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The condensation of a metal M onto a metallic substrate F avoids the formation of islands and yields a
homogeneous structure of M. The theory of the geometrical size effect in such a sandwich is developed and
magnetic field effects are included. The size effect in sandwiches allows a series of new and informative
experiments. Three experimental examples are presented in which Cu, Pd, and In are quench condensed
onto an amorphous substrate at He temperature. The conductance of these films follows the theory exactly,
which suggests that they possess a homogeneous structure. The experimental data yield both the mean free
path [ and the product p [ for Cu, Pd, and In, where p is the resistivity.

I. INTRODUCTION

The mean free path of the conduction electrons
plays the dominant role in the transport proper-
ties of metals. Therefore several experimental
methods have been developed to determine the
mean free path. They are collected under the name
“size effects.” A detailed discussion of these size
effects: cyclotron-resonance, anomalous skin
effect, geometrical size effect is given by Cham-~
bers.! In this paper we want to consider the geo-
metrical size effect. One usually investigates a
metallic film or foil whose surface scatters the
conduction electron more or less diffusely. For
thick samples the effective film thickness is re-
duced by 37 (I is the mean free path of the conduc-
tion electrons) due to a diffuse scattering at both
surfaces. For thin films the conductance depends
much more sensitively on the ratio D/I. Unfor-
tunately, the application of the geometrical size
effect is often problematic. On the one hand, it is
difficult to prepare a film which is both thinner
than the mean free path and homogeneous. It is
difficult to avoid the formation of islands. On the
other hand, one has for thick films the problem
that the structure changes with increasing film
thickness.

We are going to consider in this paper a mod-
ified geometrical size effect, which offers several
advantages. We condense the metal of interest
M on top of a metallic substrate F. This avoids
in most cases the formation of islands. In addition
one can vary the substrate and can choose, e.g.,
an amorphous metal or a ferromagnet. This al-
lows, as we-shall see later, quite new and inter-
esting investigations. :

In Sec. II we present the theoretical model and
its evaluation. We discuss the broad spectrum of
possible applications. In Sec. III we show experi-
mental results for Cu, Pd, and In films which are
quench condensed onto an amorphous metal at He
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temperature. The experimental results demon-
strate that these films have a homogeneous struc-
ture and allow a determination of ! and pl (p is the
resistivity) which contains the area of the Fermi
surface.

II. THEORY

We consider the following sandwich which is
sketched in Fig. 1. The semi-infinite metal F fills
out the half-space z < 0. It is covered with a film
of .the metal M in the region 0<z <D (D is the
thickness of the metal film M), Later on, we ap-
ply a magnetic field B perpendicular to the film
plane in the z direction. For the calculation of the
conductance we make the following assumptions:
(i) the conduction electrons in both metals are
free and possess the same Fermi momentum,

(ii) the conduction electrons are diffusely scattered
at the upper surface of M, and (iii) the conduction-
electron wave is damped by a factor of » when it
crosses the interface between F and M in either
direction. We make the last assumption in order
to be able to also treat the case when two metals
with a rather ideal structure possess an interface
with structural disorder. » describes the trans-
parency of the interface for conduction electrons.

In calculating the conductance of this inhomo-
geneous system (in square geometry) we use the
vector mean-free-path method as described by
Chambers.! As in a simple metal the Fermi dis-
tribution function of the conduction electrons is
changed by the application of an electrical field:

9
r7@ =7 8- () asz. W
Here A&y is the energy that the conduction elec-

tron k gained on its path through the metallic sys-
tem:

A8p=eB Az, @)
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z<0
t=0

FIG. 1. Sandwich of the semi-infinite metal F (z<0)
and the metal film M (0 <z < D) of thickness D. The vec-
tor mean free path '):g for conduction electrons with dif-
ferent momenta k at one position is__drawn, as well as
the path of one conduction electron k.

X; is the vector mean free path of the conduction
electron with momentum k, i.e., the path that the
conduction electron k traveled (without collision)
before it reached the position ¥. It is drawn in
Fig. 1 for one position and different k.

