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The self-consistent electronic structure and adhesive energies are computed for the following contacts:
Al(111)-Al(111); Mg(0001)-Mg(0001); Zn(0001)-Zn(0001); Na(110)-Na(110). Electronic charge densities and
potentials are quite sensitive to small separations in the contacts. Friedel oscillation amplitudes increase with

decreasing average bulk electron densities and with increasing separation in the contact. The inclusion of
nonlocal effects increases adhesive binding energies but has little effect on the shape of the adhesive energy
versus separation plots. The importance of bulk equilibrium is investigated. Binding energies agree well with

experimental surface energies and very good agreement is found between computed elastic constants and
experiment. Both the binding energies and the elastic constants increase with increasing average bulk-

electron number density. The variation of the components of the adhesive energy with separation reveal a
rather close analogy between the characteristics of the metallic adhesive bond and those of molecular bonds
in simple molcules. The kinetic energy initiates the bond, while the electrostatic and particularly the
exchange energy lead to the strong adhesive bond. The range of the strong bonding is about 0.2 nm.
Adhesive energies and charge densities saturate much faster with contact separation than do electronic
potentials.

I. INTRODUCTION

The strong adhesive bond formed between metal
surfaces in intimate contact plays an important
role in deposition of metal films, grain boundary
energetics, friction and wear, and fracture. There
has been considerable experimental work in the
field of metallic adhesion, as discussed recently
in the reviews of Tabor' and Buckley. '

The first basic physical theory' of the strong
short-range interaction at bimetaQic interfaces
was done for contacts between the close-packed
surfaces of Al, Mg, and Zn. The Hohenberg and
Kohn' (HK) formalism was u'sed to evaluate total
energies as a function of interface separation.
Simple overlap of the metal-vacuum charge dis-
tributions was used. The exchange energy was
shown to be quite important to the binding. It was
found that registry effects at the interface between
crystalline planes also contributed significantly.
Some i~sight into the mechanisms of metalhc
transfer at the interface was obtained. The range
of the strong bonding wa. s shown to be about 0.2
nm.

Allan et al. ' employed a, semiempirical technique
to estimate the dependence of interface energies
on such properties as d-band filling. Inglesfield'
improved upon the gradient-expansion kinetic-en-
ergy expression apd obtained adhesive energies
for Al. Interface energies for interacting jellia
were computed recently by Mehrotra et al. ,

' Mus-
cat and Allan, and Swingler and Inkson. ' The im-

portance of crystallinity in the adhesive bond be-
tween metals was recently demonstrated by Smith
and Ferrante, '

Some authors have concentrated on electronic
properties such as charge densities and barrier
heights„rather than adhesive energies or forces.
Bennett and Duke" made the first serious calcula-
tion of interface electronic structure. They solved
the Kohn-Sham ' equations for jellium interfaces
with only partial self-consistency. " Swingler and
Inkson" s'olved the same problem using a linea, r-
ized Thomas- Fermi expression including nonlocal
exchange. Yaniv" used a tight-binding technique
to determine how interface densities of states vary
with surface parameters.

Full self-consistency was first introduced into
metallic interface electronic structure and adhe-
sive energy calculations by Ferrante and Smith. "
The Kohn-Sham equations were solved self-con-
sistently for an Al(111)-Al(111) contact. The elec-
tron density distributions and barrier heights were
found to be strong functions of interface separa-
tion. ' ' The minimum in the adhesive-binding-
energy curve occurred at an interplanar separa-
tion that was within 0.01 nm of the experimental
bulk spacing. The binding energy at the minimum,
or the surface energy, agreed reasonably well
with experiment.

In the following we report results of fully self-
consistent calculations of adhesive energies for
interfaces between" Zn(0001)- Zn(0001), Mg(0001)-
Mg(0001), and Na(110)-Na(110), as well as Al(111)-
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Al(111). The effect of nonlocality in the exchange
and correlation energies is investigated. Adhe-
sive energies, forces, charge densities, and po-
tentials are reported as a function of contact sep-
aration. The effect of bulk equilibrium on the
binding-energy curves is also exhibited. Com-
puted binding energies and elastic-stiffness con-
stants are compared with experiment. The ener-
gy components (kinetic, electrostatic, etc.) of the
adhesive bond are computed as a function of con-
tact separation. A strong parallel with molecular
bonding is evidenced.

