
PHYSICAL REVIE% 8 VOLUME 19, NUMBER 1 1 JANUARY 1979

Series-expansion analysis of critical-temperature shifts of finite
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Finite Ising N X N (N = 1-5) and N & Oo (N = 1-8) systems with one of the three self-consistent
extended mean-field boundary conditions all around and on both sides, respectively, are studied. The
boundary conditions used are: (a) extended mean-field boundary condition using average, abbreviated EA
(in which each boundary spin takes some average value); (b) extended mean-field boundary condition using
probabihty, abbreviated EP (in which each boundary spin takes the values +1 with certain probabilities) and
(c) extended Bethe-Peierls, EBP (in which each boundary spin is assumed to be acted on by some effective
field). The self-consistent equations are then derived by letting the average magnetization of the internal
spins of the system be equal to that of the boundary spins. The finite systems considered therefore
represent some high-order systematic generalization of the familiar molecular-field and Bethe-Peierls
approximations. The equations for the critical temperature are formulated graphically in terms of some high-
temperature expansion series which are calculated to the ninth and tenth orders. Two of the series in the
equations of N X ~ for N ~ oo are directly related to the layer and local susceptibilities considered by Binder
and Hohenberg for the Ising infinite half plane. Critical temperatures obtained numerically with the use
of truncation and extrapolation techniques. Results on the systems with EA and EP indicate that the shifts
of their critical temperatures can be described by a power law N " where X = 1/y, and y, (-„11/8) is the
critical exponent of the layer susceptibility. This is different from the value X = 1 which is believed true for
two-dimensional finite systems with periodic or free boundary conditions. No conclusive remark can be made
to systems with EBP through they suggest some even higher value (& 2).

I. INTRODUCTION

In most theoretical studies on the Ising model,
only bulk properties are of interest. For this
purpose, periodic boundary conditions in all di-
rections are often first assumed and then the
thermodynamic limit is later taken. For example,
they are the I.ines followed in most of the exact
solutions in two dimensions and also widely used
in the applications of series expansion to two-
and three-dimensional systems. The use of this
periodic boundary condition, though artificial,
is to make the calculations much easier mathe-
matically.

Both periodic and the more realistic free (i.e.,
open) boundary conditions have been extensively
used in the investigations of finite-size effect.
One of the most important and sensitive quantities
to the full effect of boundaries or surfaces is the
critical temperature, especially its relative
shift. The critical temperature depends on the
finite size and the boundary conditions. In some
finite systems where a sharp phase transition
does not occur and the rounding effect often takes
over, we can still define the so-called quasi-
critical temperature but not wholly unambiguously;
examples are the maximum in the specific heat or
the zero-fiel. d susceptibility, and the point of
maximum slope in the internal-energy curve using

periodic or free boundary conditions. For those
using the ".pure phase" (+)boundary conditions which
are recently used by Abraham and Martin-I of, '
there is one more definition for this quasi-criticaI.
temperature which can also be identified as the
point of maximum slope in the nonvanishing aver-
age magnetization curve. The values obtained from
all these various definitions need not be the same.
We will consider in this work some self-consist-
ent boundary conditions of a type similar to the
one first used by Binder and Muller-Krumbhaar'
in their Monte Carlo studies of some finite clas-
sical Heisenberg systems. A finite system with
one of these boundary conditions exhibits mean-
field behavior and therefore provides abetter ap-
proximation to an infinite lattice than the usual
free or periodic boundary conditions or some
combination of both, in particular, with respect
to the average magnetization. The critical tem-
perature can here be defined as the point in the
magnetization curve below which it is finite and
above which it is zero.

Most of the analyses on finite Ising systems
have been numerical, either by the high-tempera-
ture series expansion or the recent Monte Carlo
simulation. The finite systems studied have been
pj'xA andiVx in two dimensions, and NxQ xQ
and Ã x ~ x ~ in three dimensions. The ultimate
aim has been not only to determine the critical.

1979 The American Physical Society



19 SERIES-EXPANSION ANAL YSIS OF CRITICAL- TEMPERATURE. . . 389

(T» —T,)/T, -const(lnN/N') . (1.2)

In other studies, Ferdinand and Fisher' analytical-
ly considered an N XN system with toroidal bound-
ary conditions using Kaufman's exact expression
for the partition function. Au- Yang and Fisher'
investigated an N x system with free boundary
conditions on both sides by using finite-size
scaling theory. The authors' have recently
studied A x 1 systems with two extended mean-
field boundary conditions on the sides and at the
ends by the modified transfer-matrix method.
Numericall. y, Landau' has discussed N X1V sys-
tems both with toroidal boundary conditions and
with free boundary conditions all around by a
Monte Carlo method; all these studies on the two-
dimensional systems say that ~=1. But we will
show some evidence for some finite systems with
some self-consistent mean-field boundary condi-
tions for which ~ 0 1. For the three-dimensional
finite system, Allan' studied the values of ~ for
both N x ~ & ~ film systems with free and periodic
boundary conditions on the two surfaces using the
standard high-temperature series-expansion tech-
niques. His results were later reanalyzed and
extended by himself, ' and Capehart and Fisher. "
Ritchie and Fisher" investigated a similar
problem with the Heisenberg film systems. In a
Monte Carlo study of A &&1V xlV simple cubic Ising
lattice with free boundary conditions all around,
Binder's first prediction" for ~ was later cor-
rected by Binder and Hohenberg, "and this was
confirmed by Landau'~ who also investigated the
corresponding system with periodic boundary con-
ditions.

