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Role of tQe fieformation potential in ultrasonic attenuation by open-orbit electrons in copper

%. M. Theis* and J. D. Gavenda
Department of Physics, University of Texas at Austin, Austin, Texas 78712

(Received 24 October 1978)

We have carried out a model calculation of ultrasonic attenuation in copper as a function of applied

magnetic field for shear waves propagating along [11 lj and 5 along [112j so as to give open-orbit resonances.

The results are in qualitative agreement with our measurements if we use a deformation potential based on

the strained-energy-band calculations of Gray and Gray. Better agreement is obtained by fitting a model-

deformation-potential function of proper symmetry to certain features of the experimental data. However, we

are unable to reproduce the dip in attenuation at the fundamental resonance which is observed experimentally

for sound polarization along 5. The discrepancy may be caused by one of the assumptions made to simplify

the calculations, which include using the free-electron approximation for all but those electrons on open

orbits, taking the electron mean-free path along g to be constant, and assuming that the ionic current is

perfectly screened by the electrons.
I

I. INTRODUCTION

Although some 20 years have elapsed since the
magnetoacoustic effect was first discovered, its
full potential as a tool for measuring, conduction-
electron peoperties has not been realized. The
major stumbling block has been the absence of a
straightforward method for relating the experi-
mental data to those electronic properties.

There have been two widely disparate theoretical
approaches to magnetoacoustic calculations. First,
a purely free-electron or jellium treatment in
which the only forces acting on the electrons are
those caused by collision drag and the self-con-
sistent electric field. This aPproach is exempli-
fied in papers by Rodriguez, ' Kjeldaas, ' and
Cohen, Harrison, and Harrison. ' Second, there
is a real-metal treatment in which the calculations
are carried out in a reference frame moving with
the ions. There is a deformation force related to
the shift in electron energy caused by lattice
strain. There is no collision-drag force in this
frame, but fictitious forces arise from the accel-
eration of t'he reference frame. A self-consistent
electric field also acts to keep the net current
near zero. Pippard' and various other authors'
have set up the theoretical framework for this ap-
proach.

The deformation theories require knowledge of
the deformation potential over the Fermi surface,
but very little is known about deformation poten-
tials in metals. As a consequence there have been
a number of attempts to use the jellium theory to
explain magnetoacoustic phenomena in real met-
als. Satisfactory results have been obtained for
metals with essentially spherical Fermi surfaces,
but major discrepancies arise for metals with
Fermi-surface shapes which lead to sharp reso-

nances in the ultrasonic attenuation, especi. ally
when shear waves are considered as in the follow-
ing examples.

Doppler-shifted cyclotron resonance for Q ~t5,
where Q is the sound propagation vector and 5 the
applied magnetic field, is found to cause pro-
nounced peaks in attenutation at values of B for
which an entire band of electrons is simultaneous-
ly in resonance with the sound field. ' However,
the jellium theory predicts dips, or antireso-
nances. '

Resonant attenuation of shear waves by open-or-
bit electrons drifting along Q also leads to pro-
nounced peaks' (with an important exception to be
discussed below}. The jeliium model again pre-
dicts dips, or antiresonances. '

Various-authors" have managed to get peaks
rather than dips for .the cases just described by
using the deformation theory while ignoring the
self-consistent electric field force which would

greatly complicate the calculations. Neither they
nor anyone else, however, have succeeded in get-
ting quantitative agreement between calculated and
measured attenuation data.

In 1973 Khatri and Peverley" (KP) found the first
clear example of a dip or antiresonance in experi-
mental data. In a copper crystal with Q ~~[111] and

5 ~~[112] so as to produce open orbits along Q, they
found that resonant attenuation of shear waves re-
sulted in either peaks or dips, depending on the di-
rection of the polarization vector. It is obvious
that a correct theoretical treatment must explain
both dips and peaks in the same metal under vir-
tually identical experimental conditions. Ne there-
fore chose this geometry for a model calculation
which includes both deformation and self-consis-
tent electric field fox'ces.

