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Correction to Fuchs' calculation of the electrostatic energy of a Wigner solid
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In 1959 Plaskett found an error in Fuchs' calculation of the electrostatic energy of a Wigner solid and .

calculated the additive, lattice-dependent, correction term for the three cubic lattices. We extend his theory
to treat any Bravais lattice in one, two, or three dimensions, showing that there is no correction term in one
and two dimensions. For the simple hexagonal lattice, we calculate the correction term as a function of
arbitrary r = c/a ratio and find it has a minimum value at r =- r = (5/6)"". The magnitude of the
correction A to Fuchs' value S can be 20% or more of ~S~, and ~A., —Ab„~ is much larger than

~Sf Sb„.~. If sph refers to a spherical approximation, we find A,» &Ab„&A„, &A,„(min) &A„&A,„
(ideal), where ideal refers to r, = (8/3)'" and sh and sc mean simple hexagonal and simple cubic,
respectively. The A„„reported by Callaway in another connection is incorrect.

I. INTRODUCTION

The widely used. method of Fuchs for calculat-
ing the electrostatic energy of a Wigner solid con-
tains a serious error; this paper supplies the
"correction terms" for three-dimensional Bravais
lattices and shows there are no correction terms
for one- and two-dimensional Bravais lattices. In
three dimensions, the correction term may contri-
bute a 20% or more change in the Fuchs value, but
more important than its magnitude is its structure
dependence, making it especially important in con-
sidering competing lattices. It is intimately relat-
ed to an average potentia. l, which arises elsewhere
in solid-state theory and has been evaluated incor-
rectly by Callaway3 in one case.

A Wigner solid is a theoretical model formed
from one or more point charges per unit cell with
a uniform neutralizing background of charge. Its
early uses were directed toward electron (or hole)
lattices and metallic hydrogen representations,
with Fuchs" work being 43 years ago. But inter-
est has continued in it, especially in the last two
decades, as representations of many phenomena
including inversion 1.ayers near the surface of
semiconductors, an electron crystal slightly above
a free surface of liquid helium subjected to a per-
pendicular electric field, white dwarf stars, and
crusts of pulsars. There is a great deal of litera-
ture on the subject; perhaps the papers listed in
Ref. 4 suffice if one includes the references given
by them. One might first refer to the work quoted
there of Maradudin et al. ,

'"' ' ' Carr et al. ,
'"

Foldy, ' ' Care and March, '" Ashcroft et al. ,
"' "

de Wette, ' Herring and Hill, '" and Dyson. '" Un-
fortunately, our most important reference is to
unpublished work, namely, that of Plaskett' who jn
1959 uncovered the error and calculated the cor-
rection term for the three cubic lattices. We Shall

extend his work to treat the noncubic Bravais lat-
tices in three dimensions and to treat the one- and
two-dimensional Bravais lattices. With our Appen-
dices, we independently check (and verify) Plas-
kett's evaluation of the cubic terms, which arise
elsewhere in solid-state theory and for which
Callaway's result for the body-centered cubic is
in error. We give the correction term, for simple
hexagonal with arbitrary c/a ratio as a prototype
of a noncubic Bravais lattice and as an example
showing how the term varies as the lattice is de-
formed,

Consider a periodic charge distribution construc-
ted as follows: I et point charges be placed on the
lattice points of an rt-dimensional (n =1,2, 3) Bra-
vais lattice (rI embedded in a three-dimensional
Euclidean space, and let there be a neutralizing
uniform background of charge confined to the n-
dimensional manifold. This we refer to as aWig-
ner' solid. The electrostatic energy of one point
charge interacting with all other point charges and
with the background is given by

where 0 is the "volume" per lattice point, Q is the
value of the point charge, and the cellular integra-
tions are taken over proximity or primitive
cells, with which not being specified yet. Al-
so not yet specified are where the lattice point is
located within a cell and the order in which the
lattice points will be covered in the summation.
For an arbitrary choice of these unspecified items,
in general one does not have absolute convergence,
and therefore K is not uniquely defined. If one
ignores this fact and without careful analysis ap-
plies the 8-function method (TFM) of Ewald, one
will have followed the Fuchs procedure and will
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conclude as he did that K is equal to the well-de-
fined quantity we denote with S,

1
S =- Q' Q' exp(-x7') ———

~

dx
~ex Q g )

n/2 I

=Q' — —
~

— ' exp(-y2 j4x) —1 dx
~wx

OO

)
(n-$/2

0

K=S+A, (1.3)
I

where the "correction term" A for these lattices
is given by

A= W, W=— r'd'r, (1.4)

where the integration is takenover acenteredprox-
imity cell of the 7 lattice; hence A is lattice depen-
dent.

