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Comment on temperature variations near a surface in He II
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An order-of-magnitude estimate is given of the temperature gradients in superfluid helium

near a heated surface.

I. INTRODUCTION

In many circumstances superfluid 4He acts like a
thermal superconductor. " Thus if the viscosity of
the normal fluid is neglected, the heat flux vector j is
related to the temperature gradient '7T by

whereas the heat flow in normal systems obeys
Fourier's law

magnitude theoretical estimate of the size of the ex-
pected temperature variations.

II.- CALCULATION OF AMPLITUDES

For a review of the relevant background theory see
Refs. 3, 4, and 6. At the temperatures of interest
(T (0.5'K) the only excitations in liquid helium are
long-wavelength phonons. Their distribution func-
tion n~ obeys the linearized Boltzm'ann equation

j~ —VT 9n~ 9n~ —v ~ Vnt, cori

(4)

A consequence of Eq. (I) is that, in the steady state,
no temperature gradients can exist within the liquid.
However, near to a boundary across which heat is
entering the liquid, Eq. (I) does not hold, 3 4 and it
has been predicted theoretically that temperature gra-
dients can exist in the liquid near the surface. These
temperature gradients occur within a distance from
the surface of the order of the mean free path of an
excitation (phonon or roton). To calculate the tem-
perature distribution in this boundary layer it is
necessary to use a microscopic theory based on a
Boltzmann equation for the excitations in the liquid.
For a boundary surface lying in the plane z =0, the
theory predicts that the temperature in the liquid
should be of the form

(3)

The sum is over a set of "modes, " each having an
amplitude A; and a decay length 8;. T0 is the tem-
perature in the liquid far from the surface. Twerdo-
chlib and Kirk' have performed an experiment to
look for temperature variations of the form of Eq.
(3). To within the accuracy of their experiment they
detected no temperature variations within the liquid.
They pointed out that their experiment did not prove
the impossibility of surface modes, but only gave an
upper limit on the magnitudes of the IAI} coeffi-
cients. In the present note we present an order-of-

(Bn,/Bt)~I is the coliision term and v, is the
phonon-group velocity. The equation is linearized by
setting

n~=n~ +Sn~0

where n~ is the equilibrium Bose-Einstein distribu-
tion function corresponding to temperature TD, and
Sn~ is small. In the steady state, Eq. (4) becomes

0= J C(p, p') gnp —vp '75np

where C describes the collisions. One solution of this
equation is

yo(p) =p, np'(np'+ I)

This solution corresponds to a perturbation in which
the gas of excitations has a uniform drift velocity
away from the surface. . There is no spatial tempera-
ture variation associated with this solution. There are
also solutions of the form

y, (p,z) =f np~(np~+1)e ', i =1,2, ...,

where f, is some function of p. In general, the distri-
bution function p~(p, z ) for the ith solution will con-
tain. a part that corresponds to a temperature. By this
remark it is meant that for these solutions

J~ ay;(p)dr, 40,
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and so the energy density of the excitations, and
hence the temperature, varies with z. It is these solu-
tions that correspond to the modes that enter in Eq.
(3).

The solution of the Boltzmann equation can be
written

hT =3Q/C„c (17)

Hence, this is the order of magnitude of the spatial
variation of the temperature in the liquid.

Sn = BDQD(p ) + $8;Q;(p, z ) (10) III. RELATION TO EXPERIMENT

Q = BDC„TO/3/3 (12)

or

Bo = 3PQ/C„TO (13)

Thus the order of magnitude of 8;f; must be

3pQ (p) /C„Tp (14)

where (p) is the average magnitude of the momen-
tum of a phonon. Hence the phonon energy density
in the modes i at z =0 is of the order of

Jt (3PQ (p)/C„TO) &~neo(npo+ I) drp

—(3PQ/C„Toc) Jt e, no(n,0+1)drp

=3Q/c (16)

where c is the phonon velocity. Thus the order of
magriitude of the temperature due to the modes i at
the surface is

where Bo and the (B;j are some coefficients. These
coefficients are determined by a boundary condition
at the surface. The precise form of this condition is
not known, and must depend on the details of the
surface (composition, smoothness, etc.). We do not
attempt to go into these details. Our approach is as
follows: There is no reason to believe that Po satis-
fies the boundary conditions by itself. Thus we ex-
pect that BDPD and $,. 8;Ill;(p, z =0) must be of the

same order of magnitude. %e can relate BD to the
rate of flow of heat Q per unit area of the surface. It
can be shown, in a straightforward manner, that the
heat current density j for the distribution (7) is

j = C, To/3/3,

where C, is the specific heat per unit volume at tem-
perature To, and P =1/kTO. Thus we have

These temperature variations should, be experimen-
tally observable only over a restricted range of am-
bient temperatures. This is because of the lengths 5;
change very rapidly with temperature. Above about
0.4 K, for example, the longest of the {5;I becomes
less than a millimeter, and so the ~hole temperature
variation occurs very close to the surface. Below 0.2
K, on the other hand, the longest of the [5;j becomes
several centimeters (—6 cm as estimated in Ref. 3).
To observe this one clearly needs a large volume of
helium.

Twerdochlib and Kirk' have carried out experi-
ments at several temperatures down to 0.1'K. Their
helium sample was held at a pressure of about 2 bars.
If we insert experimental values for C„(see Ref. 8)
and cat 2 bars we obtain

AT =5 x10 5Q/T3-
where Q is measured in mW cm 2 sec ', and 5 T and
To are in 'K. In the measurements of Twerdochlib
and Kirk two methods were used to determine AT.
However, even for their more sensitive detection
method the magnitude of the 4 T they could resolve
was always at least one order of magnitude larger
than the d T predicted by Eq. (18). Thus the conclu-
sion is that an even more sensitive detection scheme
will be needed before these temperature gradients can
be observed.
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