Before undertaking the calculation we repeated
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the KP experiment over a wider range of magnetic
fields and took great pains to eliminate experimen-
tal errors. Our methods and the resulting data
are presented ig Sec. II. The equations we used
in the model calculation are derived in Sec. GI.
In Sec. IV we describe how electron energy shifts
calculated by Gray and Gray'2 (GG) for certain
points on the copper Fermi surface were fitted to
an interpolation function to give the deformatiqn
potential. The attenuation calculated for this de-
formation potential is compared w'ith the experi-
mental curves and then, in Sec. V, we show a mod-
el deformation potential which gives a somewhat
better fit to experiment. In Sec. VI we summarize
our results and speculate why the model calcula-
tions fail to give dips as pronounced as those
found experimentally.

II. EXPERIMENTAL METHODS AND RESULTS

A. Specimen

Open-orbit resonances are observed when the
trajectory of the orbit is parallel to fI and D=nk,
where D =SK/eB is the period of the open orbit in
real space, K is the period in k space, 8 =1.6
x10"emu, ~ is the sound w'avelength, andn is
an integer. Obviously the electron mean free path
l must be greater than D in order for resonances
to occur, thus one requires q)»i.

We used a specimen cut from a single-crystal
copper boule" with a residual-resistance ratio of
35000. Faces perpendicular to [111]were spark
planned and etched before 30- or 50-MHz AC-cut
quartz transducers were attached with Nonaq stop-
cock grease. The thickness of the specimen was
2.87 mm. Even at 30 MHz this specimen had
q)»1.

B. Alignment of the magnetic field

C. Electronic apparatus

E =E,e ~cosql. ,

while that of the quadrature mixer is

sinqI. .
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Since we wanted to compare measured line
shapes with calculations based on constant q or ~,
we employed a phase-locked oscillator frequency
control which maintained constant X in spite of
variations in the velocity of sound near resonances.
The electronic apparatus, shown in Fig. 1, is sim-
ilar to that described elsewhere" except that the
electrical feed-through problem has been elimin-
ated by using a gated oscillator rather than con-
tinuous w'aves. Also, an analog divider in the fre-
quency control loop divides out signal amplitude
variations over a 40-dB range, thus increasing
the dynamic range over which the phase remains
locked. The system operates in the following man-
ner: The signal from the specimen is split by a
power divider and mixed in balanced detectors
with the in-phase and quadrature reference sig-
nals. If the signal at the transmitting transducer
is Epcosvt, at the receiving transducer it will be
Epe ~e"icos&t after traveling a distance L,

through the sample. The dc output of the in-phase
mixer is

In order to obtain reproducible line shapes for
the resonances we found it necessary to have %zQ
to better than 0.1'. We discovered that our 15-i.n.
electromagnet did not rotate about an axis precise-
ly perpendicular to B; therefore we shimmed the
magnet on its rotating mount until the discrepan-
cy, measured by reflecting a laser beam from the
pole faces, w'as less than 0.1'.

Each experimental run began with a polar plot of
the attenuation at fixed B. The specimen holder
was tilted about two perpendicular axes, using
micrometer adjustments, until the polar plot showed
thp proper symmetry for the geometry of the
experiment. Errors of less than 0.1' are easily
detected from such polar plots. "
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FIG. 1. Block diagram of the electronic apparatus.
VFC designates a voltage-to-frequency converter.



29 ROLE OF THE DEFORMATION POTENTIAL IN U LTRASONIC. . . 8859

Since q =&g/v„ the freiluency can be adjusted to a
value &oo (say at B=O) such that cosqoL=1, i.e., qs
= 2'/L, where n is the number of sound wave-
lengths in the sample. Note that this condition
causes the quadrature output to be zero.

Application of a magnetic field will cause the
zero-field sound velocity ve to change to vs+tv, ,
so that qL g2mn. The quadrature output voltage E,
will cause the oscillator frequency to change by

~v =-KGB, ,

where Q is the feedback-loop gain and K is the
freiluency/V coefficient for the oscillator freiluen-
cy control. W'hen the system reaches equilibrium,

q = (z, +a&a)/(v,'+b v,).
For ~v, «v,' and &co«~„

Z, = Z, e ~'q, L(&(o/(o, &v J—v,').
To make the feedback-loop gain independent of

the signal amplitude, an analog divider is included
to divide E, by E before it goes to the frequency
control so that

b (o = -KGq, L(b (o/(os -&v,/v,').
We can now solve for &w in terms of Av, :

~v,
vo 1+&@0/KGqsL

'

For KGq, L»&u„b &o/&u, =Aviv,', thus the freiluen-
cy shift will accurately represent the relative
velocity if the gain G is made as large as possible.
The characteristics of the active filter in the feed-
back loop were chosen to minimize instabilities,
so the system remains phase locked and linear (to
within 5%) over a 40-dB dynamic range. The fre-
quency counter on the oscillator yi.elds velocity
shifts with a precision of about 10 '.