For absolute convergence in Eq. (1.1}we need
the charge in one cell to satisfy three conditions
for three-dimensional lattices: (i} be neutral
(which is automatically satisfied in our model);
(ii} have no dipole moment (which is satisfied for
centered cells, either proximity or general primi-
tive); and (iii) have no quadrupole moment. Cen-
tered proximity cells for the cubics have no quad-
rupole moment, but even for centered proximity
cells the general three-dimensional Bravais lat-
tice has nonzero quadrupole moments. These facts
permit us to understand that correction terms
should exist, and it is also possible to state with-
out going into details how the A term is lost in the
Fuchs procedure.

Imagine that for a given lattice one has chosen
two different cells (for the cellular integrations)
leading to two different values of K as defined by
Eq. (1.1). Then clearly both of these cannot be
equal to S, which is independent of the choice of
cell. This tells us that some correction to S is
necessary, although it does not tell us that it may
be expressed as an additive quantity. Thus we
should expect some modification of Fuchs's result
K=S for the noncubic Bravais lattices with cen-
tered proximity cells, which would be lattice de-

x g ~xg(-vr') —
4 .„)dy, ((.2)4' ""

where {pQ is the reciprocal lattice normalized by
exp(iy f) =1. This maybe evaluatedby the TFM."
However, as Plaskett '~ showed, it is incorrect
to equate K and S, even for the cubic lattices where
with centered proximity cells one has absolute con-
vergence in Eq. (1.1). In particular, Plaskett
showed for the three cubic lattices that

pendent. Whether or not the cubic lattices with
centered proximity cells should also have a modi-
fication might not be clear at this stage.

How is the A lost in the Fuchs method'? In apply-
ing the TFM to Eq. (1.1), at a certain stage one
would like to interchange the order of an integra-
tion and a summation, which, if done, leads to a
loss of A. In Plaskett's work and in our exten-
sions, the orders are still reversed so the TFM
can be applied, but a correction term is found.

The correction term A can be quite large, 20%
or more of S, but of more significance in studies
of competing structures is the fact that the differ-
ences between the A's for two different structures
can be many times larger than the differences be-
tween t.he S's.

For one- and two-dimensional Bravai. s lattices,
conditions (i) and (ii) above are satisfied by use of
centered proximity cells, and that is all one needs
to ensure absolute convergence. Conceivably there
might still be a nonzero correction term, but we
shall show there is not any. Thus, for example,
the paper by Coldwell-Horsfall and Maradudin4'"
is in error, but that by Bonsall and Maradudin
does not contain this error.

The TFM applied to the particular problem of '

evaluating S is detailed in an appendix of the paper
by Coldwell-Horsfall and Maradudin, ' where they
evaluate S for the three cubic lattices. More re-
cently, Foldy ' has evaluated S to ten significant
figures for cubic lattices and for hexagonal close
packed (non-Bravais} and slightly deformed body-
centered cubic and hexagonal close packed. By
the procedures of this paper, the A for any Bravais
lattice may be evaluated fairly easily to any de-
sired accuracy, but we do not here report on an
A for a non-Bravais lattice.

In Appendix A we outline Plaskett's proof of Eqs.
(1.3} and (1.4) for the cubic lattices. In Sec. II we
extend Plaskett's work to secure the analogs of
Eqs. (1.3) and (1.4) for noncubic Bravais lattices
in three dimensions. In Sec. III we treat the one-
and two-dimensional Bravais lattices. In Sec. IV
we discuss our results with the aid of two tables,
with the first table giving results of a study of the
correction term for several lattices and the second
table giving results for A, S, and K for an elec-
tron lattice on the three cubic lattices.

II. CORRECTION TERM FOR GENERAL
THREE-DIMENSIONAL BRAVAIS LATTICES

We now extend the methods of Appendix A for
the cubic lattices to treat a general Bravais lat-
tice P). Again we define If' by

(2.1)
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As discussed in Sec. I, for absolute convergence
in Eq. (2.1) on three-dimensional lattices we need
the charge in one cell to satisfy three conditions:
(i) be neutral; (ii) have no dipole moment; and (iii)
possess no quadrupole moments, with all three
being satisfied for cubic lattices with centered
proximity cells. The problem with the noncubic
Bravais lattices is that even a centered proximity
cell in general gives nonvanishing quadrupole mo-
ments, yielding conditional convergence in Eq.
(2.1) and nonuniqueness in the definition of K. (Nev-
ertheless, it will be noted that however the limit
in the summation is taken, at each stage the total
charge associated with the finite sum is neutral. )

