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An effective spin-
2

antiferromagnetic system has been studied using correlated-effective-field

theory, which, in contrast to mean-field theory, can explain the first-order magnetic transitions

observed in many antiferromagnetic compounds. In this theory fluctuation is introduced

phenomenologically via the temperature-dependent correlation parameter. The magnetic sus-

ceptibilities in the ordered, as well as in the paramagnetic phase, are calculated for K21rCI6 and

(NH4)2IrC16 compounds and an excellent agreement with the experimental results is obtained.

Magnetic susceptibilities of ammonium and potassi-
ttm hexachloroiridates [(NH4) 2IrC16, K2irClq] were
measured by Cooke et aI. ' in po~dered samples as
early as 1959. The results were compared with the
theories available at the time, viz. molecular-Geld
theory and high-temperature series-expansion formu-
la of Danielian and Stevens. 2 The agreement in. the
ordered phase was not good. Later De et al. ' have
obtained better agreement using self-consistent
molecular-field theory. Since in mean-field theory
fluctuation is not considered, this theory fails in the
critical region where fluctuation becomes important.
Moreover, mean-field (MF) theory always overesti-
mates the transition temperature. Correlated-
effective-field (CEF) theory, on the other hand,
predicts a transition temperature very close to the ex-
perimental one. ' Neutron-diffraction measure-
ments ' at low temperature reveal the magnetic
structure of the compounds under investigation. In
MF theory there is no scope for introducing the mag-
netic structure. The magnetic structure can be incor-
porated in the CEF theory developed by Lines, -and

therefore more realistic models can be solved with

the help of this theory.
The hexachloroiridates have an antifluorite type of

lattice. s The (IrCl6)' octahedra are in a closed
packed (fcc) arrangement with K atoms (NH4

groups) occupying all the tetrahedral sites. The Ir~+

ion, in an octahedral crystal field of Cl ions, has t2,
configuration and the ground state is 'T2, . This state
splits up into a doublet I 7 and a quartet I'8 by the
spin-orbit interaction and the doublet lies lowest. Ir4+

belongs to the third series of transition-metal ions
Sd" and therefore, has strong crystal-field and spin-
orbit interactions and larger covalency than the 3d"
ions. Though there is no direct overlap between two
Ir + ions, there is an indirect overlap via Cl ions,
This is because Sd wave functions are extended and
therefore, the Sd electrons of Ir4+ ions are partially
delocalized. This delocalization phenomenon which
results in covalent bonds, also plays a decisive role in
the origin of exchange interactions in magnetic insu-
lators. As a result, phase transitions are observed in
magnetic insulators at temperatures depending on the
strength and path of the superexchange interactions.

The spin-orbit interaction being high, only the
lowest doublet I 7 contributes to the magnetic proper-
ties in the range of temperature 0—20 K. The mag-
netic structure of K2IrC16 was found to be of type
IIIA ' in which the spins are aligned along the stack-
ing axis. Assuming the direction of spin alignment to
be in the Z direction, the problem has been solved
numerically. In fcc type-IIIA magnetic structure,
each ion has four nearest neighbors parallel and eight
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nearest neighbors antiparallel. Out of six next-
nearest neighbors, four are parallel and two are an-
tiparallel. This magnetic structure has been included
in the present calculation.

In the CEF theory developed by Lines, ' static spin
correlations are taken into account. In this theory
each spin SJ appearing in the equations of motion of
a particular spin SI is replaced by the sum of two
terms as follows:

SP-(Sy) +A y(sy- (Sy)), (~=xyz),
jj

where (S&y) represents the thermal average of Sj',
and A ~ is the temperature-dependent static correla-
tion parameter. Using the above replacement of the
spin operators the effective Hamiltonian for the ith
ion in absence of applied magnetic field can be written.

qr eff XJy&y(S, y)2 2 X Jy S (y(S )yrsy(Sy))
~J Jy

where ay (y =x,y, z) are parameters defined by

$A y Jq =ay/ JJ .
J J

In the above equation the first term represents an
effective anisotropy energy and the second term
represents the interaction of ith spin with the corre-
lated effective field. The static magnetic susceptibility
X~ is then given by

&'(q) = (&[ 2" [ ['))1

kT
2[&'(q) — "2(0)I((0 . S ))'

kT —2 [2'(q) — "2"(0)[ ((S;":S ))

(2)

kTX" = I kTX"(q) = N((xr:0; ))

+ X U'(q),

where

2 Ir"(0 ) — "2"(0)[ ((1N': s,"))
'

U'(q) =
kT —2[2'(0) — '2"(0)l ((S:S ))

Again from the fluctuation theorem we have

XkTXy(q) =i[))(([M„".p )) .