II. THEORETICAL METHODS
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The calculational formalism methods used for
obtaining self-consistent interface electronic
structure will now be presented. A much more
extensive description is given in Ref. 21, particu-
larly of numerical techniques.

The adhesive interaction energy, E,z, between
two metal surfaces is a function of the distance
between the two surfaces, a (see Fig. 1). E„is
defined as the negative of the amount of work
necessary to increase the separation from a to
divided by twice the cross-sectional area A. Thus

Z„=[E(a) -E( )]i2A,

where E is the total energy. For identical metals,
E~ is the negative of the surface energy when a is
at the energy minimum (Figs. 4 and 5).

According to the density functional formalism of
Hohenberg, Kohn, and Sham, '" the total energy
is given by (atomic units are used throughout un-

less otherwise specified)
y

E{n(r)) J a(r)n(r) dy +—g ' ' +F{n(r)),2;„, R;,.

where

POSITION y (nm}

FIG. 1. Electron number density g and jellium ion
charge density n, for Al-Al contact normalized to unit
density.

For metals like Zn, Mg, Al, and Na, the jellium
model (Fig. 1) is a good zeroth-order approxima-
tion, and the difference between the total pseudo-
-potential and the potential due to the jellium is
small for the closest packed plane. Thus for a
given separation a, one obtains E to a first-order
perturbation approximation as"'"

E{n(r))=d Irr(y .a)n(y, a) d-y, .

+- QQ *' '+F(n(y, ))a
2 ]~ R~

+A. 6v y, a n y, a &y,

where v~ is the potential produced. by the jellium,
y is the direction normal to the surfaces, and 5v
is the average, over planes parallel to the surface,
of the difference in potential between an array of
pseudopotentials and the jelhum. Following Lang
and Kohn"'" the Ashcroft pseudopotential is used:

Fln(r)) = T,(n(r))+—,dr dr'n(r)n(r') 0, r&r,
-z/r, r& r„

(5)

+E„,fn(r)f,

v(r) is the ionic potential, and n(r) is the electron
number density. The first two terms in E(l. (2)
are the electron-ion and ion-ion interaction ener-
gies, respectively. z is the ionic charge and R, ,
is the distance between ion core nuclei (there is
no ion core overlap in the systems considered
here) T,(n(r)f i.s the kinetic energy of a system
of noninteracting electrons with the same density
n(r), the next term is the classical electron-elec-
tron interaction energy, and E„,is the exchange-
correlation energy.

where x, is determined empirically" and is close
to the ion core radius.

The electron number density is obtained from a
set of self-consistent equations of the form

+ v ff (n; y ))I y,'*' (y ) = l (~ —& ')(I) ("(y ),
2 6fg

k~
n(y, a) =, g du(y(')(y)('(u '- u'), (e)

4~ f -1 0

v (n y)=P(y a)+
5n(y, a)

with Poisson's equation
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d'(j) (y, a)
dy

,' ' = -47) [n(y, a) - n, (y )]. (7) d„(n(r)} f n(r)a„(n(r)) dy

—2A p ya ya dy+W~, , (8)

where p(y, a) is the net charge density of the
zeroth-order or jellium solution. lV, is the exact
difference between the ion-ion and the jellium-jel-
lium interaction. It is shown in Ref. 3 that Wh, /A
is negligible unless the facing planes are in reg-
istry, i.e., commensurate. Full expressions for
W~, /A as a function of sepa, ration a are given in
Ref. 3 for fcc (111) planes and in Appendix A for
hcp (0001) and bcc (110) planes. Also highly ac-
curate, simple analytic approximations to W. ,/A
are presented.