For the general Bravais lattice we fix the defini-
tion of K in two steps. First, we use centered
proximity cells, and, second, we specify that the
v' lattice be covered by summing first over points
within a finite radius and thereafter letting the ra-
dius of the sphere go to infinity. This definition
provides a consistent basis for comparing any set
of "competing" Bravais lattices for two reasons:
(a) It is consistent with the unique definition we al-
ready have for the cubic lattices; and (b) if a non-
cubic Bravais lattice is gradually deformed until
it becomes a cubic lattice, its K value smoothly
changes to that of the appropriate cubic value.
This leaves open the question of how to define K
consistently for a set of lattices in which some of
the lattices are not Bravais, say the set containing
the face-centered cubic and the hexagonal-close-
packed lattices.

b,(t) =- exp(-to 2) x [t 2(x o')2t2]dox. (2.2)

With this new definition we still have an equation
like Eq. (A14) holding, namely,

K=Q'Q' Jt a,(t)dt
0 7ft

Q' P' f — (e, —()dt tQ'+P 'C„
0 Vt

(2.3)

C, —= b, (t)dt,
0

(2.4)

but, unlike Eq. (A14), here the last term in Eq.
(2.3) is not zero in general. Nevertheless, ana-
logs of Eqs. (A16)-(A21) hold, giving finally

K=8+I,

L=——Q f Q (t,(t)+Q Q'C„

with S still given by Eq. (A23) or Eq. (1.2).
To simplify I further, we use the identity

t —2(x o')'t'=t —,' 7't'+-', t2[7' —-3(x f)'],
yielding

(2.5)

(2.6)

(2.V)

We now have a task in analysis slightly more
difficult than that of Appendix A. This arises from
the fact that the second equation in Eq. (All) does
not hold for noncubic Bravais lattices, and b, (t) is
defined differently, namely, by

L=—Q P'exp( —tl') — x d'x)(t-',xt )dt-
o vent, ~o

2 oo) co
0 Q2 g'exp( —tx)— x {x —p{d x) ]dtxdt+Q p ~ —fx dx)exp( tx )(t' xttt)—dt, -

o ~t, f~o, , ~~&

oo oo 2

+ oQ' Q' ——exp(-to') — x'[o' —3(x o)']d'xdt.
~mt ~ o

(2.8)

By the arguments of Appendix A, the first term in
Eq. (2.8) becomes

the final result
K =8+A, (2.11)

A= 8', W=- — r dr,2' 1
(2 8)

and the third term vanishes. Denote the sum of
the second and fourth terms by oQ 4, giving

(

L =A+-', Q25. (2.10)

We shall next show that 4 vanishes, which will give

which is identical to our result for the cubic lat-
tices.

The summand-integrands of the two terms mak-
ing up 4 are identical, but the orders of the t in-
tegration and the 7' summation are 'reversed in the
two. In both terms we spbt the domain of t into
0 & t & 1/4c and 1/4c & t «, schematically denot-
ing it by writing
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(2.12)

yielding
1/t'4C t2

2 17' exp(- tr')—
Mmt

x „x'[1—3(x ~)']d3»dt

Then we note that the second and fourth terms of
Eq. (2.12) cancel, because it follows from the
Weierstrass test for uniform convergence that

1/4c t2
2 1+ g' 7' exp(-tv')—

wt g'r

r g ' 7'2 exp( t7' ) -— x [1—3(x. v ) ]d~x dt
t/4c W17$ 0 1 —3 x ~ dsxdt. 2.14

p

t'v'
exp(- tv')—

i/4c mt

x x'1 —3x 7. ' d'xdt,
p

(2.13)

For use in the second term of Eq. (2.14) note that

f /4c
lim t exp(-tr ) dt =0.
g~ oo

The f jrst term of Eq. (2.14) can be rewritten with the aid of the Poisson summation formula
oo

1 1 (m't "2
r2[1 —3(x r)2] exp(-t& ) =~ —(—"

l

' y'[3(x y)'- 1]exp(-y'/«)
4t 0 (t )

(2.16)

to give

Pf/44. 1 1 oo

jl ~— »2 g'y2[3(x y)2 —1]exp(-y /4t) d3xdt
p t p

t»2+'y2[3(» y)2 —1) exp(- sy2) d3xdsg,
x'g 'y'[3(x y)' —1] exp(-sy')dsd'x

»2+ [3(»'y)2 —1]exp(- cy') d'x,0 p

(2.1V)

which vanishes as c approaches infinity. Thus 4
equals zero as required to complete the proof of
Eqs. (2.11) and (2.9), which are identical to Eqs.
(A22) and (A30), respectively, found by Plaskett
for the cubic lattices.