In this work, we are also interested in the de-
termination of the value for ~ of some two-dimen-
sional finite Ising systems imposed with some
self-consistent boundary conditions. However,
unlike the usual interest in the finite-size studies,

temperature T„ for individual values of N, but
also to estimate, as far as possible, the form of
the dependence of T„on N. More explicitly, we
are usually interested in the shift exponent of T„,
given by the value of ~ in the following asymptotic
equation:

(T» —T,)/T, - const/N",

where T, is the bulk critical temperature and the
constant may be positive or aegative depending
mainly on the imposed boundary conditions. This
form is believed to be generally true for large
finite systems in two and three dimensions al-
though Onsager' showed exactly in his classic
paper that the asymptotic form for T„of5 x ~
Ising system with periodic boundary conditions
on both sides is given by

our interest has little to do with the interpretations
of experimental data. Instead, the study of the
asymptotic behavior for h'- has been made im-
portant because of conclusions about bulk critical
behavior which can be drawn from the Monte Carlo
studies" in which only relatively small finite
systems can be used. Some extrapolation procedure
to deduce the bulk properties may be made possible
with the knowledge of this finite-size effect. On
the other hand, due to the smallness of the sys-
tems, the studies and comparison of various
boundary conditions are useful. This enables
us to choose some suitable boundary conditions
with which the system simulates closely to the
infinite system and yet only a reasonable amount
of computing time is needed. Moreover, the
finite systems with the extended mean-field
boundary conditions are some high-order general-
ization of certain familiar closed-form approxima-
tions. These constitute the aims of our work.

The systems under investigation are N xlU and
hl x using one of the three boundary conditions.
Of these, two have been recently introduced by
Bolton and Johnson. " The last one is defined with
the spirit of the Bethe-Peierls approximation. A
series-expansion method is proposed to derive
the equations for the critical temperature of these
finite systems and then obtain their critical tem-
peratures by numerical methods. We will de-
scribe the boundary conditions and the systems
in Sec. II and present the series expansion formu-
lation in Sec. III. Some numerical techniques to
obtain the critical temperatures will be presented
in Sec. IV. Estimations of the values of ~ will be
made in Sec. V. We also briefly discuss the con-
nection of some series in the critical-temperature
equation with some standard bulk high-temperature
expansion series of the half plane. "

II. BOUNDARY CONDITIONS AND FINITE SYSTEMS

As mentioned in the Introduction, we will con-
sider two self-consistent mean-field boundary con-
ditions previously introduced by Bolton and
Johnson using the average (EMFBCA) which we
abbreviate to EA, and using the probability
(EMFBCP) which we abbreviate to EP. In EA,
each spin just outside the system (called a bounda-
ry spin) is given some average value s with s ~ 1.
Then s is determined by equating it to the average
magnetization of the spins of the system (called
internal spins). Obviously, EA is closely re
lated to the molecular-field approximation.

In EP, each boundary spin takes the values +1
with such probabilities that their average is s.
We define the probability distribution function Q
for each boundary spin, say s„by
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Q(s~) = a(1+ss», ) . (2.1)

As pointed out in Bolton and Law, ' there is no
unique way to treat the boundary spins in EP. We
almays have to calculate the partition function by
averaging over the internal spins. We can then
either do the boundary spins averaging immediately
after calculating the partition function or we take
the free energy and then do the averaging. In this
work, we mill, not consider this second choice
and the symbol EP used throughout will always
refer to the first choice. Both this EP and EA
have recently been applied in Monte Carlo simula-
tions' ' and analytic investigations of finite-size
effect. '

We will also consider another self-consistent
mean-field boundary condition which we abbreviate
to EBP (extended Bethe-Peierls). In this boundary
condition, each boundary spin is assumed to be
acted on by some effective field which is again
determined self-consistently by letting the average
magnetization of all boundary spins to be the same
as that of all internal spins. It is clear that this
boundary condition is connected to the spirit of
the Bethe-Peierls approximation.

We will apply all these boundary conditions de-
fined above to the finite systems which are 1V &&X

systems with one boundary condition all around
or A & ~ systems with one of them on both sides.
Explicitly, let N xN internal spins be labeled(s;)
for i = 1, 2, 3, . . . , 1V x N, each of which takes + 1
or -1. Among these, we call those on one of the
four edges (not the corners) and corners of N xN
spins as edge spins and corner spins denoted by
(s,j and(sj, respectively. Each edge spin s, has
one boundary spin denoted by s~ and each corner
spin s, has two boundary spins denoted by +Qg]

and s~~. For convenience, these boundary spins
are collectively represented by (sj, where f& may
be be, bc1, orbc2. They are defined according
to the boundary conditions. The positive inter-
action energy J acts between each nearest-
neighbor pair of internal spins cand also between
each edge (or corner) spin and its boundary spin
(or spins). As usual, in order to study the N x ~
system analytically or numerically, we first
assume that the system is of N x N* with periodic
boundary conditions imposed in the direction
which was initially of infinite extent. We later
let A* go.to infinity to meet the required situa-
tion. This A &N* system can still be defined
as above except there is no corner here. We
observe that there are actually (N + 4) x N and
(N+2) xN* total number of all spine (including
4N and 2N* total number of boundary spins) in
these X x N and N &&A* systems, respectively. We
denote the partition functions by Z(N, 4~„and

Z(„„~„+,respectively. The average magnetization
of all the internal spins always comes into the
definitions of these boundary conditions, and we
denote it by s. Consider firstly N x N systems.
In the following, we write down explicitly the total.
energy E of a configuration denoted by (();.. . ) in
the presence of some field, the partition function
and the self-consistent equation for s of this X xN
system with the self-consistent boundary condi-
tion shown.