The attenuation sign@. is coupled to a voltage-to-
frequency converter and counter to produce a digit-
al output. The frequency counter on the gated
oscillator provides a digital representation of the
velocity. These digital values are punched on
paper tape for successive values of 8 established
by a digital magnetic field control unit.

D. Experimental results

Figure 2 displays attenuation versus D/X for
polarization of sound parallel and perpendicular
to 5. Note that a large peak in attenuation occurs
for ion velocity II )) 5 at D/X = 1, while a small dip
occurs for 5&XL The depth of the dip is propor-
tional to frequency in the 25-40-MHz range. At
D/X =2 the situation is reversed The highe. r reso-
nances for II )~5 have complex structures, so we
confine our attention to the first two resonances in
the sections which follow.

E0I ~
LD

E
O ~
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FIG. 2. Measured attentuation of shear waves pro-
pagating along fill) in copper with B~)[112]. B is the
period of the open orbit and is inversely proportional
to B. (a) Polarization parallel to 8 at a frequency of
46.S MHz. (b) Polarization perpendicular to 8 at a fre-
quency of 35.7 MHz.

III. CALCULATION OF ATTENUATION FOR OPEN ORBITS

The method adopted for the calculation of ultra-
sonic attenuation in the presence of a magnetic
field is based on Pippard's theory. 4 The forces
on the electrons are taken to be those arising from
the deformation potential and a self-consistent
electric field, viewed from a reference frame
moving with the crystal lattice. A relaxation
time 7 is assumed to describe the scattering of
the electrons back to equilibrium. The sound fre-
quency and magnetic field strength are a.ssumed
small enough to allow the electrons to screen the
ionic current completely.

We choose coordinates such that 5 is along s
and Q is along x. Although the acoustic and elec-
tromagnetic fieMs vary as e'~'" ~', the equations
are greatly simplified if we ignore the time depen-
dence. The approximation is valid for ~7«1,
where & is the sound frequency.

If a force I4" acts on the electrons, the excess
energy of those which arrive at x = 0 when t = to is

&e""exp — dt ~

This can be transformed to an integration over k,
by using the equation of motion, dk„= (K/D)v„dt,
where K/D =eB/L Since x = (D/K)(k, —k'„), where
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k,'=k, (/, ),
0

exp iq—

ky
0

x exp —— v„7 dky ck~ q (2)

(6)

One can show that dS/v = dk„dk, /v„on the Fermi
surface, so Eq. (5) substituted into Eq. (6) yields

e/, ~ Ja„dk,
4s 'a- ~ 1+iq/„(1-n)t/f))

where

"z~s/1T. V (2min~k
a„(k,) =K ' '

I

'
expI

"-X/2 x
(4)

Note that there are generally two sets of a„(k,),
corresponding to k„&0 and k„&0, respectively.

As a further simplification w'e assume that the
relaxation time is such that l„=v„r is constant.
With these definitions and assumptions Eq. (2) re-
duces to

~ a„(k,) exp(-2vin k„ /K)
& +i q/, (& -nX/f))

The electronic current can now be calculated
fr OIQ

where k,"=k,(t--~).
When dealing with open orbits along Q, i.e.,

along k„ this integral can be reduced to a sum by
making use of the periodic properties of /1(k, ) and

%(k„). We expand

11.0 "
~I' 2sin-k,

x —exp

Igq l2
n = (4s'/fMv, u') ' ' " dS, (10)

where M is the density of the metal, v, the velocity
of sound, and u the particle velocity.

