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Self-consistent many-body theory:
Application to spin waves in itinerant ferromagnets
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A self-consistent many-body theory for the many-particle Green's function is developed and applied to
derive an exact microscopic formula for the transverse dynamical susceptibility. As a concrete application of
the above general results we consider the Hubbard Hamiltonian and obtain the spin-wave stiffness constant
for an itinerant ferromagnet, It is found that earlier expressions for the stiffness constant obtained by

Edwards and Hertz and Edwards are special cases of our general expression.

I. INTRODUCTION

Recently Fedro and Wilson' have developed a
self-consistent many-body theory for the single-
particle Green's function by using a commutation
projection operator introduced by Kim and Wilson. '
They derived the Dyson equation which differs from
that of the usual many-body theory in the sense that
the self-energy is self-consistent in every order of
perturbation. Thus it is very promising to the
problems where there exists a possibility of phase
transition. However, in its present form it cannot
be applied to calculate quantities such as suscep-
tibility, resistivity, or many-particle correlation
functions which are expressed in terms of two or
more particle Green's functions. The purpose of
this paper is to make the theory applicable to these
cases by extending it to the many-particle Green's
functions. This is done by defining a generalized
projection operator which for the one-partic)e
Green's function reduces to that of Pedro and
Wilson. '

We have applied our general theory to calculate
an exact formula for the transverse dynamical sus-
ceptibility and thereby the spin-wave stiffness con-
stant for itinerant ferromagnets, described by the
Hubbard Hamiltonian. This exact formal expres-
sion for the spin-wave stiffness constant is ex-
pressed in terms of the one-electron self-energy.
Earlier, similar expressions have been obtained
by Edwards' and Hertz and Edwards, ' but their
expressions are special eases of our general re-
sult.

In Sec. II we give a formal many-body theory for
the many-particle Green's function. By a special
choice of projection operator, Dyson's equation is
derived. In Sec. III the formal theory of Sec. II
is used to obtain an exact formula for the trans-
verse dynamical susceptibility. In Sec. IV the
spin-wave stiffness constant is calculated and dis-
cussed.

II, FORMAL THEORY

We consider the conventional many-particles
retarded Green's function'

G, (t) = te(t) ([A-, , B,.(t)]„),

(t) —e i HtB ~ itit-
where H is the Hamiltonian operator and B, —=B,.(t.
=0). These operators are assumed to satisfy the
relations

([A, ,B,]„)= ([A, , B,.]„)5...

where in Eqs. (1) and (3) angular brackets ( ) de-
note the grand canonical ensemble average, and
square brackets correspond to a commulator for
g=-1 and anticommulator for g=+1. Here and
hereafter we work in a system of units where 5 = l.
Differentiation of Eq. (1) with respect to time t
gives the equation of motion

. 8-t —G,, (t) = ([A, , B,.]„)&,, &(t)

+te(t)([A, , r,B,(t)]„), .

where for any arbitrary p, the Liouville operator
L is defined as

Lx=-[&, x] . (5)

Now following the projection-operator formalism

where the subscripts i and j may denote spin, lat-
tice sites, Wannier states or Bloch states, etc. and
8(t) is the Heaviside unit-step function. A,. and B,
are any one-, two-, or many-particle Heisenberg
operators defined as
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of Zwanzig and Mori, ' we break the operator B,(t).
into two parts in the following manner:

which, on using our choice of projection operator
[see Eqs. (1) and (8)] and the Green's-function
definition (1), becomes

B,(t) = PB-,(t)+ (1 —P)B,(t), (6)

and choose the projection operator P as

with

p,.)t =a, ([A, , )t]g/([A„a, ]„).

From Eqs. (3) and (8), it is easy to see that the

P,. 's form a set of orthogonal projection opera-
tors, i.e. ,

(7)
x (B,/([A„B,]„)}G„.(t r)

(16)

The upper limit in the integral goes from t to ~
because of the 8(t —r) functions contained in the
Green's function G, ~(t —r) Sub. stitution of Eq. (16)
in Eq. (10) gives a closed equation for the Green's
function G,,(t),

P,.P, X = ~,P,.X.,

and thus P satisfies the basic projection-operator
conditions P2=P On su.bstituting Eq. (6) in the
equation of motion (4) and using Eqs. (7) and (8)
for the projection operator we get

where

+ g y„(r)G,~(t —7) dr,

i8(r)([A Le(v o-z)z(1 P)LB ] )
&[A a]&

(17)

(18)

where

+i 8(t)([A, ,L (1 —P)B,(t)]„), . (10)
and the 8(r) function contained in y, ,(r) allows to
stretch the lower limit in the integral in Eq. (17)
from 0 to —~. Equation (17) can be rewritten in a
simpler form by introducing the Fourier tr3nsform

n, , = =([A, , La, ]„)/([A„a,]„).