With EA: ((s&);s),

~yg
+(N+e) N

)s)
(2.3)

lnZf»+&»» 'I
Bh NxN j I,

(2.4)

where p&»&&, p„g„and p& mean that only
nearest-neighbor pair, edge, corner, and all
internal spins are to be taken, respectively; m
is the magnetic moment per spin and H is an
external magnetic field acting on every internal
spin; P&s» denotes the sum over all configurations
of the internal spins; P= I/ksT, ks is the Boltz-
mann's constant and T is the temperature; ()„,
means that k(=—PmH) =0 is to be taken in the
bracket after doing the calculation, if any, in it;
moreover, we use the notation K =—PJ' and, for
convenience, further adopt the unit such that
J'/ks =1 and therefore K=1/T.

With EP: ((s&);{sf),

E=-cT Q S»Sg -cT Q S~S~ -cT Q S~(S»&~& +S»~)

-mH gs, , (2.5)

S( Q~ = +y 8
(s) {s,)

(2.6)

(lnZ(»+g)»
)~

sk ~ NxN (2.'1)

I

where Q»s» and li&, denote the sum over all con-
figurations of and the product over all the boundary
spine; and Q(s, ) is given in (2.1).

With EBP: ((s»);(s&};H„,),

E = -cT Q S;Sg —J Q S~S~ —cT Q S~(S~~| +S~~)

—mH, g Q s» —mH Q s»,
j

(2.8)

E= -J' g s,s& —Js P s, —2JS g s, —mH P s, ,
(ig& e C

(2.2)
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~(or+4}N =
sa~

(2.9} III. SERIES-EXPANSION FORMULATION FOR
THE CRITICAL-TEMPERATURE EQUATION

Bh N xN, , ek„,' 4N

(2.10)

where H,« is some effective field acting on every
boundary spin and b,« =- PmH, «. Hence, the self-
consistent equations are given by (2.4), (2.7),
and (2.10) for N x N systems with EA, KP, and
EBP, respectively. For those of EA and EP, it
is readily seen that they are of the form of

s f(s), (2.11)

f (s) =a(T)s + b(T)s'+ c(T)s'+ ~ ~ ~, (2.12)

where f(s) is an odd function of s, i.e., f(-s)
= -f (s), in zero field. This is a usual result of
the molecular-fiel, d approximation. The critical
temperature can then be defined as the point
where the gradients of the curves y = s and y =f (s )
vs s ar.e equal at the origin. That is, if we expand
f (s) in powers of s, we get

In this section, we consider in detail the deriva-
tion of the equations for the critical temperature
of both 1V ~1V and 8 ~ ~ systems with one of mean-
field boundary conditions defined previously.
Though the equations can be obtained by using
self-consistent equations for the average mag-
netization in zero field such as those in (2.11)-
(2.13), we here derive these equations directly
by looking at the expansion of the pal tition func-
tions in the presence of some small fields and
using (2.4), (2.7}, and (2.10).

We take the N x A system with EA as an ex-
ample. Since the critical. temperature equation
is obtained by retaining only the linear term in s
of the expansion on the right-hand side of Eq.
(2.4) in zero external fieid 8, we need the ex-
pansion of Z~»4~„ in small s and h, and retain
only terms linear jn s, h, and sh. To do this,
we use the following identities for the exponential
factors in the partition function and do the
expansion:

where a(T), b(T), c(T), . . . are some functions of
T. Hence, the critical point is given by a solution
of the critical temperature equation

exp(Es, s&) =(1+ws;sj)coshE

with so =tanhE;

exp(Kss, ) = (1+t,s, ) cosh Ks

(3.1)

(3 2)

a(T, ) =1. (2.13)

Moreover, retaining the terms up to the third
order in s on. the right-hand side of (2.12) im-
mediately gives us the value of the critical expo-
nent for the average magnetization P of 2, com-
pared with the exact Yang value of —', ." For the
N xN system with EBP, we get equations analogous
to (2.11) with (2.12). Hence, the behavior is the
same. The similar procedure and remarks can
also be applied to the N XN* cylindrical systems
defined above. %'e will not consider the details
here. It is quite clear that the 1 x 1 systems with
EA and EBP are exactly the standard molecular-
field approximation and Bethe-Peierls approxima-
tion in two dimensions, respectively. Hence, all
the above-mentioned finite systems (i.e., N xlV
and Px ~}and some systems'"'" studied pre-
viously with EA represent some high-order sys-
tematic generalization of these approximations.
No matter how l.arge the systems are, as long as
N is finite, they all exhibit mean-field behavior
very close to the critical temperature. The region
in which these finite systems give this wrong
prediction about the infinite lattice gets narrower
and narrower as N increases. Also, the critical
points are improved. %'e are here interested
only in this latter problem.

with t, =tanhKs =Es in limit of small s;
exp(2Ess, ) = (1+t,s,) cosh2Es

with t, = tanh2Ks = 2Ks in limit of small s;

exp(hs, ) = (1 +s; tanh b) cosh.h

(3.3)

(3.4)

=I+As; in limit of small h. Using these for all
factors in the partition function and the spirit of
the standard high-temperature series expansion, "
it is not hard to see that the terms in the expan-
sion of Z~»4~„can be represented by certain al-
lowable graphs. That is, to the order linear in

s, h, andsh,

Z~~, 4)~ = cosh E. cosh Es cosh"2K' cosh""~h

x g I (1 s+;st)(1 t,s+,)(1 t,s+,)
) s} all

x (1+s, tanhh) (3.5)

=2 "«cosh E(A, +P,Esh), (3 6)

where o. is the number of internal bonds; P is the
number of edge spins; y is the number of corner
spins (= 4 for square lattice); and ll,„denotes that
the product is taken over a11 bonds and al1 internal
sites. We observe that terms linear in s or h
alone vanish on the right-hand side of (3.5),
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2 (I +ss~)e»"'~ = coshE+ss, sinhE.