with the integrations taken over cells in the plane
of the lattice. For absolute convergence here we
need

(3.2)

III. CORRECTION TERM FOR ONE- AND TWO-

DIMENSIONAL LATTICES

First consider a two-dimensional Bravais lat-
tice PY'], embedded in a three-dimensional space,
with an area 0 per lattice point and with a recip-
rocal lattice Q normalized by exp(4y ~ 7) =1. Again,
let point charges Q be placed on all lattice points
and let there be a uniform neutralizing background
of charge. Continuing the analogy, write exp t~2 d2~ dt (3.3)

for which it suffices for the domain of integration
to be a centered cell, proximity or primitive. Ac-
cordingly, with it understood in the rest of this
section that all cellular integrations are taken over
centered cells, we turn to the task of modifying
the analysis of Appendix A and Sec. II to treat our
two-dimensional case.

'7he proof of the lemma

Cgg, (I 1 f d'
'l~ 0' f d'd

(3 1)
is identical to that for the lemma of Eq. (A3). Fol-
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lowing Eq. (A'7), we write

K=K-—,K= a t dt, 3 4

a,dt & (r —2dr -d )
~pg, )r

' r r /

r
a,(t) —= exp(-tr2) ——J exp(-tr 2) d2r, (3.5)

(3.12)

which is as small as we want as required giving

%here we would like to invert the order of summa-
tion and integration in Eq. (3.4). Equation (A10)
also gives for two dimensions

a, (t) =- exp(-tr2)

'a, t dt
p 7/t

1 r 2 1exp(-«) —— exp(-tr2) dt,
Wit 0

(3.13)

2x ft xt™dx. (3.6)

~a (t) ~& epx(-t r)2[ epx( d2r+ dt) —1 —2drt], (3.8)

which is information we now use to show that the
orders of summation and integration in Eq. (3.4)
can be inverted. To prove it, we write

From here the two-dimensional lattices gives. rise
to a few differences.

For centered cells, we have

lx 7'd x=0. (3.V}
0

Thus, if d is the maximum value of
~
x

~
within the

centered cell containing the origin,

1 fv& ' exp(-y2/«) —1
p vent Pit &

' exp(-sy ) — ds. (3.14)
4m

" 1 (", , Ag
a 0 44ws 4m's

Thus, for all two-dimensional Bravais lattices
K equals S and there is no correction term.

By comparing our discussions of the convergence
problems for the two- and three-dimensional lat-
tices and how these lead to a correction term for
three-dimensional lattices but not for the two-di-
mensional ones, it is clear that there are no cor-
rection terms for the one-dimensional Bravais
lattice.

'a, dt = 'a, dt

dp
(3.9}

and we shall show that the last term vanishes as
1' approaches infinity, which yields

1=P'f —a, dt
Mat

(3.10)

as required. The vanishing of the last term in Eq.
(3.9) follows from

'a dt ~ — a, t dt

~a(t)
~

dt,(3.11)

with the last step following from the monotone con-
vergence theorem of Lebesgue integration. Eval-
uating the integral, we have

IV. DISCUSSION OF RESULTS

4 1/3 (6 + 3r2)
W (r) = — — -n2/3

sh 3 36~2/ 3 (4 1)

In Table I we have collected some of tbe results
detailed in Appendix B on the calculation of tbe
"correction integral" W defined by Eq. (1.4) for
the cubic and the simple hexagonal lattices. For
comparison among the cubic lattices, we have in-
cluded Callaway's~ value of S', which appeases in
the literature in another connection, and the "sph-
erical" approximation" in which the proximity cell
is replaced by a sphere of equal volume. It should
be noted that Callaway's value for the bcc lattice
falls roughly midway between the correct values
for bcc and fcc, so the error is not small in com-
parison with the difference between W„, and W„„.
Also, the difference between Wb„(or Callaway's3
value for Wb„) and W„„ is quite large compared to
the difference between 8'z„and S'b„.

In Appendix 8 we have shown that W for the sim-
ple hexagonal (sh) lattice with an arbitrary ratio
r =c/a is given by
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TABLE I. Correction integral W, related to the correction term A by A.= (2~Q2/3Q)S',
with W= D tJor2dsr, and with the integration taken over a centered proximity cell. For cubic
lattices, a is the edge length of the fundamental cube.