There is a close analogy between adhesive en-
ergy calculations and cohesive energy and elastic
constant calculations. W-, is an interface analog
of the Ewald energy. The rest of the terms in Eq.
(4) are analogous to the structure independent co-
hesive energy terms of Eq. (4.6) of Ref. 27. There
is one important difference, however. In cohe-
sion and elastic constant calculations, the electron
density is often taken to be uniform prior to per-
turbation by the ion cores. In our adhesion calcu-
lations, the unperturbed electron density varies
with the coordinate perpendicular to the surface,
as in Fig. 1. Because of that, we will see that
there is also an analogy with molecular binding.
Further, the accuracy of computations of elastic
stiffness constants associated with the direction
perpendicular to the interface is improved by al-
lowing variation of the unperturbed electron den-
sity in that direction.

The exchange-correlation energy E„,is often
written in the local-(tensity approximation (LDA),

Z,.(n(r)}=fn(r)a, .(n(r))dr,

where e„,(n(r)) is the exchange-correlation energy
of a uniform electron gas of number density n(r).
%e use' signer's interpolation formula for the
correlation energy.

There have been a number of workers who have
recently provided or used expr'essions for
E„,((n(r)] beyond the LDA at metal surfaces. '8 ~
Lau and Kohn were the first to include gx'adient
terms in E„,{n(F)] in a surface-energy calculation:

Q(y, a) is the electrostatic potential energy, (,")(y)
is a doubly degenerate wave function (t =1,2), k~
is the Fermi wa-ve vec-tor magnitude, and n, (y) is
the jellium density (Fig. 1).

It is useful to combine the first two terms of Eq.
(4) along with the classical electron-electron in-
teraction term of E(n(y, a)] as follows:

+ ger %sr dr ~ (10)

T.(n(y, a)}=d f (,(n(y, a)}dy,

where

2

t,(n(y, a)) = Q Q (k'+ k,'+ k, ') ~)I),"'(y) ~'

C =$ 'Agkgy&g
(Occ. )

(12)

+ [v,q(n;+~) —v,(}(n;y)]n(y, a) . (13)

The sum is over all occupied states. Vfhen faced
with the problem of evaluating T,(n(y, ~)]
—T,{n(y, 0)] for a surface energy computation,
Huntington"'" chose to integrate first over all direct
space (y). The resultant difference is between
total kinetic energies, which are very large num-
bers. The expression he derived was used in all
the modern surface energy computations (see,
e.g. , Refs. 23 and 24). For the adhesive energy
calculation, we find a different approach to be
mare useful. In Appendix 8, we derive an expres-
sion for T,fn(y, a)] - T,(n(y, 0)j which is based on
kiiietic-energy derisities in the interface region.
%e find this approach more natural for our prob-

A function g(n(r)) was derived in Ref. 29 from the
static dielectric function of Vashista and Singwi. "
Rose et al.30 used a g(n(r)) which was derived by
Qeldart and Rasolt" using the random phase ap-
proximation to compute surface energies. Rose
et al."obtained gradient term corrections to the
surface energy (computed for a=0) which are in
good agreement with those obtained by I au and
Kohn. " Gupta and Singwi ' have computed a
g(n(r)) which is very close to but somewhat small-
er than (within -30/0) that derived in Refs. 28 and
29. It is perhaps significant that such close
agreement is obtained between two very different
approaches (Refs. 28 and 31). Further, Gula and
Singwi report the next higher gradient term and
state that it is much smaller than their first gra-
dient term, thus supporting the usage of only the
first gradient term.

In the next section we will present results for
the first nonlocal, self-consistent adhesive energy
calculation. Equation (10) is used in conjunction
with Eqs. (6). The form of g(n(r)) is

g(n(r)) = 2C(r, (n))/n4~'(r), (11)

where the C(r, (n)) a.s provided by Geldart and Ra-
solt"" is used [r,(n) is defined by (4v/3)r,'(n)
= 1/n(r)].

It remains to specify the kinetic-energy func-
tional of Eq. (3):
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lem, as it is the interface region in which the large
changes in kinetic energy density occur upon ad-
hesion.

The Hamiltonian is now completely specified. In
. the remainder of this section we will elucidate
some of the techniques used to deal with Eqs. (6)
and (7).