(3.8)

After a11these boundary summations and again re-
taining the terms up to linear order in s, h, and
sh in the expansion of small. s and h, the partition
function can be written

Zi», ~» = 2»"» cosh E(A, +P,sh tanhE), (3.9)

where A.o and P, here are exactly the same as those
in Eq. (3.6). Therefore,

[(tanhE»)/N'J(P, /Ao) = 1. (3.10)

Equations (3.7) and (8.10) clearly show the close
connection between the equations for systems with
EA and EP. In fact, by the same procedure as
above, it can be shown that this relationship holds
in general for any finite systems using these two
boundary conditions. That is, to obtain the critical
temperature equation of a corresponding system
with EP, we just replace the multiplicative factor
E~ in that of system with EA by tanhE„. We will
also see that these two systems behave rather
similar ly.

We can use the same approach used above to
derive the equation for the N &&Ã system with
EBP. As before, it can be obtained by expanding
the partition function in small h, ff and h as we
use the second and the last terms in (2.10) di-
rectly. It is clear that we need the expansion to
the orders h ff h h ffh for h 0 and to h, ff h ff
for h =0. For the same reasoning as before, it is
obvious that terms linear in h,«or h alone vanish.
Explicitly, for h 40

leaving nonzero contributions from terms of sh.
The reason behind this can be easily realized by
noting either (2.3) or (3.5) for ZI», 4l» which is an
even function of either s or h alone, i.e., due to
the symmetry of the total. energy under the trans-
formation s& - -s& for all internal sites (including
the edge and corner spins). Using (2.4) and (3.6),
we get the following equation for the critical tem-
perature for 1V &&1V system with EA all around:

(E»/&')(P, /A, ) = 1 ~ (3.7)

We now demonstrate that the equations for the
critical temperature of the A' &E systems with EA
and EP are closely related. This equation with
EP can be obtained in a simil. ar way tothat with
EA, except now the partition function is given in
(2.6). We note that all boundary spin variables
can be eliminated by first summing over the
boundary spins. For example, take a term in
the summation pl» ~ associated with an edge spin
s, and its boundary spin s~. Then,

Z(»+4)» 2 (1 + g jeff ) (Ap +Page«)

xcosh '~E, (3.12)

where c., P denote the total number of internal
bonds, and bonds between edge (or corner) spins
and their boundary spins, respectively; A.o in
both these expansions is the same as that in
(3.6) and (8.9). Using (2.10), (3.11), and (3.12),
we get

(3.13)

In summary, we have derived the general equa-
tions for the critical temperature of A xN sys-
tems with EA, EP, and ESP, as given in (3.7),
(3,10), and (3.13), respectively. It is clear that
for the direct use of these equations, we have to
calculate quantities such as Ao, P1 P1, and P11
expl. icitly in the equations. It is understood that
terms in these quantities in (8.6), (3.9), (3.11),
and (3.12) arise from contributions of certain
all.owable graphs. For example, terms in A.o
contain exactly the same type of Ising graphs used
in the expansion of the zero-field partition function
by the series method. That is, they are closed
polygons embedding now on an 6 &&A lattice with
free boundary conditions all around. On the
other hand, the contributions to P1 P1 and P,',
all come from certain magnetic graphs (i.e., a
magnetic graph is one which has two and only
two free ends). In P„ the allowable graphs are
those having one end at an edge or a corner and
the other end elsewhere at any internal site. We
will see later that this quantity is related to the
definition of the bounda, ry susceptibility. In P„
they are those having one end at a boundary spin
and the other end on any of the internal spins.
Obviously, these graphs differ from those in P,
only in that graphs in P, have one end om an edge
or a corner spin (of the internal spins) rather
than a boundary spin. Hence, P,' and P, are re-
lated by the foll.owing relation:

wP (3.14)

On the other hand, graphs in P,', are those having
two different boundary spins for the two ends of
magnetic graphs. Similarly, we can calculate
first a quantity P» defined such that allowable
graphs are those having one edge and a corner
spin, two different edge spins or two corner spins
(may be the same) for the two ends. Then P,', is
related to P«by

Therefore, the derivations of the equations for

Z&»+,&»
= 2l »'4l »(A 0+P,'h, «k) cosh '»E, (3.11)

and for h =0
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the critical temperature reduce to the combinator-
ial problem of counting the total number of ways
of placing certain al. lowable graphs on the N &1V

lattice. We did this by manual counting. The cal-
culations were performed to the orders of so'

and m' with the use of the so-called elementary
graphs (i.e., those having one end at some edge
and the other end elsewhere at any internal spin)
to so' to facilitate the counting procedure. These
elementary graphs were arranged in such a way
that they can also be used in the explicit calcula-
tions of A x systems. We now apply the critical
temperature equations directly to small E &6
systems (for N=2-5) with EA, EP, and EBP. We
will also mention the probl. em associated with
the direct application of these equations to an
S xlV system when A is large.

To illustrate how this series approach works
explicitly for small 6 xA, we consider the system
with EA for'simplicity. First, we represent
graphs in A., and P, by the following entities.
ij: This represents the nearest-neighbor bond
link betweeni and j, and has a weight zo. +: This
represents an edge spin and has a weight t, or
Xs in l.imit of small s. &&: This represents a
corner spin and has a weight t, or 2Ks in limit
of small s. 0: This represents a magnetic field
element acting on every internal site and has a
weight tanhh or h in limit of small h. We give
in Fig. 1 a few typical al.lowable graphs in Ao and
I',. In passing, we note that figures b, c, y, z, etc.,
of these Ising graphs are not taken into account
in the so-called self-avoiding-walk (SAW) approx-
imation which is slightly easier but we do not
consider this approximation here. With these
entities, we can obtain al. l terms in A.o and I', to
the order of se' with the use of the elementary
graphs by exact enumerations of all allowable
graphs to this order on the lattice. As a simple
illustration, we consider 2 ~ 2 with EA in Figs. 2
and 3; where it has only four corner spins and
no edge spin. The number in square brackets,