The assumption of perfect screening implies that

Replacement of /1 0 by Y' in Eq. (4) causes the sec-
ond integral to become K%„*(k,), so

e/„K ~ faz%„*dk,
4w'I ~ 1+iq/„(1-nX/DP'

We set 1T = -eR in Eq. (4), find the current f
caused by R, and define the conductivity o by c ~ R
=X. The result is

e'/„K ~ g%„"%„dk,~ &+iq/„(l. -n) /D)

In order to find the attenuation we must calculate
the total excess energy 4e, resulting from the de-
formation force 1T'" and the self-consistent elec-
tric field force -eR". The attenuation is given by

TABLE I. Deformation-potential interpolation functions and coefficients fitted to values
calculated by Gray and Gray The su. mmation g implies a permutation of the crystal coor-
dinates kt, k&, and kp. Here, C(2x) =cos(p ktap) S(px) =sin(pkfap), etc.

Fitted
coefficient

(Hy) Function

Hydrostatic

Tetragonal

Trigonal

0.393

-0.201

-0.952

- -0.274

-0.110

-0.062

-0.740

-0.261

-0,679

P~ C( p x)C( p y)

5 c()
P c( )c(+y)c(&z)

2C(+px)c(+py) -C(+px)c(gz)

-C( p y)c(gz)

C(~}+C(y) -2C(z)

c(~2z) IC(~2~) C(y) +C( )c(~2y)]

-2C(z)C(2 g}C(2y)

p s(~x)s(~y)

p s(z) [s(~px) c(~py) +c(~2x)s(~py) 1

+~2 p C(z)S(px) S(~y)]

Q S(x)C(y)
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the current produced by E must be the negative
of S"', the current produced by Tf"', therefore

strain. The net excess energy of an electron is
thus

'Nsc 'f def bE~ = n%'. (b, k —b,k~). (20)

If we take Eq. (8) to define X4" when a„ is a Fouri-
er coefficient of Qd'f %'/v„, we obtain

gg0 8l„K 1~ f Qg%„dt's (12)~ I+iqi„(1 -n~/D)'

Now, with 1T =1T~"-eR" in Eq. (4), Eq. (5) yields

Q„-eR" %'„)exp(-2min k, /&)
1 + iql, (1 -nX/8)

and the attenuation is

Xl„~f, (a„-eR" %.)'dk,
4~3NMv, n* ~ I+qai2, (1 -n~/Il)2 ' (14)

Q Qdef +&80 + Q g P

where

(15)

o.„,= Q A„„)a„)'cm„ (18)

„= mph J IR" &„I'u„

The final result contains a term entirely due to
the deformation potential, one due to the self-con-
sistent field, and a term involving both. These
can be written

The energy shift bE~ calculated by GG is defined
in terms of an "unscaled" change of wave vector

bk~ = v(b-.E bE-~)/Iv, (21)

whereby =4k +& %~=be~-bk. BycombiningEqs.
(20) and (21) we find that bE~=bE~-bE~, so the
rate at which work is done on the electrons for the
path integral in Eq. (1) becomes

5 0 =iqu(bE~-bE~). (22)

Note that 4E~ vanishes for volume-conserving
(shear) strains. Its value for hydrostatic strain
is given in Ref. 16.

In order to make use of the energy shifts calcu-
lated by GG, an interpolation function must be
found so that energy shifts at points other than
those calculated can be approximated. The func-
tion must have the symmetry of the strained lat-
tice. Using a procedure described elsewhere, "
we obtained the interpolation functions for each of
the basic strains as given in Table I.

Next, the ultrasonic strains employed in the ex-
periments must be mitten as a linear combination
of six basic strains e&, which we took to be the hy-
drostatic strain, the tetragonal extensions along
[001] and [100], and the trigonal extensions along

a, = —2e QA„Re(R". JVa„"dk, ~, (18)
O

,[1+q'l'„(1-n~/a)']-'.

The first two contributions -to the attenuation are
clearly positive, but it is not so obvious what the
sign of z, will be. We next introduce a model de-
formation potential for a specific metal, copper,
and evaluate the components of o..

Ct'

OI'

O

IV. DEFORMATION-POTENTIAL INTERPOLATION
FUNCTION

Gray and Gray' have computed electron energy
shifts at four high-symmetry points on the copper
Fermi surface for hydrostatic, tetragonal, and
trigonal strains. The relationship between these-
shifts and Pippard's deformation force will now
be explored.