Lattice

sc

fcc

bcc

bcc (Callaway) '

& a2=' Q2/8

g g2 3 42/8Q2/3
82 32

i8 g2 i8 22/3Q2/8
128 128

v'221
2 v'2212 / Q2

100 100

=0.250 000 0Q2/8

=0.236 235 1Q2/8

—0.235 629 SQ2/8

=0.235 984 1Q2/8

sph approx. " =0.230 900 SQ2/8

sh(ideal) '

sh(min. ) '
1Q 2-1/3 Q2/3
88

5 (g)f/8 Q2/3
24 5

—0.286 6141Q2/8

=0.243 668 1Q2/8

'J. Callaway, Ref. 3.
"See Appendix B. In the spherical approximation to S' the centered proximity ceD is re-

placed by a sphere of equal volume.
'See Appendix B. The "ideal" value of the ratio ~= c/a for simple hexagonal is (-)~/ and

the value for minimum W is (-) / .7

which has a minimum value at r =r„=(—', )' '. The
corresponding W,„(min) is seen from Table I to
fall roughly midway between W„and O'„,. The
order r elation

W, „&W„„&W„,& W,„(min) & W„& W,„(ideal)

(4.2)
displays some of these results and also shows
where W,„(ideal) falls, where the "ideal" value of

(8)t/2

The methods we used in Appendix B to evaluate
the W's are very straightforward. Clearly, for
any Bravais lattice 8' can be calculated to any de-
sired accuracy, although it may get a little tedious
for a proximity cell with many different surface
facets (low symmetry of the lattice). Moreover,
exact analytical expressions can b@ found for W as
a function of various deformation parameters des-
cribing some family of lattices resulting from de-

formation of a given lattice. As we have illus-
trated in one simple case, the simple hexagonal.
lattice with arbitrary c/a ratio, this permits find-
ing extrema of W and hence A.

For the cubic electron lattices (Q =e), we have
used our values of S' to calculate in atomic units
the associated values of the correction term A,
which are presented in Table II. We also show
Foldy's calculated values of S, rounded off to sev-
en significant figures, which suffices for our pres-
ent purposes.

It is seen immediately that the relative positions
of K=8+A for the three lattices remains unchang-
ed in the sense that the bcc lattice is the most
stable and the sc the least. However, the addition
of the correction term is still important, espec-
ially if one wishes to compare these lattices with
others or if one contemplates calculations with
more sophisticated models including zero-point

TABLE II. In atomic units for an electron lattice (Q= e), the electrostatic energy of one
electron interacting with all other electrons and the uniform background of charge is given
by K= S + A, where A is the correction term to the previously reported S value found by the
Fuchs' procedure. The energy is in Rydbergs, r, is in Bohr radii, and the volume per elec-
tron is 4~~8.

3

Lattice

sc
fcc
bcc

S x (2 By/r, )
Foldy'

-1.760 119
-1.791747
-1.791859

Ax (2 Ry/ )r
This work

0.324 815
.0.306 931
0.306 144

(S+A) x (2 Ry/r, )

-1.435 304
-1.484 816
-1.485 715

L. L. po],dy, Ref. 4(d).
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vibrations and various quantum effeets. Addition-
ally, it is also clear from the work of Foldy+ and
that of Straus and Ashcroft '" relating to familiar
lattices slightly deformed that the lattice-depen-
dent A. should be taken into account in studying
competing lattices and stability questions.

Table II shows that A can be an appreciable frac-
tion of S, but, more important is the illustration of
Table II that the differences between two A's can
be greater than the differences between the two
associated S's.

There are several calculations not included here
that would be of considerable interest; we call at-
tention to two. It would be of interest to have the
values of S for the sh lattice calculated for a do-
main of c/a values containing the value r =(&~)'~2

for which W, and hence, A. has a minimum. Wheth-
er or not S for the sh lattice has an extremum in
the vicinity of r„ is not yet known. - A second mat-
ter of considerable interest would be the determin-
ation of the correction terms for non-Bravais lat-
tices I such as the hexagonal closed packed (hcp)
lattice] so that one could consistently compare,
say, K for the fcc and the hcp lattices.
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cell satisfies all three of the conditions: (i) neu-
trality of charge; (ii) no dipole moment; and (iii)
no quadrupole moment. Then for the cubics we
have

1 d'r——+0 (A2)

exp -tr2 dsr dt. (As)

For any finite region B, we have

exp -tr2 dtd3r

+
~&

+ ) I exp(-tr2) dtdsr, (A4)

Accordingly, in the remainder of this Appendix the
use of a centered proximity cell will be understood
as being used for the domain of integration in all
cellular integrations.