Ap:

FIG. 2. Graphs inAO for 2 &&2 system.

denotes the total number of ways of embedding
the graph sketched above it onto the finite lattice.
The total number of the internal bonds is four.
Therefore, all possible graphs on the lattice
have been counted and the final result given by

Ao = 1+(Na —2N + 1)w'+ (2N' —61V+ 4)w'

+ (~ N ' —2N'+X ' —23N + 22)w'+ ~ ~ ~

P, = (4N) + (12N- 8)w + (28N - 32)w'

+ (76N —112)w'

(3.17)

(4E,)[(8+16w + 16w'+ 16w'+ 8w') j(1+w') J = 1

(3.16)

is exact and equivalent to Eq. (2.4) of Bolton
and Johnson, " as expected. This is readily gen-
eralized to the corresponding system with EP.
By this method, we can also derive the exact
results for E x 1 systems obtained previously by
the authors. ' For 1V «3 of Pl xN, the final equations
are not expected to be exact as graphs of order
higher than m' exist. It is clear thatA„P„and
P„are all power series in m and hence can be
written individually as P„,C„w". We summarize
our explicit results for this coefficient C„(n = 0-9)
for N xN systems (N =2-5) in Table I. We recall
that P„' and P,', in (3.13) are related to P, and P»,
respectively, by (3.14) and (3.15). We have so
far considered rather small 1V xN systems (1V

=2-5). We consider briefly here the problem as-
sociated with the direct applications of Eqs.
(3.7), (3.10), and (3.13) when N is large. Take
a l.arge S&N system with EA. A.o and P, are of
the following form:

AO
+ (4NS —BN '+ 200N —368)w~+ ~ ~ ~ . (3.18)

P)
.

N [s1 [sj

FIG. 1. Some allowable graphs in Ao and P~. FIG. 3. Graphs in P& for 2 &&2 system.
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TABLE I. Series coefficients of Ao, P~, and P~& for NxN(N=2 —5) systems.

n N 2 3 5
Pg

4

1 1
0 0
0 0
0 0
1 4
0 0
0 4
0 0
0 7
0 0

1 1 8
0 0 16
0 0 16
0 0 16
9 16 8
0 0 0

12 24 0
0 0 0

50 157 0
0 0 0

12 16 20
28 40 52
52 80 108

104 1,92 268
200 544 933
256 1112 2032
312 2032 5008
312 3488 10700
300 5984 23668
132 9216 46260

16
16
16
4
0
0
0
0
0

4 4 4
16 20 24
26 24 28
64 64 64

132 196 210
160 556 720
196 888 1436
192 1640 3408
176 2560 7568

80 4604 18256

It is obvious that, for large N, the direct applica-
tion of the equation for the critical temperature as
given in (3.V) will fail because terms of higher
orders will dominate and calculations to the order
of so' are certainly not enough. However, this
problem is not important for small N xN (N= 2-5)
where we can apply these equations directly. For
very large N, we then have to look at the log-
arithmic expansion of the partition function in
powers of N as we do below for theN xN*system
where N*- .

We now follow the above procedure to the N xN*
systems with EA, EP, and EBP on the sides.
As mentioned, there are no corners. There are
N xN* and 2N* total number of internal spins and
boundary spins, respectively. Therefore, we

p a e ~(N+4)Ny N x N, and 4N by Z~&+,~z+,
N xN*, and 2N*, respectively in (2.2)-(2.10).
We still have the expansions of the partition func-
tion of the form in (3.6) for the N xN* system with
EA, in (3.9) for that with EP, and in (3.11) and
(3.12) for that with EBP except we again replace
4N in (3.12) by 2N*. Since we are interested in
letting N*- ~ eventually, we derive the equation
for the critical temperature by examining the
logarithmic expansion of the partition function for
large N*. More explicitly, take theN x N*system
with sides EA. It is easily seen that A, and I', can
be written

Ao = 1+a,N*+ajV&+ ~ ~ ~

P, = b,N*+ bP'*'+ b,N*'+ ~ ~ ~,

(3.19)

(3.20)

where ai~ 2~ ~ ~ . and bc~ bay bs~. .. are polynomials
of I only. We can rewrite the partition function
RS

Z(„„)„~=2"""*[1+(a, + b,hKs)N +

+ (a, +bus)N~+ ~ ~ ~ ]'cosh"K.

(3.21)

Taking logarithms on both sides and by the direct
logarithmic expansion in N*, we get

= other terms + b bKs /N + ~ ~ ~ .

K„b,/N =1, (3.23)

where N may be small or even one. Note that b,
is the coefficient of N in the polynomial of I', .
The equation for the corresponding system with
EP is again obtained by replacing the multiplica-
tive factor Kz in (3.23) by tanhK».