The numerical integration of the SchrMinger
equation and Poisson's equation was done over a
slab whose width (distance between symmetry
point and matching point to the bulk) ranged be-
tween 15 a.u. at a = 0.25 a.u. and 27.5 a.u. at a = 15
a.u. The solution of the Schrodinger equation pro-
ceeded by assuming the form of the wave function
for the transmitted wave for an electron incident
from the left half space to be 8'~' deep in the bulk
of the right half space. " The integration proceed-
ed into the bulk of the left half space, where nu-
merical solutions were matched to

g~(y) = C(e'~'+De '") . (14)

The potential w'as required to be the bulk potential
at the matching point.

The self-consistent solution of Eqs. (6) and (7)
was obtained by means of iteration. The starting
potential for a =0.25 a.u. was constructed from
simple overlap of metal-vacuum densities' with a
Gaussian well which simulated the first Friedel
oscillation in the potential. The iteration proceed-
ed by means of the usual convergence factor meth-
ods. Charge neutrality was obtained by multipli-
cation of the electron number density by a constant
at each iteration. It was found that the neutraliza-
tion procedure was not necessary when close to
self-consistency. At completion of the iterations,
the difference between input and output potentials
was less than 10 meV everywhere for all separa-
tions between all metals treated. For subsequent
separations, the starting potential was obtained
from the self-consistent potential at the previous
separation. First, the potential at the previous
separation was fixed relative to the jellium sur-
face, and then the points needed to complete the
potential between the two metals were obtained
by a linear extrapolation.

III. RESULTS

We now give results for the self-consistent elec-
tronic structure and binding energies for a range
of separations in the following contacts: Al(111)-
Al(111); Zn(0001) - Zn(0001); Mg(0001)-Mg(0001),
and Na(110)-Na(110). To test first the self-consis-
tency of the solution of Eqs. (6) and (7), one can
use the Budd-Vannimenus" (BV) theorem. This
theorem relates the jellium force at zero separa-
tion (a = 0) to the pressure. The jellium force can
be determined from the difference in electrosta-

TABLE I. Jellium force at zero separation.

Metal r, BV theorem
For ce (a.u.)

LDA Nonlocal

Al
Zn
Mg
Na

2.07 2.558 x 10&
2.30 1.365 x 10&
2.65 5.612 x 10&
3.99 1.437 x 10-'

2.558 x 10&
1.368 x 10+
5.615 x ].0&
1.452 x 10-5

2.580 x ].0&
1.363 x 10&
5.628 x 10 4

1.447 x 10-5
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FIG. 2. Electron density vs position for a Na(011)
—Na(01l) contact for separations of 0.013, 0.016, and
0.79 nm.

tic potential between a point in the bulk and a point
on the jellium surface when a is large (we took a
=15 a.u. ). The pressure can be determined from
bulk jellium properties. The results are given in
Table I. One can see that the forces as determined
from the bulk pressure (BV theorem) are in excel-
lent agreement with the forces determined from
the electrostatic potential difference for both the
LDA and the nonlocal [see Eqs. (10) and (11)]cal-
culations. This is an indication of the high degree
of self-consistency obtained.

Figure 2 shows the electronic charge densities
n(y), for three representative separations in the
Na contact. Note first how sensitive n(y) is to
separation. For a separation of only 0.013 (0.25
a.u. ), there is a significant dip in n(y). This dip
at the symmetry point grows rapidly with separa-
tion u, n(y) being less than half n„at y =0 for a
separation of 0.16 nm (3 a.u. ). At a = 0.79 nm (15
a.u.), the charge-density overlap between the two
pieces of metal is nearly zero. We will see that
this rapid variation of interaction with separation
is also reflected in the adhesive energy (Fig. 4).
If we compare Fig. 1 for the Al contact at a =0.19
nm with the Na results of Fig. 2, we see much
stronger Friedel oscillations in Na than in Al. In
general, we found the Friedel oscillation amplitude
to increase with increasing x,. A similar behavior
was first noted by Lang and Kohn' for the solid-
vacuum interface. Finally, it is clear from Fig. 2
that the Friedel oscillation amplitude increases
with separation, a result that was also seen earl-
ier" for the Al contact. Plots of n(y) as obtained
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from the nonlocal calculation were not included,
because differences between them and the LDA
densities were not perceptible on the scale of
these plots. Complete listings of these densities
are given in Ref. 21, however.