We need in the following calculation only the x
and y components of the vector mean free path
and denote them by the complex mean free path
A=A, +ix,. It is calculated in the Appendix. We
have to distinguish four different cases: z 2z 0 and
v,2 0. We obtain

Aole < 0,0,< 0) = [t - exp(=z] /rg o )]
+r1f exp(=|z|/7e [0F])
x[1 - exp(~D/7,lv¥])],
Aelz < 0,v,>0)=IF |
Aoz > 0,2,< 0)=1#{1 - exp[—(D -z)/7,lv|]},
A (2> 0,v,> 0) =11~ exp(-z/7,0)]

(3)

+7If exp(—z /7,0Y),
where
1UF =¥ F gy o =081y, pe'?,
vp= (V2 + vﬁ)l/z, tana =v,/v, .

Now we can easily calculate the energy shift of
the conduction electrons due to an applied electri-
cal'field E= (g, 0, 0) in the x direction. One ob-
tains the conductance in square geometry (not the
conductivity) by integrating over the Fermi sphere
of M and F and over the z direction. The contri-
bution of the metal film M (0<z < D) is

. e? b o
Lg’=L,‘:§+1L$=Zﬂ_3—h,j; ’dzj;ldSKc(Z,vx)kE,

(4)

where %, = (£+ £) =sinfcos¢, and 0 and ¢ are the

angles in the polar coordinates. The contribution
of the metal F to the conductance is obtained in the
same manner. The integrations over z and ¢ can
be easily performed and there remains only an
integration over u =cosf. For a comparison with
the experiment we are only interested in the change
of the conductance due to the second film M. We
obtain after a straightforward calculation for the
change in the (complex) conductance:

L.=A1,D-1BT(D/l,)+5vll-T(D/1,)]

+Aps7 Lz T(D/1,) , (5)
where
2k2 2
= € = —-———e
Arw™ 3~ Tarth oru

(S being Fermi-surface area) and
3 1
T()=5 [ du@ -t =em/),
1]

dr(s) _

75 - b T(»)=%.

One can easily understand this expression for
the changes in conductance due to the film M. K
we set7 =0 then the conduction electrons cannot
cross the interface. The additional conductance,
proportional to 1,D - 4T(D/l,), is justthe result
obtained by Fuchs? for the conductance of a thin
film. The third term describes the change of con-
ductance which is due to those conduction electrons
which passed through the interface from F to M.
The fourth term is due to those conduction elec-
trons which passed through the interface from M
to F and changed the conductance in F. Therefore
it is proportional to A,. Although we assumed in
our model that the Fermi momenta %k, and 2, are
identical, we distinguish them in order to demon-
strate the origin of the change in conductance. If
one condenses the same metal, M=F, on the me-
tallic substrate with identical properties, then one
hasr=1 and k), =k;. Then the third and fourth
terms compensate for the second one, and the
change in cdnductance is, as it has to be propor-
tional to the thickness. Those conduction elec-
trons, which flow from F into M, originate from a
thickness I in F and propagate in M over a dis-
tance which has about the minimum value of 7, or
D, and which is of the order of I,T(D/l,). Its con-
tribution to the conductance is therefore propor-
tional to 31,1,T(D/1,).

If we want to generalize the calculation for the
presence of a magnetic field B in the z direction
one has to replace the mean free path I by in
both metals with

iM,F = lu,p/[l - i(w"')u,p] s
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where [, and [, are the usual scalar mean free
path and (wr), - are the Hall angles in M, F,

If the metals F and M have different Fermi mo-
menta a contact voltage occurs at the interface
and the direction of the velocity is changed after
the penetration of the interface. This problem
requires, in principle, a new calculation. One
might obtain an approximate description by using
the individual Fermi-surface areas and by adjust-
ing the transparency 7 to the experimental data.

We now suggest some applications of the size
effect in sandwiches.

(a) Transparency at the interface. I we evapor-
ate first the metal F, its conductance increases
with the slope A l.. I we continue with the metal
M, the conductance grows further with the slope
37 (A, +Ag)ly. Therefore, such an experiment
enables us to determine the transparency of the

. interface. .

(b) Amorphous substvate. I we use for the first
film an amorphous metal, its mean free path is
of the order of a few angstroms. Therefore, the
contribution of electrons passing the interface is
very small (~Iz). Any uncertainty of 7, I, or A,
is not relevant and one obtains almost the results
of an isolated film with well known corrections.
The great advantage of such an experiment is the
avoidance of islands on top of the amorphous film.
We are going to present such experiments in Sec.
IIL

(c) Anomalous Hall effect. We may use for the
first metal a ferromagnet which possess an anom-
alous Hall effect. For a ferromagnet the anom-
alous Hall angle corresponds to an internal field
of megagauss proportions. This again causes in
the second film M an anomalous Hall conductance
proportional to

%V (AF +A y)lplu(wT)FT(D/lu) ’

where (w7)p is the Hall angle in the ferromagnet.
Such an experiment allows the direct determination
of the mean free path [, and will be published else-
where.?