In the reference frame moving with the iona, the
effect of a sudden strain c is to change the wave
vector of an electron on the Fermi surface by an
amount hk = -~ ~ k. The electron tends to relax
back to the new equilibrium Fermi surface, which
has shifted by an amount hk~ is a result of the

IX
O
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O
l 05 0

ky/K

0.5

FIG. 3. Electron energy shift in Ry/{unit strain) for
the central open orbit along [110]. The dashed curve is
the interpolation function fitted to the points calculated
by Gray and Gray in Ref. 12. The solid curve is the ex-
perimentally fit model deformation potantial. {a) Pol-
arization along B. {b) Polarization perpendicular to B.
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[111], ['Y11], and PI'I], respectively. Thus we
solve

$5 +'fl Q qu
Q E'

L7 (d g-"1'

for the c&, and compute

hE(e, k}= c~hEo(e~, k}

(23)

(24}

C)

E

I c
tD

for each ultrasonic strain. The nonzero c& for
u[[5 are c =2/3%, c =1/aft, and c, =c =1/4'.
For ux5, they are ca = 2/3&6, ca = 4/3V 6, and ce
=-c,=1/4v 6 ~ Here and in Table I k„k„and k,
are along the crystal axes.

The energy shifts for the two ultrasonic strains
used in the experiments are shown for the central
orbit of the open-orbit band by the dashed lines in
Fig. 3, plotted as functions of k„. Note that EE(k„)
for lI ))5 is symmetric, while EE(k,) for 5&5 is
antisymmetric. One could have predicted these
symmetries from the symmetries of the Fermi
surface and of the respective strains. Consider
again the coordinate system with x along Q, z
along 5, and y along Sxg. The strain tensor e„
for u ~~XI vanishes except for e„,=e„, whereas e,
for 6&5 has only e„,=e nonmero. These orbits
have a reflection symmetry operation o„about the
k„=O plane. The strain tensor e„ is even under a
similarity transformation o„, while e~ is odd.
Since 4E wi.ll have the symmetry of the strain,
the results noted above follow.

The interpolation functions for 4E are used in a
numerical calculation of the Fourier coefficients
defined in Eq. (4), with K.fr given by Eq. (22)"
These coefficients are then substituted into Eq.
(16) to find n~„, the deformation attenuation. Of
course, one must also evaluate R .'0„ in order to
make the calculation self-consistent. Further-
more, we have made no mention of the effects of
those electrons not on the open-orbit bands.

Fortunately, some of the main features of the ex-
perimental data are reproduced by n„„ the attenu-
ation calculated for the deformation force alone
using Eq. (16). The solid curves in Fig. 4 show

f for the two pol ari Rations. Note the enhance-
ment of the odd harmonics for e „and even for ~,
in qualitative agreement with the experimental
curves shown in Fig. 2. The harmonic structure
is explainable by the shapes of the hE/v„plots in
Fig. 5. For qf » 1, o.d„at D/X =n is proportional
to )a„~ averaged over k,. If

&E(k„+—,'K)/v„(k, +—,'K) =&E(k„)/v„(k„),

only even harmonics will be present. " If

&E(k~+a K)/v„(k„+ a K) = EE(k„)/v„(k„), -

C3
LO

I

I p

FIG. 4. Contributions of open-orbit electrons to the
total attenuation for a deformation potential fitted to the
calculations in Ref. 12. This deformation potential is
also used in Figs. 5 and 8-11. The solid curves repre-
sent ed,&, the dashed curves O.s„and the circled 0. &.

(a) Polarizgtion parallel to B, ql„=36. (b) Polarization
perpendicular to B, q/„= 26.

only odd harmonics wi.ll be present. Figure 5
shows that hE/v„ for e „approximately satisfies
the first criterion, while for c~ the second is ap-
proximately satisfied. These symmetries are a

)C

C)
LLI

(o)

o
CI

CV
I

-0.5 0
kV/K

0.5

FIG. 5. b E /v„along the central open orbit for (a}6

polarization parallel to B, and (b) polarization perpen-
dicular to B. b, E~ is in Ry/(unit strain), and v„ is in
units of vo, the free-electron Fermi velocity for copper.
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consequence of the fact that the four bands of open
orbits which lie in the four quadrants of the k„k,
plane are related through both inversion and trans-
lation by —,'K along k„.