The electronic potential energies v,q(y) are
plotted in Fig. 3 for the Na contact at the same
three separations used in Fig. 2. Again the sen-
sitivity to separation is evident with the barrier
height at the symmetry point rising rapidly with
separation. A similar sensitive behavior of bar-
rier height was exhibited earlier" for Al, and in
fact is typical of all four metals considered. Most
of the electrons must tunnel between the two met-
als even when a is as small as 0.16 nm. While the
barrier height is well above the Fermi level for
g =O. V9 nm, there is some evidence of electronic
interaction as shown in Fig. 3. That is, the ob-
vious Qattening out around y =0 for a=0.79 nm of
the electron number density (Fig. 2) and adhesive
energy (Fig. 4) is not as evident in the electronic
potential energy. We found, in fact, that the elec-
tronic barrier height is still increasing slightly
at a = 0.79 nm, enough so that we cannot estimate
the work function accurately by extrapolation. It
is not surprising that the adhesive energy has sat-
urated long before the electronic potential energy.
The electrostatic potential as determined from
Eq. (7) is sensitive to small changes in n(y). Be-
cause of the stationary property of E(n(r)), the ad-
hesive energy is, however, not sensitive to small
changes in the electron density. ' Note finally that,
as with n(y), the Friedel oscillation amplitude in-
creases with separation for the potential energy.

Figure 4 shows the adhesive energies as a func-
tion of separation for the four crystalline metals.
These curves are a surface analog of cohesive
energy versus lattice constants plots for bulk ma-
terials. Results obtained using both the local and
nonlocal exchange-correlation potentials are
shown. Note first that all systems are bound, and
that there is a minimum near a = 0. This mini-
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mum would occur exactly at zero if the bulk den-
sities used (listed in Table I and taken from Ref.
24) were consistent with the Hamiltonian we use.
We will deal directly with this point later in this
section. We showed earlier (see Fig. 2, Ref. 10)
that including the effects of crystallinity is ex-
tremely important to the shape and magnitude of
these curves. Note that the range of strong bond-
ing, i.e. , that range over which the slope of the
curves in Fig. 4 remains large, is about 0.2 nm.
This is roughly the interplanar spacing in the bulk
for these close packed planes.

Nonlocal terms do not strongly affect the shapes
of the binding energy curves. They do make the
adhesive binding somewhat larger in every case,
however. This improves the agreement of the
binding energy, as measured from the minimum,
with the experimental surface energies" ' as
shown in Fig. 4. The agreement is rather good,
considering the approximations involved and the
difficulty of the experiments. The poorest agree-
ment is for Zn(0001). Monnier and Perdew" dis-
covered an apparent inaccuracy in the Zn pseudo-
potential based on bulk calculations. Note that the
binding energies or surface energies increase
with decreasing ~„or with increasing bulk aver-
age electron number density. We will find a sim-
ilar correlation for elastic stiffness constants.
This is not inconsistent with the fact that it is the
electrons that provide the "glue" to hold the solids
together. Let us speak further about the experi-
mental data chosen. Surface-energy experiments-
are often performed of necessity at elevated tem-
peratures and on liquid metals. Surface contami-
nation and other effects can make the results of
these difficult experiments questionable. Our
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FIG. 3. Electron potential energy v~&(x) vs position
for a Na(011)-Na(011) contact at separations of 0.013,
0.16, and 0.79 nm.

FIG. 4. Adhesive binding energy vs separation + for
LDA and including nonlocal terms in the exchange and
correlation energy. The experimental values refer to
measured surface energies (see Hefs. 38-40).
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theoretical results describe brittle fracture at 0 K.
Consequently it is important to obtain surface-en-
ergy data for solids at very low temperatures.
Wawra" has determined surface energies indirect-
ly for solids at close to 0 K by using ultrasonic
attenuation. Unfortunately he has reported no
data for Mg, and for that metal we were forced to
extrapolate from liquid-metal data. We should
mention that while the theory is for single-crystal
interfaces, the experimental data do not take the
grain orientation of the surface into consideration.