Next we prove the lemma
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exp -tr2 dtd'r & dtd3r

APPENDIX A

~,(1 l f d'rl~ l yd'r (Al)

Since all of the volume is eventually covered by the
cellular integrations plus summation, it might ap-
pear that either the proximity cell or any valid
primitive cell, centered or not, could be used in
the integration over a cell, but this is not so. For
absolute convergence, hence uniqueness of K, we
need to use a centered proximity cell, since this
is the only choice for which the charge within a

Consider a direct cubic lattice (r}with a volume
0 per lattice point and the reciprocal lattice P}
normalized by exp(iy v) =1. Letapoint charge Q be
placed on all lattice points, and let a uniform neu-
tralizing charge of opposite sign be placed through-
out the volume. If the point charges are electrons,
this signer solid is an electron crystal; if the
point charges are protons, this model might be
used as a starting point for a representation of
metallic hydrogen. The electrostatic energy of in-
teraction of one point charge with all other point
charges and the uniform background is given by the

quantity

— — exp( tr') dt d'r-
R r vf

exp -tr dtd r
& &mT

exp(- Tr ')
r'

Taking the limits & 0 and T gives

exp -tr2 d3rdt,

(Av)

we have from our lemma

(A8)

which completes the proof if 8 is taken to be the
proximity cell centered about the ~ point.

Writing for the moment

Q2 d3rK=K-—0
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1a, (t) —= exp(-too) —— exp(-to 2) dor, (AS) K=Q g' JI a, dt

where we now want to investigate the possibility of
inverting the order of summation and integration
in Eq. (A8).

Toward that end, write

a, (t) =exp(-t7' ) ~
1 —— exp(-2x 7't —x t)d'x~

n

= exp(-tr') )Jl —— Q (2x rt+x't)" d'x
~

=Q' f Q'.[a,(t)-b,(t))dt
o rrt

=Q' f —g'a(t)dt,

(A16)

=- exp(-to }— — (2x vt+x t)"d x2 1 (-1}"
0 nt

To prove the interchangability for the (a, —b,}
term, write

=—exp(-to } g —,—,— (2x. jt)"2
" (-1)" 1

„,m!(n —m)! 0

x(x't)"- d% (A10)

The last expression is further simplified by noting
that for centered cubic proximity cells, we have

= J,
~ — Q ' (a, —b,) dt
0 4m.

1+ g (a, —b,)dt, (A17)
rrt r&r

x ~dx=0, x 7 dsx= —'7 x dx.
0 0 0

(All} the second term of which we shall show goes to
zero as T- , which will prove

Hence,

(—1)" 1a,(t) =- exp(- tr ) . m!(n-m)! n

(2x. 7't) (x t)" dox+b, (t),
0

(A12)

2 1
b, (t) —= exp(-tr )— x (t - ';v t ) dox,

0
(A13)

where the asterisk on the summation means that
the terms n=0; n=1, m=0, 1; n=2, m=2 have
been omitted. Then

K=Q P' f a(t)dt,
0 rrt

= lim —g' (a, —b,) dt
1

0 vt

=Q' f. (a,-b,)dt(A)8),
o 7rt

as required.
To show the second term of (A17) vanishes as

T- ~, let d be the maximum value of ~x
~

in the
proximity cell at the origin. Then we have

1
~a, —b,

~

- exp(-'tr'} Q Q m! (n —m)!

OO m OO

=Q' Q' (a, —b,) dt
o rrt

&& (2drt)" (d2t)" "

= exp(-tv') [exp(2dvt +d't) —1 —2d7t

+Q g —b, (t)dt.
0 rrt

The last term in Eq. (A14) is zero, because

(A14)

and

—d t —2d 0 oto] (A1S)

p -t7 t3~ dt = -t7 t' dt A15
0 0,

and we shall prove one can interchange the order
of summation and integration on the first term,
which will yield

f —'p(a, -b,)« =f ' g i.,-bl«,
0 rrt d&r 0

f ia, —ti«, ,
(A2O)
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where the last step is by the monotone convergence
theorem of Lebesque integration. The last integral
is easily evaluated, and we get

a, -b, dt,
o Mgt~,

Q ~(2' —2d2 d-)
V' V' V'3 &

(A21)

which is as small as we want, as required.
Thus with Eqs. (AV), (AS), and (A16), we have

secured

(A22}

We rewrite J as

J=lim —g'exp(-to )(t- —3'22t2}dt' - 2/4. V mt

4n'"t' ", 2 2) 3Q+ —
~

g'y exp(-sy )- 3/2 373- ~ds .
6Q e 16m s

(A26)