The third term on the right-hand side of Eq. (10}
can be related to the Green's function G,J(t) at
another time v. To see how it can be done, let
us define an operator

(19)

where F,&(t) corresp. onds to either G,,(t), p, &(t ), .

or Q,~. In terms of this Fourier transform Eq.
(17) becomes

a, (t) =- 8(t)a, (t).

Then from Eqs. (2) and (5) we get

—B,(t) = 6(t)B, +iLB,.(t). . .

(12)

(13)

(uG, , ((u) =([ A, , B]„)&, +Q Q, ,G„.((u)

+ P r, ,(~ }G„(~). (20)

Qn multiplying this equation from the left by the
operator (1 —P) and using the easily verified facts
that the projection- operator P commutes with the
differential operator and (1 —P) B,=0, we obta. in

(14)

The above equation will be the starting point of all
further" calculations. For a special case, where
subscripts i, j, or l correspond to lattice sites or
Wannier states and the system possesses trans-
lational invariance, Eq. (20) can be Fourier trans-
formed into momentum space by introducing the
Fourier transform

It can be shown that the solution of the above equa-
tion is'

(21)

x LPB)(t- v') (15)

where N is the number of lattice sites and as be-
fore E„t sd anforsG, ,((d), y„(x), or 0,&. Substi-
tution of Eq. (21) in Eq. (RO} gives the Dyson equa-
tion
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G-„(~) =

t
=-e """' 0+& d7-e""

0

x (1 —P)L e' '

1—$ ([A, ,B,]„)
(

co —II-—y- (o))
k k

In the denominator on the right-hand side of Eq.
(22), the quantity 0„- can be found directly by eval-
uating the commutator LB, =—[H, B,] appearing in
Eq. (11). But the quantity p~(e), in general, is not
obtainable exactly. To evaluate it approximately
one writes its chain of equations of motion' in a
manner similar to that of Zubarev' for the Green's
function and decouples the higher-order terms in
some approximate way. Alternatively, one can
break the Liouville operator L appearing in the ex-
ponential of Eq. (18) into two parts L, and L, and
write a perturbation series by using the operator
identity

transverse dynamical susceptibility'

X(q ~)=-g' 'g X;,(~)e "'I "&', (24)

X; (f) i8(f)([S; S;(f)]-). (25)

Here S',.=S",+iS',. are the spin-raising and-lowering
operators. On putting A&=S;. and B&(t) =Sz(t), the
formulation of Sec. II immediately gives an exact
formula for the transverse dynamical suscepti-
bility as

g (q, ~) = 2g'p2&N(S')/[0- +y-(&u) —cu] (26)

where

where subscripts i and j correspond to lattice
sites, g is the Lande splitting factor, p, ~ is the
Bohr magneton, y, ,(~) is the Fourier transform of
the retarded Green's function,

t
=-e "&' ~'~o+i dve"" ~'~0

0
(S*)=g g (S;),

1

i
(27)

x (1 —P'L e' ' ' ' o+ ' ' '
1

(23)

The operator L, is chosen such that

y', , (f) =io(t)(~A, ,Le"" ' o(1 —P)LB, ~„),

and

n; =(I/ZV(S ))([S-;,LS;]), (28)

corresponding to the first term in (23), can be
evaluated exactly. In the Sec. III, we shall follow .

this later approach to evaluate the spin-wave stiff-
ness constant.

It should be noted that self-consistency in the
theory is achieved by keeping the full ensemble
average in all the averaged quantities. Apart from
a few differences, our many-particle Green's-
function theory is similar to the single-particle
Green's-function theory developed by Fedro and
Wilson. ' We have used the retarded Green's func-
tion' instead of the Green's function without the

8(t) function used by Fedro and Wilson. Because
of this to obtain G,.z(&u) we used a Fourier instead
of a Laplace transform. Their choice of projec-
tion operator is a special case of our more gen-
eral choice. For single-particle fermion opera-
tors, both choices are the same.

III. TRANSVERSE DYNAMICAL SUSCEPTIBILITY

x ([S-;,Le ""~'~(l —P)LS = ] ).
(29)

Here it is assumed that the system is ferromag-
netic so that (S;.) = (S'). The operators S'-, are

(30)

and the projection operator P from Eqs. (7) and
(8) is given by

PX = ~S. ,g S:;([S-;,X] ).
e

In obtaining Eqs. (28) and (29) we hs, ve made use
of Eqs. (11), (18), (19), (21), and (22).