Inglesfield has shown that for separations
greater than about 0.3 nm, the Van der Waal's in-
teraction predominates. However, he found that
for separations s0.25 nm, the wave functions over-
lap appreciably and the bonding energy is more
accurately described by the exchange-correlation
(LDA) expression used here.

The fact that the. minimum in the curves of Fig.
4 does not occur at a =0 was pointed out earlier
in this section. The reason for this is that the bulk
solid is slightly "spring loaded". That is, the
bulk lattice constants used'4 are not exactly con-
sistent with the Kohn-Sham' Hamiltonian and the
Ashcroft" pseudopotentials. To verify th, s, we
did a bulk calculation using the same pseudopo-
tentials and the same Hamiltonian, determining
the cohesive energy as a function of bulk-lattice
constant. We then determined the values of the
bulk-lattice constants that minimized the cohesive
energy. In the case of the hcp metals, the axial
ratio that minimized the Ewald energy was used.
The difference between it and thy ideal ratio is
negligible in the present calculation, however. The
resultant values of r, are (compare with Table I):
Al, x, = 2.10; Zn, y, =2.61; Mg, z, =2.79; and Na,
~, = 3.88. The binding energy curves computed for
these equilibrium lattice constants are shown in
Fig. 5. We see that in every case the expected
result is obtained. That is, the position of the
minimum has moved closer to zero separation.
Note that the Al(111), Zn(0001), and Mg(0001)
curves have effectively moved to the left, whereas
the Na(110) curve has effectively moved to the
right. It is as if the origins were moved to the
minima of the plots of Fig. 4. The change of shape
of the curves is nearly imperceptible.

Adhesive forces can be determined simply by
differentiating the adhesive energy curves of Fig.
4 with respect to the separation a. We show the
adhesive force for the representative case of the
Mg(0001)-Mg(0001) contact in Fig. 6. The force is
of course zero at the minimum in the adht, sive en-
ergy plot (Fig. 4). It rises rapidly and forms a
maximum at about 0.1 nm. This maximum value
is the force for brittle fracture, although it is
somewhat academic sirice plastic Qow is important
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FIG. 5. Adhesive binding energy vs separation using
bulk densities obtained by Ininimizing the cohesive
energy.

in the breaking of Mg at most temperatures. The
force has fallen significantly by a =0.2 nm, which
is an effective strong bonding range which we men-
tioned earlier. The nonlocal approximation gives
a higher maximum force in agreement with Fig. 4.

Note that the rise in the force near a =0 is nearly
linear up to about one-half the maximum value.
From the slope, one can approximate the elastic
stiffness constant" associated with the direction
perpendicular to the interface, CII:

~C' d'E(a)
dg 0 (15)
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FIG. 6. Adhesive force vs separation for a Mg(0001}
—Mg(0001} contact far the i QA and including nonlocal
terms in the exchange and correlation enex'gies,

a, is the separation at the binding energy minimum
and d is the interplanar spacing. C~~ is other-
wise known as a uniaxial strain modulus. Equation
(15) is shown as an approximation because in our
adhesion calculation only the planes just at the in-
terface have their spacing changed, the near-neigh-
bor spacing between the other planes remaining
fixed. In the measurement of elastic constants an
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TABLE II. Elastic stiffness constant C~, (10 dyn/
cm2). 1200

Theory
Local Nonlocal Experiment

Kinetic Energy

Al(111)
Zn(0001)
Mg(0001)
Na(110)

0.746
0.680
0.619
0.183

1.23
0.927
0.666
0.170

1.23 L

0.688"
0.665'
0.133"

'H, eference 46.
"Reference 47.