Electrons from the remainder of the Fermi sur-
face must be included and the calculation must be
made self-consistent. These are on closed orbits
for 0.15 &)k,ap/2m)&0. 8V, and open orbits along k„
for ) k,a, /2m' &0.15.

In order to simplify the remaining calculations
we assumed that these electrons were on a spheri-
cal free-electron Fermi surface with radius kp
and relative density of states N. In the final cal-

' culations k, and N could be treated as adjustable
parameters. The mean free path for these elec-
trons was taken to be equal to l„.

In order to find 2" from Eq. (11) one must cal-
culate o for both open and closed orbits, invert it,
and multiply it by the total deformation current.
The conductivity for the spherical Fermi surface
was calculated from the equations in Ref. 3. Be-
cause of the symmetries of the four bands of open
orbits running along k„, the integral in Eq. (9) can
be reduced to an integration over a single band of
open orbits in the expression

2
~~ Kao ~ JY'+%„d(k~ao/2s)

( )o 1$r) 2m ~ 1+i@i„(1-nX/8) '

N

C3

CL,

N

C3

Q,

N

I

C)

M
P7 ~ I

2
0/h

C3
C)

I

2
0/X

FIG. 7. Field-dependent elements of the resistivity
tensor for the combination of the open-orbit conductiv-
ity in Fig. 6 apd that for a free-electron spherical Fer-
mi surface (pp=1/o p).

O

bo
0N

b

where ap=ne wgm, P p= l„/vl vo=a'(Swan)'~'/m,
. n=4/ap~ and a, is the length of theunitcellcontain-
ing four conduction electrons. Kith the assump-
tion that l,„ is constant we find o„„=g„„=0.Fur-
thermore,

O
O 0

t3 ' K Ka
o &16: (26)

bo —.

h4
N

O

O

. 0

0
h4

bJ00
I

OJ00

0
OJ00

I

b ~~O
bw o

O
0

0/X

~ OJ00
I

0 2 4

N00
I

I . . ~

0 2 4

FIG. 6. Field-dependent elements of the conductivity
tensor for copper resulting from open orbits when 8
is along [11%]. Here qf „=36 and o p=nePr p/m, where
T p

= l &/v p and v p
=5(3p' n )

~~ P/m .

FIG. 8. Open-orbit contributions to the deformation
current in units of net for ql-.-36. (a) Polarization
along B. Q) Polarization perpendicular to B.
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8 KQP(1 2)2) f ~
g-

dy (27)
16m 2w

where K, is the width of an open orbit band and v,
is the average of v,. on an orbit. The field-depen-
dent elements of the open-orbit conductivity are
shown in Fig. 6. The resistivity tensor elements
obtained by inverting the total conductivity are
shown in Fig. 7. Open orbit resonances cause
peaks in p„„and dips in p„„and p„. This is con-
sistent with Sievert's results' for overlapping cy-
lindrical Fermi surfaces in the free-electron mod-
el.

Th d formation currents caused by the open or-e e
tbits are shown in Fig. 8. Note the large resonan

current in the y direction for u ~~5, and xn the g

direction for 5&%. These arise because the Fermi
surface does not have central symmetry in the
planes containing the open orbits. The open-orbit
currents are added to those from the free-electron
sphere and multiplied by the total resistivity ten-
sor to give the self-consistent electric field com-
ponents shown in Fig. 9. These are substituted in
Egs. (1V) and (18) to obtain o,„and c.„respective-
ly.