To obtain the equation for the critical tempera-
ture of N & system with ESP on sides, we
follow similar procedure as above by first treat-
ing anN && N* for N* large. A„P,', and P,', in-
volved here have similar forms to those in (3.19)
and (3.20) except we replace b» (for i )1) in

(3.20) by b,' and bfq, respectively, for P,' and P,', .
We finally obtain

(b,' —Nb,', )/N = 1. (3.24)

We note that terms in A„P,', and P,', contain the
same types of graphs as those for N &&N systems,
except now the embedding is on an N x N* cylindri-
cal system rather than an NxN square system.
However, it is true that we still have

(3.25)

similar to that in (3.14). Again, we can relate
Pj.i to Pij. by

(3.22')

Using (2.4), we obtain the following equation for
the critical temperature of N x with sides EA:

,
't
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(3.26)

as in (3.15) by defining P» such that graphs are
those having any two different edge spins for the
two ends and P„ is given by (3.20) except that bq

is replaced by bq~. We have used our elementary
graphs to calculate explicitly all the terms ex-
actly in b„b» to u' and hence the series &y Abye

in (3.24) using the relations in (3.25) and (3.26)
for these Nx~ systems where N=1-10. They
are given in Table II. We note that the equations
with these series are expected to be exact to
these orders. For example, using (3.23) for
X ~ systems with EA, it has been checked for
S=1, 2 where the exact results can be both obtained
by other methods. The agreement for the result
of 2 && which has been derived by using a trans-
fer-matrix method and a first-order perturbation
indicates to some extent the accuracy of the
embedding calculations to the order of se' with
the use of elementary graphs.

IV. NUMERICAL TECHNIQUES AND EXTRAPOLATION

We have previously obtained the equations for
the critical temperature of N && N and N && systems
using EA, EP, and EBP, as those given in (3.7),
(3.10), (3.13), (3.23), and (3.24) where the series
involved are given in Tables I and II using the
relations in (3.14), (3.15), (3.25), and (3.26). We
recall that only a limited number of terms (i.e.,
to the order of w' or m'0) were calculated. We
here propose two different techniques to derive
the critical temperatures from these data of N &N
and Ã x ~ systems. We are interested in N && A
for N =' 2-5 and N x ~ for Ã = 1-8.

For N &&X sys'tems, we propose here some trun-
cating procedure which all.ows us to locate quite
accurately the critical. temperatures of these
small systems. As an illustration, take 4& 4
system with EA all around. Explicitly, the equa-
tion for the critical temperature is given by
(3.7), or

E 16+4(hg+8ON +192gg +544gr +1112m5+2032ce +3488av +5984gs+921~9
16 1+ 9''+122@ + 50m'

(4.1)

where'. , andI', are given in Table I. We now

treat the series on the left-hand side of (4.1),
i.e., P, /A, as a truncated series of w and hence
obtain a series of truncated equations from, say,
order ze'-m'. By solving numerically for each
individual equation, we obtain T,(r), the solutions
of the truncated equations for r =3-9. It is clear
that the result for T,(r) gets closer to the exact
critical temperature (i.e., T, which is unknown

here) as r increases. Moreover, we observe a
rapid convergence indicating that the higher-
order terms in (4.1) become less important in

determining the solution. We find the approxi-
mate critical temperature by plotting T,(r) vs 1/r
(see Fig. 4) for r =3-9 using an extrapolation
procedure. The intersection of the extrapolated
curve with the line r = 24 gives T4 approximately,
where the value 24 is the maximum number of
internal bonds. This line was used because we
do not know what the number of bond is for the
largest allowable graph embedding on the lattice.
Presumably, if all allowable graphs for A, and I',
up to this largest one were taken into account in
the equation, the solution would be the exact T,.
However, the difference in the final results

caused by this different choice for the line is
expected to be insignificant. The result for T4
found on Fig. 4 is 3.104+ 0.006. We note that
the regularity of the points plotted indicates the
validity of the truncation method used here.
The lines used for 3 && 3 and 5 ~ 5 are, respective-
ly, r =12 and r =40. We can readily extend this
technique to small N &&Ã systems with EP or EBP.
We remark that this procedure is not necessary
for 2 && 2 as all graphs can be taken into account.
Moreover, this method becomes less accurate
as 1V increases meaning that exact data for terms
of order higher than zv' are needed. We now

summarize in Table III the resul. ts for these .

smal. l N && N systems obtained by this truncation
and extrapolation procedure, together with some
existing results for N=1, 2. The exact resuIts
quoted for 3 x 3 with EA and EP are derived by
exact calculations. These compare with the re-
sults: T,=3.2483+ 0.0001 for EA and 3.19VV

+ 0.0001 for EP obtained from the above extra-
polation techniques. These agreements strengthen
the accuracy of our T, of 3 &&3 system with EA
compared with a slightly different value (= 3.2433)
given exactly by Bolton and Gruen who also got
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T4= 3.114+0.009, T, = 3.074+ 0.089, and Tao
=2.758+ 0.044 for EA using a Monte Carlo method.
We note that our results in Table III for T4 and

T, are in accordance with their results. We also
observe that the results for systems with EBP
are much closer to the exact value (= 2.269185)
than those of EA or EP in which the results are
approximately the same.

We now proceed to find the critical temperatures
of N x ~ by an extrapolation technique. Again, only
a limited number of terms (to w' or m'0) in the
series (see Tables I and II) of the equations [see
(3.23) and (3.24)] using relations (3.25) and (3.26)
are known. We apply an extrapolation method to
deduce the coefficients of higher-order terms by
assuming that they foll.ow the apparent behavior
of the first dozen or so known coefficients. This
is in the same spirit as that adopted in the standard
series expansion. However, we are interested,
for each A ~~, in the values of these higher-order
coefficients in the series, but not in their asymp-
totic behavior as in the series method. As an
example, take again the A x ~ system with side
EA. The coefficients a„(x= 0-9) for b, (=Q„' p„m")
are given in Table II. We plot the ratio a, /a, ,
vs I/r of r =3-9 for N = 1-8. Two limiting lines
are drawn within reasonabl. e range through these
points. The upper- and lower-limit values of the
coefficients of terms higher than w', say from
w"-sv'0 (i.e., a„ for r =10-20), are estimated
from these lines. Now, using all these coefficients
to w" and solving the equation, we finally obtain
the critical temperature of a given 6' x~ system.
Again, this extrapolation procedure faces increas-
ing difficulty as N increases, mainly because
more exact coefficients are required. As an il-
lustration, we present here a sample of the ratio
plot for 4 & in Fig. 5, where we also plot the
points from the exact result of 2 && ~ system to
show how they behave in an exact solution. We
again remark that terms of higher order have
less and less influence on the final result as the
order increases. Other than the straightforward
generalization to N && system with EP, we can
also extend the method to that with EBP. We
consider Ã=1-7 and the ratio plots of the series