For the one-band Hubbard Hamiltonian

IH= ~ &kak ap + — ~ a'„- ak +a- - a-.k kfy ka ~ ~ k+ q+ k+ k'-q- k'- &

ke q gkk

(32)

Now we apply the formal theory of Sec. II to a
translationally invariant system to calculate the
wave vector q and the +-frequency-dependent

where E p is the band energy, I is the intra-atomic
interaction, and a„-„af,are the annihilation and
creation operators for an electron of spin o and
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momentum k. Equations (28) and (29) can be fur-
ther simplified by use of the following identities:

In the long-wavelength limit, using Eqs. (35) and
(36) for 0-, and 7;(e), respectively, we get the
spin-wave stiffness constant as

and

IS—= -

Ck -CP gk~ gP ) (33)
2

4NQe) M fifi IP (n&' e )&k. ek.J

+,„g (q v-, e~)(q v„-w-„,)2K~ / pg

for any X and Y. In deriving Eq. (33) we have used
the fact that the interaction part of the Hamilton-
ian (32) commutes with the operator S'-, =-

Zg apt;, ,a„- „and in Eq. (34) the cyclic invariance
property of the trace, implied in the ensemble
average, is exploited. Use of Eqs, (33) and (34)
in Eqs. (28) and (29) gives

x dt8t

x ([a~.ag, e""~&~(1 —P)a&, ap, ,] ),

(38)

1
n; =

( .) (~p, -, —~p)(art, ap,)
ke

and

r-, (~) = —
2 (,)g (~;.;—e„-)(~-„,;—~„-,)

kk'

(35)

where the subscripts i and j correspond to Carte-
sian coordinates.

Now we divide the Liouville operator I into a
sum of two parts, L, and L„defined by Eq. (5.)
with Hamiltonians H, and H„respectively, such
that the total Hamiltonian H =H, +H, . On substi-
tuting the perturbation expansion (23) for the expo-
nential ei &&-+» e i && +&& o+~&& in Eq. (38) and us-
ing the equation

x ([at;,;,a-„,e""~&~(1 —P)a~~, ; a~,,] ).
Vk &k.Pay. aP,,=0

P'e
(39)

(36)

In Sec. IV, the above equations will be used to cal-
culate the spin-wave stiffness constant.

IV. SPIN-VfAVE STIFFNESS CONSTANT

The spin-wave stiffness constant D is defined as
the coefficient of the q' term in the long-wave-
length limit of the spin-wave energy given by the
solution of the equation

obtained by the use of Eq. (31) and the translation-
al invariance property of the system, we get

2— 1 e'gDg ~( )~ &fi&fi 9 6
( i )p k k Qk &yQk fy

i J

i Q (q vga;)(&7 vpxp, )
2+S') ~~

x dt e(f)([at„,a-„,e "&& ~+oa&, a~,,] )
WQO

&u —0- —y-(&d) =0, (37)
2K~ gy ~~,

obtained by making the denominator of the trans-
verse dynamical susceptibility (26) equal to zero. where

T(k, k') =— dt e(f) dr ([n g e i & &J
(&1 op)L e &i~&& P&In'i + ] ) (41)

The second term on the right-hand side of Eq. (40)
can be written in terms of the self-energy of the electron
by taking the Hamiltonian Ho as

(42)Ho= P (e-+M- )at a-
fe

where Mg, is the self-energy of an electron with
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momentum k and spin o. For the above Hamilton-
ian (42), the use of Eqs. (5) arid (31) and the trans-
lational-invariant property of the system give

Vp,(p,(1 —P)I,,ay~. ap, ,

= Q (Vp,tp, )(Mp, —Mp, ,)a1, ap,, (43)

In the same way one arrives at the nth-order term

V-, &~, l —P I "a~, a-

=Q (Vp,e~,)(M), -Mp, ,)"ap, ap;. (44)

Using this result in the second term of the right-
hand side of Eq. (40) and performing the integral,
we get the stiffness constant as

2

Equation (45) is an exact expression for the stiff-
ness constant at finite temperature for an itinerant
ferromagnet described by the Hubbard Hamilton-
ian. Usually the Hamiltonian H„given by Eq.
(42), is a good approximation to the total Hamil-
tonian 0, and hence the contribution of the non-
diagonal third term on the right-hand side of Eq.
(45) to the stiffness constant is quite small because
of its dependence on the weakly interacting part
H, of the Hamiltonian H. In all practical calcula-
tions, one can neglect this nondiagonal term and
thus a good estimate of the spin-wave stiffness
constant depends on how accurately the self-energy
of the electron is calculated. It is apparent that
Edwards' exact expression' obtained for strong
ferromagnets at absolute zero can be obtained
from (45) by just putting M-„, =O and (s1„a;3=0;
Hertz and Edwards' also obtained g, similar ex-
pression at absolute zero except that they gave an
approximate form for the nondiagonal term by
exploiting the requirement of spin conservation
in Ward- identity form.

1 ~
(

(ar~,a„-g- (a1 ap)
2N(S*) ~ q ' ") M-„,-M;

+, , T(k, k')(q %pep)(q &p,fp.).2N(S* „
(45)
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