It is easily seen that the first term in (A28) van-
ishes and that we have

4n t'
Z lira =—

(

' exp(-cy ) —
~~&~)

n= lim ~,—,3/2
' exp(-2 2/4c) - 1

(& ) 3/2"
s -=Q' —g' exp(-«2) ——

I

—
I-o Mmt

1
A =- - Q' g'5, (t),

(A23)

(A24) giving

n & n
(4vc)3/3) (47/c) 3~

(A29}

with other forms of 8 given in Eq. (1.2). In the
published literature K has been set equal to S,
which leads us to call A a "correction term" in
this paper. We now simplify greatly the expres-
sion for A in Eq. (A24} (which cannot be integrated
term by term).

Equations (A13) and (A24) give

A =- Q —Q exp(-t22) — x2(t —';2'2t2) dox dt
0 M7ft v 0

2 oo oo

x d x — exp(-t2 )(t-;2' t ) dt.Q 2 3 1 2 k 22
o o Wwt

(A25}

The Poisson summation formula gives

C

exp(- t2 2) (t —32't')

(A30}(30 j ' 0
for cubic lattices, where the integration is taken
over a centered proximity cell.

APPENDIX 8

Simple cubic

In this Appendix we evaluate the quantity

W'= — r dr1
0

for the simple cubic (sc), face-centered cubic
(fcc), body-centered cubic (bcc), and simple hex-
agonal (sh) lattices, where the integration is in
every case taken over a centered, proximity cell.
For comparison, we also give the approximation
to W found by replacing the proximity cell with a
sphere of equal volume.

t~ )3/2

-6n«] g' y exp(-y /4t) —t. (A26)

We substitute (A26) into (A25) and set t = 1/4s to
give

oo 1 ~

J-=—' exp(-t22)(t 322t2)dt--
Mwt

The proximity cell is a cube; let a denote its
edge length, which gives A=as. Then

f a/2 a/2 pa/2
w= —,Jl J (x +y2+z2) dxdydz

/ -/ -/

3 a/2 a /2 a/2 a' n2/'
x'dxdy dz =—= — . (82)

-a/2 ~ /2 ~/2 4

g ' y' exp( y'/4t) 6Qt -dt—
6O o 2/t

47/
" ".. . 30g'y'exp(-sy')-16 3/2 3/2 I

ds. (A2V}
0 16m s j

Face-centered cubic

The proximity cell is a polyhedron with 12 equiv-
alent faces, each formed from a parallelogram
with sides of equal length. Let a denote the edge
length of the fundamental cube containing four lat-
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tice points, then Q=4a3. To cover the entire prox-
imity cell, we need consider only one pyramid
with one of the parallelograms as base and with a
height of aj2&2. We take, for the purpose of inte-
gration, the base to lie in the x, y plane and the
axis of the pyramid to lie along 2. Then we can
span the pyramid with the vectors

a a
v( —6x ——~$

types of pyramids. One type has a height equal to
—,'a and a square base with edge length a/2v 2; the~e
are six of these with the axes of the pyramids ly-
ing along the cubic axes of the fundamental cube.
The other has a height of (a&3)j4 and a hexagonal
base with an edge length of (a&2)j4; there are eight
of these with the axes of the pyramids lying along
the principal axes of the fundamental cube.

Accordingly let

W=S')+W2, (B12)
a. a

V2= X+ -—
4vY

a 2
V3—

r =r)v( +r2v2+r3v3,

—r3 &y')r2 r3, 0 r3 & 1.

(a3)

(B4)

where W&, 2 denotes the contributions to W from the
two respective types of pyramidal volumes. We
next evaluate first W& and then W2.

Consider a pair of pyramids of the first type
with tips of the pyramids at the origin of coordin-
ates and with the axes of the pyramids lying along
the positive and negative z axes, respectively.
Then

The Jacobian for a transformation from Cartes-
ian coordinates to the coordinates r&, r2, r3 is given

by

+/2 «/2&2 «/2 2

W1 — z dy ~2+~2+z2
-«/ a&2 -«/2S

0 a 3

J=v ~ (v &&v }=—=—.
16 4'

We also write

gfp )rg~. gpss =v] '
vg

and readily find

(B5)

(B6)
13a

(5)(64)
'

«/ 2+2 «/2+2
+ 2 $ dp dx dz

-«/2~2 -«/2+2

(B13)

3 -1 0
a t'

( o o o

Wit.h these relations we write 8' as

128 ~ 3 ~W= p ~ gOI&J= ~ g g~&I~
i j j

r3 r3
dr, dr, r;r, dr, .