X5y j given in Table II are found to be os cil-
lating. Instead we use the r-root plot, i.e., (a„)
vs I/r of this series to estimate the coefficients
of the higher-order terms from w"-w". We
show a sample of 4& in Fig. 6. We again obtain
the critical temperatures by solving the equations
to this order. Results for these N x ~ systems
with sides EA, EP, and EBP are summarized in
Table IV. These results again demonstrate that
results of the systems with EBP are closer to
the exact value than those with EA or EP. The
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~3104 +0.006
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r=24

0.10 0.20

FIG. 4. Plot of T4(x) against 1/r for 4 &4 system with EA boundary conditions.

reason for this is that the Bethe-Peierl. s method
incorporates some information about the nearest-
neighbor correlation coefficient.

V. RESULTS AND DISCUSSIONS

Vie have summarized the results for T~ of
NxE (iV =1-5) and Xx~ (N= 1-8) using EA,
EP, and EBP in Tables III and IV, respectively.
Before we study the asymptotic size dependence
of these results [i.e., the value of A. defined in
Eq. (1.1)], we make a few remarks on the physical

meaning of the series in the equations for the
critical temperature especially those of A' X ~.
It is obvious that the N x~ system in the thermo-
dynamic limit N is equivalent to the infinite
half plane considered by McCoy and Wu, and
Binder and Hohenberg. ~' lt can be readily shown
that, from the types of allowable graphs in I', and
I'» of N x ~, the series b, and b» given in Table D
for 1U- ~ are related to the so-called layer (X,)
and local (g, ,,) susceptibilities in the following
and we also quote their values directly from our
results in Table 0:

TABLE III. Summary of T„ofN & N (N = 1-5) systems.

EA EP ESP

4.000 000'
3.499 621 "
3.248 269
3.104 + 0.006
3.005+ 0.015

3 915230
3.436 877 b

3.197 700
3.062 + 0.006
2.980 + 0.015

2.885 390
2.830 932"
2.7614 + 0.0010
2.715 + .0.010
2.670 + 0.030

Molecular-field and Bethe-Peierls approximations.
"Exact calculation (see Ref. 16).
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FIG. 5. Ratio plots for 4&&~ and 2~~ systems with EA boundary conditions.

and

(5.1)

= 1+3w+ 7w'+ 19w'+ 4&w + 127w'+321w'

+ 813w'+ 2041w + 5109w (5.2)

Xj..i =1+&ii (5 3)

= 1+2w + 2w'+ 4w'+ 8w'+ 18w'+ 36w'+ 80w'

+ 170w8+ 382w' (5 4)

to the order of w'.
X,, differs from that of Binder

and Hohenberg" who have calculated X,, and X, ,
to w' in the coefficients of w' and w' which are
given by 815 and 5117, respectively, in their
calculations. However, the series X, , here agree
exactly with theirs to this order w'. The origin
of the discrepancy for y, is unclear. We do not
mean that our results are more accurate, but
the differences, in our view, are small and
should not affect our final results obtained by the
truncation and extrapolation techniques used pre-
viously. Moreover, Binder and Hohenberg also
conclude that the critical exponents denoted by y,
and y~. i of Xi and Xx.x are giv " y 8+ 5 and 0

(or logarithmic divergence found from exact cal-
culations"), respectively.

The authors recently' have studied the value of
~ from the exact results of some N & 1 systems
using either EA or EP on both sides and at both
ends. It was found that ~ = 1 which agree with
those of other studies. "' Assuming this and a
certain asymptotic form of T„, Bolto@ and Gruen"
located the bulk critical temperature by extrapolat-
ing the results obtained from small N xN sys-
tems with EA all around. However, the exact
results on the N && 1 systems cannot draw very
definite conclusions on either N xN or N & ~
systems using these boundary conditions. This is
because the N & 1 systems are large in only one
dimerision and the bulk critical temperatures are
knowne to be different from the Onsager value, as
expected. We will see that ~ = 1 does not hold for
the two-dimensional finite systems considered in
this work.

Since the values of N considered for these 1V XN
and Nx~ systems are very ™11,some modified
form was used to find ~ instead of using the as-
ymptotic form given in (1.1), as usually done. 8 "
In each case, plots of (T„-T,) vs N were
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FIG. 6. Hoot plot for 4 && ~ system with EBP boundary conditions.

carried out for various trial values of ~, where
the results are given in Tables III and IV, and T,
is the Onsager value. The value which gives the
most linear plot for the larger values of K pro-
vides the favored estimate for ~. It is expected
that the results for ~ obtained from N X1V sys-
tems are less conclusive than those from N && ~
systems in which more accurate TN and more
values of Ã are considered. Moreover, the finite-
size effect is greater jn the former cases due to
the existence of the corners, especially for these

small systems. Indeed, the estimations of ~ for
both S &N systems with EA and EP are quite
difficult, and were found to be X= 0.60+ 0.20 in
both cases though they should not be considered
conclusive. The results for Xx~ systems with
sides EA and EP also behave similarly and a
good straight-line fit to ali points (2 ~N) can be
found with X =O.V5. Trial values of A. differing
by + 0.07 clearly display curvature in opposite
senses. They can both be represented approx-
imately by

TABLE IV. Summary of TN of N && ~ (N=1-8) systems.