III. EXPERIMENT

We now give one example for the usefulness of
the sandwich size effect. It is often claimed that
the structure of a quench-condensed film is very
inhomogeneous as a function of thickness.* We
want to demonstrate for three examples that under
optimal evaporation conditions: metallic sub-
strate, ultrahigh vacuum, and constant evapora-
tion rate, the structure is so homogeneous that
the conductance of the quench-condensed film ac-
curately follows the theoretical formula, yielding
the correct product p*I. We evaporate Cu and
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FIG. 2. Change in conductance due to Cu and Pd quench
condensed on top of an amorphous metallic substrate is
plotted as a function of thickness. The full curves are
calculated according to Eq. (5), and yield the values 1
and (p2)™1.

Pd on top of an amorphous film. Since we want to
condense the metals in several steps we need very
good vacuum conditions. We use an apparatus
which we described recently® and which has a
vacuum of the order of 10~!! Torr. In this appara-
tus the substrate (a quartz plate) is at 10 K, We
condense amorphous Fe with a resistivity of 1.00
x107° @ m which corresponds to a mean free path
of about 6 A. On top of the amorphous Fe, we
condense in several steps the metal M of inter-
est. The thickness is measured with a quartz
balance with an accuracy of 0.1 A. Figure 2 shows
the increase of conductance with increasing film
thickness for Cu and Pd. The full curves are
calculated according to Eq. (5). We assumed A,
=A, which is reasonable because the number of
conduction electrons is about one for the three
metals. We setr =1 (transparency approximation).
By extrapolation of the linear part of the curves
towards zero we obtain § (I, — ). This yields for
lcu=48 A. Together with the linear slope of the
curve we obtain (pl)gl=Ac,=1.45%10% Q"1 m=2,
Chambers® gave for Cu the value (pl)gi=

=(1.54£ 0.05)x 10'% Q' m~2 while the free-electron
value is 1.52X10'5 @-'m~!, Since A = (e?/127%%),

S is proportional to the Fermi-surface area and
the latter is reduced in Cu compared with the free-
electron sphere—this result appears very reason-
able. We state that the agreement between experi-
ment and the theoretical formula is excellent,

the parameter pl agrees well with otherwise de-
termined values, and quench-condensed films have

a homogeneous structure.
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For Pd we obtain lpa=47 A and (pl)3L=Apg=0.79
x10® @ 'm~2, From A we obtain the Fermi-sur-
face area. It corresponds to a free-electron
sphere with z =0.5 conduction electrons per atom.

For the Cu film we examined whether the upper
surface scatters the conduction electrons diffuse-
ly. We superimposed the total Cu film with amor-
phous Pb, Bi,,. Now we expect that the surface
scatters completely diffusely. Indeed the con-
ductance was reduced by 7x10~% Q~%, This is the
conductance of a Cu film of 1 A thickness and cor-
responds to a specular reflectance of 10%.

For Cu and Pd the mean free path was rather
small and most of the experimental data were such
that D> I,. Figure 3 shows the experimental re-
sults for the other extreme case. For In we find

a good fit between experimental data and the theory

if we set 1;; =240 A and Ay, = (pI)71=1.03x 10
©~'m™2, which is about 55% of the free-electron
value. This is in good agreement with the value
by Lyall and Cochran” who obtained (0.90x 0.16)
x10'® Q-'m~2, The theoretical curve agrees
exactly with the experimental data points. Be-
cause of the restricted thickness region (D< I1a)
one obtains also a good agreement if one changes
l1a by 5%. In this experiment the mean free path
of M is that much larger than in the amorphous
substrate that one can neglect any influence of the
substrate.