The contributions of the open orbits to +d f
and ~,. are shown in Fig. 4 for the two polariza-
tions. Closed-orbit contributions are shown in
Fig. 10. The total self -consistent attenuations

(a)

E
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I

JI l

t( () I

II
/

II

II
II
II

/ &

/ /

/

Ig
/

C7~ N
E

O

(b)
/y

q/

I p
0/A

axe shown in Fig. 11. It is obvious that the defo-
mation contribution from the open orbits is the
principal mechanism for the open-orbit reso-
nances. For 5&5 the self-consistent field term

FIG. 10. Closed-orbit contributions to the total at-
tenuation. The solid curves represent o.d,&, the dashed
curves n„, an e ci cd the circled 0' . {a) Polarization~arallel
to 8, ql =36. {b) Polarization perpendicular to 8, q
= 26.
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FIG. 9. Self-consistent electric field in units of
neu/o 0 for ql~= 36. {a) Polarization parallel to 8. {b)
Polarization perpendicular to 8.
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FIG. 11. Total self-consistent attenuation calculated
for a deformation-potent''al function fitted to the energy
shifts calculated for copper in Ref. 12. {a) Polarization
parallel to 8, q/= 36. {b) Polarization perpendicular to
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. and e ansion coefficients b~ for ultrasonic strains. The b, areTABLE II. Deformation-potential basis functions f; and expansion
8 /(unit strain). The notation used here is that

C{ x+2 y+z) = cos(2 k~ao+2 k2ao+k3ao)2X 2

for crystal coordinates, and

S(X—+2Z)S(F) = sin(k~ao/&2-+2ksao/ 6) sin(k&ao/2&2)
A A

for experimental coordinates, where P =B&q.

0.0999

0.1256

3 0.0190

0.1033

0.0989

0.2018

3 -0.0053

f~ (crystal coordinates)

C( x ++z)+C(+y + 2 z)-2C(+2g ++2y)

2C(z)-C( )-C(y)

C(gx -y —
2 z)+C(x —

2 y+2 z)-2C(x+2 y+2 g}

-2C(2 x+y+$z)+4C(2 x —
2 y+z)+4C( 2 x —

2 y —g)

+4C(2 x+2 y+ z)-5C(+2x-+2z+y)-5C{g ++~y -+2z)

C(x + z)+C(y+ z)-2C(g +y)

C(~2x +~2 z)-C(~2y+~2z)

C(g )-C(y)

C(~+ y- z)-C( &+y-&z)+2C{&&-»+z)1.

—2C( jx —
2 y —z)+2C(x ++qy + 2 z)-2C( 2 x +y + 2 z)

+3C(x-2 y+, z)-3C(, ~-y-, z)

f~ (experimental. coordinates)

-2C(X+ Z)+2C(X -+2Z) C(Y)

2C{X-2Z)-2C{X+Z) C(2 Y)

4C(2X —Z)- [4C(2X+$Z}+10C(X+ 5Z/2} }C(F}

+8C{X—2Z) C(2 Y)+2C(X —
2 Z) C(3Y)

-2C(2X+ 2Z)+2C(2X —Z) C(2Y)

-2S(X-j2- Z) S(Y)

-2S(X + Z) S(2Y)

—(4S(2X ++pZ)+2S(X + 5Z/2) ]S(1')

-4S(X -2Z) S{2Y)-6S{X—+2 Z) S(3Y)

4 0.0441 C(g+z)-C(y+z) -2${2X—Z) S(2Y)

from the spherical Fermi surface in Fig. 10(a)
shows magnetoacoustic oscillations which cause
the bumps in Fig. 11(b) near D/x =2 and D/X =4.
The are not seen in the experimental curve, in-ey
dicating that representation of the closed orbits
by a spherical Fermi surface is not valid in this'
respect.

mental strains as shown in Table II, thus we can
write

aZ(k) =Q b~f, (k)

V. EXPERIMENTALLY DETERMINED MODEL

DEFORMATION POTENTIAL

Although the principal features of the experimen-
tal curves in Fig. 2 are reproduced by the calcu-
lated curves in Fig. 11, there is one obvious dis-
crepancy: no dips appear in either of the calculat-
ed curves. %e now consider whether some other
deformation-potential function of the pg oper sym-
metry could yield smaller n„, and e„, and larger
negative p, to cause dips.

Instead of using basis functions defined in terms
of the basic crystal strains (hydrostatic, etc.) it
becomes-more convenient to pick basis functions
which are natural to the ultrasonic strains e „and
e~. A model deformation potential can then be ex-
panded in terms of these basis functions and the
coeffic ents varied until the sizes of the resonances
are approximately the same as those found experi-
mentally.