Therefore, the condition X, U'(q) =0 has to be
satisfied, and from this condition the correlation
parameters are determined. Using this condition,

Jy(q) kT

q kT —2[Jy(q) —ayJy(0)] (S(y: S(y)

XJ"(0)
, (9)

which is computationally more convenient than the
expression used by Lines, ' Eq. (9) is solved self-
consistently through Eqs. (5)—(7).

For the compounds of interest the ground state is
an effective spin- —,

'
state so that we have

I" =gP, BS~",

where g is the effective-spectroscopic splitting factor.
The susceptibility given by Eq. (2) then reduces to

p„denotes the probability of occupation of the eigen-
state ~n ) of the effective Hamiltonian (1). Now
summing over q in the fiist Brillouin zone we have

where

J(q) =
r NN, NNN

Jiq r

g2~2 SP 0 SP
(10)

kT-2[2"(q)- 2(0)[((S, :S, ))

p, )
= (KL[ + 2S() Ilk s (4) and the uniform molar susceptibility (q =0) is given

by

A:B = A:B — A B

(A:B)= Xp„A„„B„„
n

+kT A„8 „+A n8n

mWn Em

Ng p,g SI '. SI
x"=—

k T —22 (0) (1 — ') (( S,":S;"))

As the magnetic structure sho~s the spins to be
aligned in a given direction, say z, then for fcc type-
IIIA structures, the Hamiltonian (1) becomes

(A) =Xp, A„„.
= —(12J +6J ) [ "(S,")'+ '(S)')' + '(S;*)'1

+ (S(') [(8Ji —4Jz) +12(2J, + J2) 0(']Sq', (l2)
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where J~,J2 are the isotropic nearest neighbor and
next-nearest-neighbor interactions respectively. In
the paramagnetic phase we have (S,') =0 and we

have a"=u~=o.'. For spin-2 systems, the first term

in the Hamiltonian (12) can be ignored for statistical
averaging as it gives a constant term in the energy.
Using the Hamiltonian (12), Eqs. (5) and (7) be-
come

0.5—

Q.4—

0.2-

g=1.55 J1= -2.5 cm ' J2--0. 1 cm '

(S;*)= —
—, (tanhx),I

(Sl:Sl)) = —, (1 —tanh'x),

((S,*:S;*))= (S/:S() =(tanhx)/4x,

where

FIG. 2. Variation of order parameter with temperature.

x = [(8J) —4J2) +12(2J) + J2)(h'] (S(')/2kT .

These equations are solved simultaneously with Eq.
(9). Once a self-consistent solution is obtained for
(S*) and a' at a particular temperature, the suscepti-
bility is calculated from Eq. (11), The average sus-
ceptibility is given by

xtt„= 3 (x))+2'),1

where XII corresponds to X„and Xj to either X„or X,.
We have XII = Xj in the paramagnetic phase, and in
the ordered phase we have

Type IIIA magnetic structure is stabilized by both
nearest neighbor and next-nearest-neighbor interac-
tions of antiferromagnetic nature. ' " Therefore,
with a suitable choice of the parameters J1,J2, suscep-
tibilities are calculated. For K2IrC16, g =1.S5 is used
and for (NH4)21rCI6, "g =1.79 is used. The results
are shown in Fig. I, where the experimental results

are also shown by dots for comparison. As the figure
shows there is very good agreement over the whole
range of temperature excepting the critical region.

The variation of the order parameter with tempera-
ture is shown in Fig. 2, which shows a discontinuous
change in the order parameter, demonstrating that
the phase transition is of first order. This is in agree-
ment with the remarks' made by Benguigui" on CEF
theory as a general case of self-consistent phonon
(SCP) approximation, ' "and the generalized spheri-
cal model of Brout. ' The first-order transition in
type III antiferromagnets such as K2IrC16 has already
been predicted by Bak" by renormalization-group calna

culation. The appropriate Landau-Ginzberg-Wilsonna
Hamiltonian has no stable accessible fixed point with
symmetry consistent with the observed symmetry of
the state,

The variations of nII, a~ and XII, X~ with tempera-
ture are shown in Fig. 3 and Fig. 4, respectively.
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FIGa 1. Variation of average susceptibilities with tempera-
ture.

FIG. 3. Correlation parameters as a function of tempera-
ture.
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ordered and paramagnetic phases. Since there is no
experimental data for the order parameter and no an-

isotropy measurements of the susceptibilities are
available, only the average susceptibilities are com-
pared. The compounds under investigation are ex-
pected to show first-order magnetic phase transition.
For a better understanding of the nature of phase
transition in these compounds, magnetic measure-
ments in single crystals are suggested; Because of the
discontinuity of the order parameter, it is difficult to
obtain a stable solution numericaly at the critical tem-
perature. This numerical instability of the order
parameter near the critical temperature is consistent
with the results obtained from a renormalization-
group calculation, "and it is similar to finite size
effects observed in Monte Carlo calculation. '

FIG. 4. Variation of longitudinal and transverse suscepti-

bilities with temperature.
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