' Reference 48.
d Reference 49.

ultrasonic pulse method"'" is often used. The
wavelength is of the order of 3x10 ' cm, many in-
terplanar spacings. ; However, the approximation
is not too severe because Tyson" has pointed out
that in most bcc metals the forces become quite
small beyond second-nearest-neighbor atoms
(planes) and, for fcc crystals, they are 4luite small
beyond first near neighbors. This is presumably
because of the ability of metals to screen pertur-
bations over a short range. As mentioned in the .

previous section, the accuracy of our computations
of C~'l is enhanced by allowing the electron gas to
relax as the spacing is increased. Because of
that, our results for Cii are more accurate than
what one would expect from a first-order pertur-
bation-theory calculation done for bulk metals. In
terms of phonon dispersion relations, our "near-
est-neighbor" approximation is equivalent to

~a(q) ~ Cl'l (1 —cosqd),

where q is the wave vector.
The results for Cll as computed from Etl. (15)

are shown in Table II. Also included are experi-
mental values. Note first that the magnitude of the
stiffness constants increases with average bulk
electron number density, as did the surface ener-
gies. Also there is rather good agreement be-
tween theory and experiment, particularly for the
case of the nonlocal values. The agreement is per-
haps better than one should expect, considering our
approximations. The inclusion of nonlocal effects
improved the agreement with experiment for every
case but Zn(0001). Zn(0001) exhibited the largest
error in the surface energy and, as mentioned
earlier, Monnier and Perdew" found the Zn pseu-
dopotential to be relatively inaccurate, Na(110)
had the most accurate surface energy, whereas its
computed elastic constant is not the most accurate.
Second nearest neighbors, as Tyson ' notes, may
be relatively more important for the bcc metal
Na than for the other metals, ""

One of the basic physical questions that we would
like to answer is what is the nature of the "glue"
which holds these metal interfaces together, and is
there an anlalogy with molecular bonding. In Fig.
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FIG. 7. Self-consistent energy components of the
binding energy for a Mg(0001) —Mg(0001) contact. The
electrostatic energy is given by Eq. (8) and the pseudo-
potential energy is the last term in Eq. (4}.

7 is a plot of the energy components versus sepa-
ration for the Mg(0001)-Mg(0001) interface. The
total energy curve (dashed) is the same as the
LDA plot from Fig. 4. At large separations, the
kinetic energy component is attractive, while the
electrostatic energy is repulsive. Thus the kinetic
energy initiates the bond between the metals. This
behavior is paralleled in molecular bonding, "'"
even for a molecule as simple as H, . There it is
argued". that the kinetic energy decrease results
from a smoothing of the wave functions as the
orbitals of the two species begin to overlap. The
potential energy increase presumably results from
an increase in the electron density between the
specieS due to this overlap. This pulls electrons
from the vicinity of the nuclei (where the potential
energy is large and negative), thereby increasing
the electrostatic term. As the metals push closer
together, the kinetic energy rises and becomes the
repulsive term. The electrostatic energy be-
comes attractive. The dominant attractive term,
however, is the exchange-correlation energy. It
is this exchange-correlation energy that solidifies
the strong bond that forms between metal surfaces.
The increase in the kinetic energy at small sepa-
rations arises qualitatively from orbital contrac-
tion. The lowering of the electrostatic energy at
small separation can be thought of as coming from
electrons being pushed into the vicinity of the nu-
clei. These kinetic and electrostatic energy ef-
fects have been thoroughly discussed"'" in terms
of simple, prototype molecules. Thus there is a
strong analogy between molecular bonding and
bonding between metal surfaces.
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IV. SUMMARY

