the mean-field approach, but which ends just
below the last sizable peak in the exact results.
For comparison, we have also performed CPA
and exact calculations for an alloy with mass dis-
order only, but with the same pure-material band-
widths for the two constituents (1 and 3.38) as in
Fig. 6. We found that the impurity band in the
mass-defect CPA spans the peak missed by the
CPA-6 in Fig. 6, and the agreement between the
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FIG. 3. CPA-P {additive-limit CPA) and exact results
for force-constant changes only in the additive limit,
@da @fd ~ (od'4+ oaa) '

FIG. 5. CPA-6 and exact results for heavy impurities
vrith increased force constants.
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FIG. 6. CI'A-0 and exact results for light-mass de-
fects and increased force constants.

CPA and exact results in the host-crystal fre-
quency range is somewhat better.

IV. CONCLUSIONS

The single-site coherent locator approach pro-
posed by Griinewald for alloys with both mass
disorder and force-constant changes which scale
geometrically has a number of limitations. Like
other single-site CPA theories, it can at best give
only an approximate, overall picture of alloy prop-
erties, and cannot reproduce structure in spec-
tral functions arising from pair and larger cluster
correlations. However, unlike the CPA for mass
defects or the CPA-F which includes force-con-
stant changes in the additive limit, the CPA;G re-
duces to a virtual-crystal form for certain sets
of parameters (corresponding to "equal" mass and
force-constant changes) at all concentrations in
one, two, or three dimensions. From the results
for disordered linear chains shown in Sec. GI, it
appears that the CPA-6 also does a relatively poor
job of predicting alloy bandwidths, underestimating
noticeably in some instances, overestimating in
others.

There is another limiting feature of the CPA-6
treatment that we have not previously drawn atten-
tion to, but which should be emphasized. Because
the CPA-6 self-energy is site diagonal, it depends
only on the phonon frequency ~ and not on the wave
vector q; as such, it cannot be expected to lead to
the wave-vector or phonon branch dependence ob-
served in the coherent neutron scattering from
some alloys. "

The CPA-6 has been applied to phonons in
K,Rb, , alloys. " This is perhaps the most ex-
tensively studied system for lattice vibrations in
random alloys. Neutron scattering measurements

have been performed by Kamitakahara and Copley"
at potassium concentrations of c= 0.06, 0.18, and
0.29. Mass-defect CPA calculations have been
done, "as have CPA-F calculations including first-
nearest-neighbor radial force-constant changes in
the additive limit. " Molecular dynamics simula-
tions have also been carried out for K,Rb, „,al-
loys 16

We will not attempt to give a complete summary
of all of these studies, but will briefly touch on a
few important points. The experiments found a
quite distinct two-peaked structure in the neutron
groups at momentum transfers near the zone-
boundary wave vectors Q =(2v/a)(2. 5, 2.5, 0) and g
= (2v/a)(2, 2, 1). This structure was poorly repro-
duced by mass-defect CPA calculations. %hen
force-constant changes in the additiv'e limit were
included in CPA-F calculations performed by the
present authors, "the agreement with experiment
improved, but not to a completely satisfactory lev-
el. This led us to suggest that multisite scatter-
ing effects were important in the K,Rb, alloy
system.

The coherent locator or CPA-6 results" ap-
pear to fit the experimental data somewhat better
than the other single-site CPA calculations. For
scattering wave vectors g= (2v/a)(2+ f, 2+ g, 0) at
concentrations of t."=0.18 and 0.29, the CPA-G
(geometric limit) and CPA-F (additive limit) cal-
culations give comparable agreement with experi-
ment; the neutron scattering peak positions are
fitted reasonably well, but the calculated peaks
are not as sharply delineated as those observed.
For Q=(2v/a)(2, 2, g) at c=0.29, the CPA-G scat-
tering cross sections are in better agreement with
the data than the CPA-F curves, again giving rela-
tively good values for the peak positions but not
reproducing the distinct two-peaked structure ob-
served near the zone boundary. No CPA-G re-
sults are given in Ref. 13 for c= 0.06 or Q
= (2v/a)(2, 2, f) at c = 0.18.

By comparing with exact results for one-dimen-
sional alloys, we have demonstrated that the CPA-
6 theory for phonons suffers from several general
limitations. Figure 7 presents some evidence of
the limitations of the CPA-6 in three dimensions
in general and for K,Rb, alloys in particular.
For these results, a first- and second-neighbor
force model obeying geometric scaling was con-
structed following the procedure outlined by Grune-
wald and Scharnberg. " The K-K force constants
were taken from Fig. 1 in Ref. 13 at a concentra-
tion of c= 0.29, and the Rb-K and Rb-Rb forces
were then scaled geometrically from the K-K
interactions by factors of X= 1.28 and X'. This
differs from the force model used in Ref. '13 only
in the absence here of third- and fourth-neighbor
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F'fG. 7. CPA-G and recursion results for Kp. ppRbp, yt
with mass and force-constant changes corresponding to
those in Ref. 13. Note that results here are plotted
against v= co/2m (THE).

band rather than two or more separated by regions
of zero spectral density, the recursion method
provides an accurate description of the major
spectraL features, particularly of the band lim-
its." Figure 7 illustrates two of the deficiencies
attributed to the CPA-G theory at the outset of
this section. First, the CPA-6 bandwidth is
noticeably too broad. Second, the CPA-6 gives
only a broad shoulder in the local-mode region,
while recursion shows that the local-mode peak at
p-1.75 THE is the most prominent feature of the
spectrum. As we have noted previously, "the in-
ability to reproduce sharp structure in spectral
functions is a characteristic feature of single-site
mean-field approaches, which indicates the need
to adopt more sophisticated analytical. methods or
to move toward brute-force calculations to incor-
porate the cluster-scattering and local-environ-
ment effects absent in the single-site theories.

interactions.
The dashed curve in Fig. 7 is the CPA-6 den-

sity of states for the model Kp 29Rbp g alloy, while
the solid line gives results obtained by the recur-
sion method" for 400 clusters of 4641 atoms. For
single-band cases, that is, for situations where
the spectrum of excitations forms one continuous
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