If one quench condenses a metallic film onto a
nonmetallic substrate, the first layers have a
strongly reduced mean free path (in addition to
the formation of islands). Our experiments ex-
clude such an inhomogeneous structure. If we
assume, for example, that in the first layer of M
with a thickness [, the mean free path is reduced
by a factor of 2, this would shift the asymptotic
straight line at large thicknesses by ~31,. Apart
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FIG. 3. Change in conductance due to In quench con-
densed on top of an amorphous metallic substrate is
plotted as a function of thickness. The full curve is cal-
cula::ed according to Eq. (5), and yields the values ! and
(o),

from the difficulty in fitting the total experimental
curve by a theory, this would produce a (false)
mean free path of about 2/,,. The good agreement
between our experimental results for pl/ and the
otherwise obtained values demonstrates the ab-
sence of an inhomogeneous structure.

Bassewitz and Minnigerode® investigated metal
films quench condensed onto a quartz substrate
at He temperature in a vacuum better than 10-°
Torr. They concluded from their experimental
results that several layers of adsorbed gases were
condensed between the quartz plate and the film.
In addition, the structure of Cu, for example, was
found to be porous. Obviously we can avoid these
problems by means of a freshly condensed metal
surface as substrate and the ultrahigh vacuum.

IV. CONCLUSION

We have suggested the investigation of geometri-
cal size effects in sandwiches. A theoretical mod-
el calculation is performed. This method avoids
the serious difficulty of island formation during the
condensation of the film. Several new applications
offer (a) the investigation of the transparency of the
interface between two metals, (b) the use of amor-
phous metals as substrate, and (c) the direct ob-
servation of the penetration of conduction electrons
from a ferromagnet into a normal metal due to the
anomalous Hall effect in the ferromagnet. .

For the examples of quench-condensed Cu, Pd,
and In films, it is demonstrated that these films
possess a homogeneous structure. The meanfree
path and p! are determined.

APPENDIX
Acgording to Chambers the vector mean free
path A3 is given by

A= fw Gehgdt. (A1)

Here (V(t); is the average velocity at time ¢ of an
assembly of electrons all of velocity Vi at £=0.

In the absence of a magnetic field the average
velocity is given by

Gz v em(- ['-2). (a2)

Ty

7(u)i is the relaxation time that the conduction
electron k experiences at its position at the time
u. It is equal to 7, in the metal M or 7, in the
metal F, respectively. At the upper surface of
M, 7=0. V(¢); is the velocity of the electron at
the time ¢ if the conduction electron does not ex-
perience a collision in the time interval between
t and 0. The exponential increase of V()i for
t< 0 with time ¢ has the physical meaning that the



amplitude of the electron wave, which has the mo-
mentum k at the position T and the time £=0, in-
creases at negative times because other conduc-
tion electrons are scattered into the state k. Since
the physical situation and the mathematical analy-
sis are discussed in detail in Ref. 1 we restrict
ourselves to this short summary.

We now have to determine the vector mean free
path of the conduction electrons in the sandwich.
It is a function of the position and the velocity.

We consider first the case without a magnetic
field (B=0). One has to calculate four different
situations which are determined by the conditions
z>0o0rz<«0, and v,>0 or v,< 0. We perform the
calculation explicitly for the most complicated
case z<0,v,<0. In Fig. 1 the path of a conduction
electron is plotted which is located at the time
t=0 at a position z < 0. It crosses the interface

at the time t,= —|z| /|vf| and started from the up-

per surface at the time ¢, =-D/|v¥| - |z|/|vf]. The

0
A(2<0,0,< 0)=f dtvh ex
to

D

lz | :
=F l—exp(— ] ‘+rl$’ exp(—

19 SIZE EFFECT IN METALLIC SANDWICHES 3937

% and y components of the velocity v,(t) =v,(?)
=0, () +iv, () =v,e** are given by®

M
vc(t)={v" for tp<t<t, (A3)
vf for t,<t<0.

(We distinguish between v¥ and v” although they
have the same value in our model.) Therefore,
we obtain for @ (t)) ={ v, () +i{v ()

t t—1
M : -0 ..z ‘0
(v, &) = G eXp<m+Tp ¥ TH )’ <t

vh explia +1/1,), to<t<O0.

(A4)

The factor » expresses the partial reduction of the
electron wave by crossing the interface. Now we
obtain the vector mean free path X; for the con-
sidered conduction electron. We calculate the x
and y components from A: A, =X +iX,

i ‘ t—1t
p(ioz +—t-)+v f ° dtvﬁ’exp(ia vy ——-°—)
Tr /' ¢ e Tu

n‘@lﬂ )1 -e (‘ %) I (A5)
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