0 wf

Evaluating the I;& yields
4 4I(( —I22 —
)~, I33 g ) I(2 —0 =I2

(B7)

(as}

(B10)

For the second type, consider a pair of pyramids
placed tip to tip at the origin with the pyramidal
axes lying along a straight line; for the purpose of
integration, choose this line to lie along the z-
axis so the two parallel bases lie in x,y planes.
To span the volume of the pyramids, we choose
the vectors

u, =-,'a&2(x —~3j),

u, =-,'av2(x + &3y),

]
u3 ——yav 3z.

Then the position vector is conveniently written

r =R~u& +R2u2+R3u3. (B15)

W =~I:2g «(q) +a&3(-,', )1=,a'

= (-)16' 0 = 0.236 235 10
32 (B11)

oI =u~ ~ (U) Xu2) =—Q. (B16)

The Jacobian for a transformation from Cartesian
coordinates to the R& coordinates is given by

Bodywentered cubic

Let a denote the edge length of the fundamental
cube containing two lattice points, so 0 =2a3. Then
the proximity cell can be constructed from two

In terms of the new coordinates we have

GoyRgRgo G)J =Up'Ug~ (al v)
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and readily find that

2 -10
(Gg )= —

i
-1 2 016)

(0 0 3)
(B18) a a- a a-

Wf ——— X ——'P, W2 = X + $) W3 —.C~,
243 2 '

2v'3 2 (B25)

and the volume per lattice point i.s given by 0
=(cg %3}/2 =(rWsg3)/2. To span its volume, we
introduce the vectors

We collect these relations and also note that the
hexagonal faces (bases of the pyramids) can be
viewed as being composed of three parallelograms
yielding' equal contributions to the integral, giving

J=wj (w2xw)) =cg /2~3 =0/3,

r =Sfwf +S2w2+S3w3 )

(B26)

12J
W2 — Q Q'G)gl)g (B19) (B28)

R3 8
L,&

— dR3 dR2 R &R& dR3.
-1 p 0

Evaluating the L,z yields

Lff L22 Q) ~33 5 & ~f2 21 fP &

(B20)

(B21)

(B29)

W2 ——
~ g I 32 [2G$$(-„)+Gag(g)+2G$2(-, 0)1

These relations permit us to evaluate 8' as follows:

W= —JQ g T(g J)g,
3

(B30)

= 2-0(-G( ( + G33 +
2

G (2)
9 2 1/2

J~y dS3 dS2
-1/2 P

SgS~ dS1. (Bsl)

8[2(1g2)+ 3g2 1(ig2)) 88 g2

Finall. y, we have

(B22)
The J,& are readily evaluated permitting us to
write

W=+(~ Sg = ('qq4' 0 3=-0.235 629 80'~'. (B23)

Spherical approximation

If the proximity cell is replaced by a sphere of
equal volume and the integration in Eq. (Bl) is
taken over this sphere, one easily finds that this
approximate value of W, which we denote with
S'»h, is given by

f/3
W= — P =0.2309008Q i . (B24)

5 16m

Simple hexagonal

The simple hexagonal (sh) lattice provides a ease
of special interest for two reasons: First, it is a
noncubic Bravais lattice, and, second, with vari-
ation of its c/g ratio it supplies a one-parameter
class of lattices for which we can calculate W as a
function of the parameter r =c/g. Here we are
using the usual notation, wherein a is the distance
between first neighbors within a close-packed
plane, and c is the distance between these planes.

The proximity cell is a right cylinder of height
c and with a.hexagonal base with edge length g/&3,

W = [2T„(-,') + T„(—,',) + 2T„(-,' }]

= (-,', )(5g'+ 3c') = (,g')(5+ sr')

= (-)(-) ~ — ~—04 ii3 (5+sr') 2i
36 r2 3 (B32)

W,» & Wb„& W„,& W,„(min) & W„& W,„(ideal).

which is a relatively simple expression for W as a
function of r.

From Eq. (B32}, it is seen that W has a minimum
value at r equal to r„=(5/6)' ~2 =0.913, where

W~-=W(r-r„) =12(25)' '0' '=0.24366810' '.
(Bss)

It is of interest to compare this value with S',
=W(r =r, ), where r; =(83)' 2 is the "ideal" ratio.
It follows immediately that

Wg ———2 0 —0.286 614 10
N

Finally, we collect a portion of the results from
this appendix and summarize them in the order
relation
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