EA EP EBP-

3.526 445
3.155 924"
2.970 68+ 0.000 41-
2.8546 ~ 0.9020
2.772 5 + 0.003 5
2.713 6 + 0.0047
2.671 3 + 0.008 2
2.638 0 + 0.009 5

3.465 907
3.111801"
2.935 62 + 0.000 46
2.825 2 + 0.002 2
2.746 7 + 0.003 7
2.690 6 + 0.005 0
2.650 8 + 0.008 8
2.6190 + 0.0102

2.885 390"
2.754 434
2.672 52 + 0.000 81
2.6116 + 0.003 2
2.559 2 + 0.005 0
2.515 3 + 0.005 9
2,481 + 0.013

See Ref. 6.
"Exact calculations.
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T"= T, +a/(N+0. 60) '",
where

(5.5)

a=+ 1.84 for EA

=+1.74 for EP.

N'FN2(T) =N'F„(T)+4NE" (T)+ ~ ~ ~, (5.6)

where F (T) and E"(T) are the bulk and boundary
free energy per spin, respectively. The scaling
theory suggests that the shift exponent ~ is given
by 1/v, which is equal to1and1. 56 in two and
three dimensions, respectively. Evidence for
this is given in our Table V. The three boundary
conditions discussed in this paper are at first
sight of the same kind as the free boundary con-

This representation is found to yield the values of
Tz to within 1% down to N=1 in both cases. More-
over, it can be shown that no reasonable straight-
line fit to all the available points (2 &N) for these
N xN and Xx'0 systems with EA, EP, and ESP
can be found with A, =1. The above results for
these systems with EA and EP indicate that
A. =1/y, (=0.70-0.75), where y, is the critical
exponent of layer susceptibility" mentioned before.
However, this does not appear to hold for systems
with EBP. A much higher value (i.e., A, ~2.0) is
likely and no definite conclusion can be made. We
assemble the values of ~ from the literature into
Table V,

A general point remains to be analyzed. Finite-
size scaling theory has been used by Fisher ' to
discuss the way in which the critical temperature
of a finite-sized sample would approach T, as the
size diverges to infinity. We give a brief de-
scription for, say, the free boundary condition.
Consider an N xN cluster; its free energy per
spin E„2 can be approximated asympto'tically (as
long as the temperature considered is not too
close to T,) as

dition in that a surface term in the free energy
has to be inserted. However, our values of X

are substantially less than unity. An explanation
of the apparent inconsistency is that the boundary
conditions EA and EP imply that the parameter s
which acts as a boundary field has to be included
in the free energy. It is assumed that

N2FN2(T, s) =N F„(T)+4NF (T, s)+ ~ ~ ~, (5.7)

where we expect that F"(T, s)=F"(T') as s =0.
Since every physical property involves differen-
tiation of the free energy for the whole system we
can for instance write the internal energy per
spin as proportional to

'FN2(T, s) ~F„(T) 4 &F"(T,s)
&T ~T A &T

4 sF"(T, s) ss
&s &T

(5.8)

and we see that there is an extra term compared
to Eq. (5.6). Since this term contains ~s/'T and
this can be large, it seems that there is a larger
boundary correction in the EA and EP than in the
free boundary condition and this implies a cor-
repondingly smaller value for X. In other words,
the crossover region for a finite system with EA
or EP would be larger than that with the free
boundary condition. A possible physical interpre-
tation of this behavior of EA and EP is that the
spins near the boundary are correlated strongly
with the boundary value s and the amount of a
cluster available for the asymptotic behavior out-
side the crossover region is reduced. In other
words, the effective size of a cluster is less than
the real size. It therefore appears that the EA
and EP are unfavorable in comparison with the
free and periodic boundary conditions. However,
this is certainly not so when we are interested
in the zero-field magnetization, as pointed out

TABLE V. Shift exponents & for finite Ising systems.

2-D
N && N with boundary conditions all around

Periodic Free EA or EP EBP
N && ~ with sides boundary conditions

Periodic Free EA or EP EBP

0.60 +0.20 Not clear - 1nN'

N

0.75 + 0.07 Not clear

3-D
N x N && N with boundary conditions all around

Periodic Free
N && ~ &&~ with surfaces boundary conditions

Periodic Free

1/v3' = 1.56 1/v3 ' 2.0 + 0.1

Exact calculation (Ref. 4).
"Monte Carlo simulation (Ref. 7).
'Exact calculation (Ref. 3).

"Exact calculation {Ref.5).
Monte Carlo simulation (Ref. ].4).

' Series expansion {Refs. 9 and 10).
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in the Introduction. For the EBP, the above
argument does not seem to hold because our re-
sults suggest a value A. &1.

In summary, we have demonstrated how. the
equations for the critical temperature of small
NxN (N=l —5) and Nx ~ (N=1-8)systems with
one of the self-consistent boundary conditions
(i.e., EA, EP, and EBP) can be formulated in
terms of some high-temperature expansion series
which were calculated to ninth and tenth orders.
The series involved in, N ~ for N- are con-
nected to the layer and local susceptibilities
considered by Binder and Hohenberg. " The equa-
tions for the systems with EP and EA are shown
to be related. Their results are similar and
are not as good as those with EBP which is more
complicated. The critical temperatures were all
obtained numerically with the use of truncation
and extrapolation techniques. They do not show
X =1 but those of EA and EP systems indicate
that A, = l/y, while that of EBP is not consistent
with this value. From the nature of the numerical
methods used, longer series are certainly prefer-
able. They not only sharpen the precision of the

estimated critical temperatures and also enable
larger systems to be studied. In this way, more
precise value of 4, can be made, especially for
the N XN systems. We feel that these series
techniques can be further extended to treat larger
systems and three-dimensional systems with the
use of computer counting.
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