Using the method described in Ref. 17we obtained
four basis functions f~(k) for each of the experi-
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0

FIG. 12. Contributions to the attenuation when polari-
t' n is parallel to B for a deformation potential fitted

to experimental data. This deformation potenti'al is a-
so used F 13 and 14. The solid curves represent
nd, z, the dashed curves 0,„, and the circled e;. (a)

n rb't contributions. (b) Closed-orbit contributions.
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This expansion, combined with Eqs. (4) and (22),
leads to

I
K/2

K (29)

In an attempt to produce dips in the attenuation the

b& were chosen so that a~,f(n = 2) =0 for e„and
(n=1) =0 for e, . In addition the larger peaksdef

were made to have magnitudes near those mea-
.sured. The resulting coefficients for the model
deformation potential are given in Table II.

The various contributions to the attenuation for
this model are shown in Figs. 12 and 13 for the
two strains. In Fig. 12(b) we see that n„ for the
closed orbits has a small dip at n=2 which leads
to a very slight dip in the total attenuation shown
in Fig. 14(a). There can be no dip atn=1 for e~
because there is essentially no background attenu-
ation which could have a dip. Thus, unless one
can find a mechanism for the high-field attenuation
found experimentally, there is no hope of obtain-
ing a dip in the model calculation. The frequency
dependence of the depth of the dip indicates that
the background attenuation increases linearly with
frequency.

The model deformation potential is compared
with the interpolation function based on the calcula-
tions of GG in Fig. 3. The two sets of functions
coincide in the vicinity of the Q and P points cal-
culated by GG on the necks of the Fermi surface.
The overall agreement is surprisingly good, con-
sidering that there were no adjustable parameters
in the calculation using the interpolation function.

2
0/X

FIG. 13. Contributions to the attenuation for polariza-
tion perpendicular to B. (a) Open-orbit contributions.
(b) Closed-orbit contributions.

a'
0/X

FIG. 14. Total self-consistent attenuation calculated
with a deformation potential fitted to experimental data.
(a) Polarization parallel to B. (b) Polarization perpen-
dicular to B.

VI. SUMMARY AND CONCI. USIONS

Our experiments have confirmed the existence of
dips as well as peaks in the open-orbit resonant
attenutation for Q)~ [111]and 5

)~ [121]. A model cal-
culation using Pippard's theory and a deformation
potential consisting of an interpolation function
fitted to energy-band shifts calculated by Gray
and Gray agree well with the experimental results
except that it fails to give any dips.

A par ametrized mode1 deformation potential
leads to a small dip for the n =2 resonance with
u ~~5, but cannot give a dip for the n=1 resonance
with 5&5 because the calculated background atten-
uation vanishes in the high-field limit for our mod-
el. Possible explanations for this failure are list-
ed below.

Free-electron approximation for all but the reso-
nant oPen o~bits. This approximation greatly re-
duced the computational effort but is the most like-
ly cause of the failure to get a high-field dip. The
next simpler approximation which might improve
the calculation would be to introduce a simple ad-
ditional deformation potential over the spherical
Fermi surface to increase the deformation current
while retaining the same conductivity.

Constant ql„. The effect of assuming ql„ to be
constant on the open orbits causes o„, to vanish for
these orbits. However, the closed orbits domin-
ate the conductivity anyway, so this approximation
is probably not important.



19 ROLE OF THE DEFORMATION POTENTIAL IN ULTRASONIC. . .

Perfect screening. The assumption that the total
current i:s zero implies perfect screening. The
correct treatment would simply replace Eq. (11)
by Mmvvell's equations. For free electrons Merts-
ching' shows that this causes the high-field atten-
uation to approach &o'r'/(1+4ql /3m) times the
zero-field value. At the frequencies employed
here this amounts to a correction of only a few
percent, insufficient to explain the high-field dis-
crepancies.

%e have shown the feasibility of determining the
strain dependence of the Fermi surface of a metal
which supports open orbits by fitting open-orbit
resonance data to a parametrized model calcula-

tion. It should be possible to determine the defor-
mation potential over most of the Fermi surface
by using a variety of orientations of 5 and Q.
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