We see that there is a close analogy between mo-
lecular bonding and adhesive bonding between met-
als. The kinetic energy initiates the bond, and the
electrostatic energy and particularly the electron
exchange energy form the strong bond. The range
of the strong bonding is about 0.2 nm, which is
roughly the bulk interplanar spacing. Nonlocal ef-
fects increase the binding energies, but have little
effect on the shape of the binding energy versus
separation plots. There is good agreement be-
tween experimental surface energies and theoreti-
cal binding energies. Elastic stiffness constants
were computed and very good agreement with ex-
periment was found. Both binding energies and
elastic stiffness constants increase with average
bulk electron densities. It was found that the bulk
was slightly "spring loaded. " That leads to an ad-
hesive energy minimum that falls at a point that is
not located exactly at the bulk interplanar spacing.
Electronic charge densities and potentials are
very sensitive to separation between metal sur-
faces. Friedel oscillation amplitudes in charge
densities and potentials increase with r, (decreas-
ing average bulk electron density) and with sepa-
ration between metals. Adhesive energies and
electronic charge densities saturate much faster
with separation than do electronic potential ener-
gies.
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W, (a} 3)(8z' -2~2) 2

exPI& 2 ( (A.2)

One can also derive exact expressions for
hcp(0001)-hcp(0001) and bcc(110)-bcc(110)using a
technique analogous to that used in Ref, 3 for
fcc(111)-fcc(111):

APPENDIX A: EXPRESSIONS FOR V~,(a)

W, is introduced in Eq. (8), and is the differ-
ence between the classical ion-ion and jellium-jel-
lium interactions. It is an interface analog of the
Ewald electrostatic energy.

Axn exact expression for W, (a) is derived in
Ref. 3 for fcc (111) planes. The following approx-
imate expression was also derived in Ref. 3,for
perfect registry between hcp(0001)-hcp(0001) or
fcc(111)-fcc(111):

Xcs, (c) 2M2c —2s 2
( ))

where d is the distance between planes parallel to
the surface in the metal and c is the distance be-
tween near neighbors in a given lattice plane. It
was shown in Ref. 3 that (A.1) is rather accurate
(see Table I) for Al(111)-Al(111).

The following is a similarly derived expression
for bcc(110)-bcc(110):

hcP (OOOZ)

00 Oo

' —2 Q( —2): Q S2X' " X"'" "(cos +2X'" ' X'"~' —
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1 + cos&f

+ X '"'X' " (X"+2X"+X')
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+ ' ' "X '"~X ' ~" X' cos +2X +2X Dcos I (A 3)
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where p= 2(3 d/45c, D= v'l2+-3h2, and X=-exp(2—2d/c).
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1+cos7) h M2~2=Zn, Q ()32-1) ' "x '" ~ (x3"~~+2x+2cosvh+x)2)2') cosmh
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h=1

where B—= 4E2+ —'A2.

(A.4)
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[E,(a) -E,( )]/m. (B.2)

The general expression for T,fn(y, a)) is given in
E(ls. (12) and (13). Now

0
z (rr) 2Af (((„(y ~)) w(3'� ) r „t (y))dy

APPENDIX B: KINETIC ENERGY

It is desired to provide an expression for E„(a),
where

E,(a) —= T,fn(y, a)) —T,(n(y, 0)j.
The kinetic energy contribution to E,z is then given
by E(I. (1) as

1 + Oi — dk dk„dk, .
Z

Thus to O(1/L),

t,(n(y, a))=(~, Q d(. ((„"'(y)('((. ' —(,")(a'+a„')
0

+ [ ff (n; +~) —v,ff(n;y )]n(y; a) . (B.5)
Since t

t,{n(y,a)) =-
~ (3ff')'~'n'„~', (II-6)

0

E,(a) =22 [t,fn(y, a))-~o(3ff')' 'n', '(y)]dy,
0

In evaluating E,(a), we must deal with the sums
in E(I. (13). Let us take the repeat distances in the
x and z directions to be L„and L„respectively.
The wave numbers k„and k, have the forms
2am„/L„and 2vm, /L„respectively. If we take
the thickness of the film for a =0 to be 2L, then
the sum over states in k space becomes (see, e.g. ,
Ref. 36):

where y, is chosen large enough to obtain the de-
sired accuracy. y, values ranged from 15 to 27.5
a.u. , the larger values used with larger a values.
We could check our values of E„(a) for a = ~ with
the results Lang and Kohn" obtained for integral
~, values. Generally excellent agreement was
found. Similarly excellent agreement for Al, Zn,
Mg, and Na at a = ~ was found with the results pf
Monnier and Perdew. "
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