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We discuss the approximation of functions by the solution of certain differential equations
derived from. their power-series coefficients. We call these approximations integral-curve ap-

proximants,
'

or more simply integral approximants, and find that they include as special cases
many of the currently used methods. We investigate their invariance and singularity properties,
and test the power of the first-order ones on a series of known functions. These integral ap-

proximants do as well, and often better, than any of the now current (nonexact) methods of ap-

proximation. We have applied them to the low-temperature Ising-model susceptibility and find,
for the first time by series methods, reasonably good evidence that the low-temperature critical

index is equal to the high-temperature one, as expected from the scaling and renormalization-

group approaches.

I. INTRODUCTION AND SUMMARY

One quite successful approach to problems in criti-
cal phenomena, when exact solutions are unavailable,
is to deduce the behavior of the system in the critical
region from exact series expansions. The methods of
analyzing series expansions have been reviewed by
the authors' (hereinafter referred to as I) and by
Gaunt and Guttmann. ' In addition some new
methods of analyzing series, especially appropriate for
functions with specific singularity structure, were pro-
posed by the authors' (II). The method of general-
ized approximants proposed in II storks very well in
some situations but has the disadvantage that systems

«of nonlinear equations must be solved to obtain the
approximants. This computational problem has pro-
ven to be rather difficult and time consuming in the
context of the problems encountered in critical
phenomena, so much so that a diverse strategy of op-

'

timization" was employed to maximize the improve-
ment in each iteration.

It is the purpose of this paper to examine the
usefulenss and properties of approximants which are
the solutions of differential equations. A solution of
a differential equation being an integral curve of the
equation, we suggest that these be called integral-
curve approximants or, more simply, integral approxi-
mants.

Approximants of this type were first proposed by
Guttmann and Joyce' and independently by Gammel'
and Gaunt. The most general form they consider is
approximants to f(x) which satisfy

K

$ Q„(x)f'" (x) +R (x) =0
v-0

to order K+1 greater than the sum of the orders of
the polynomial coefficients Q„(x),R (x), where ft")
means d"f/dx". Guttmann and Joyce limit their ap-
plications to a special case of Eq. (1.1), i.e., to ap-
proximants which satisfy a second-order homogene-
ous equation [K =2,R (x) —=0]. They call their
method the recurrence relation method because they
are able to develop a recurrence relation that enables
them to obtain the coefficients of the polynomials.

Gammel has suggested the use of integral approxi-
mants derived from a first-order inhomogeneous
form of Eq. (1.1), namely

Qm(x)f'(x) +PL(x)f(x) +RN(x)

0(xL+M+N+2) (I 2)

In this paper we will show that many of the other
forms of series analysis are special cases of integral
approximation. In particular, in Sec. II, we will show:
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(A) Pade approximants and D log Pade approxi-
mants are special cases.

(B) The ratio method and Neville Table extrapola-
tion of ratio sequences are all special cases.

(C) The recurrence relation method is a special
case (already shown).

(D) If a function satisfies the equation for quadrat-
ic Pade approximants,

r(x)f'(x) + g(x)f(x) +Z(x) =0,
then it satisfies Eq. (1.1).

(E) If a function is of the form of the generalized
approximants introduced in II, then it satisfies Eq.
(1.1).

In cases (D) and (E), above, the order ~ of Eq.
(1.1) necessary to show equivalence tends to be quite
high, and hence leads to no computational advantage.

We investigate the invariance of integral approxi-
mants under the homographic transformation

TABLE I. Test functions A —K used to compare

eft'ectiveness of various methods of series analysis. Repro-

duced from I.

K.

A. (1 —x) 15+e x

8. 1 x) —1.5(1 +—x)1,5 + e-x
2

C. (1 —x) (1 ——x) +e "
2

D. (1 —x) 1 +(1+—x ) 2 +(1+----x——x )4 112 4

Z. (1-x)-"{1+—x)"+(1+—x')- +(1+ x ——x')-' -'

2 4 112 4

(1 —x) . (1 ——x) +(1+—x2) 1.25+(l + x ——x )2 4 112 4

G. (1 —x) i 5+ [2(1 —x)(2 —x) /[(2 —x)7 —x )}
H (1 —x) i .5(1+—x)i 5+ (2(1 —x)(2 —x)6/[(2 —x) —x ]}':
I. (1 —x) 5(1 ——x)i 5+ [2(1 —x)(2 —x)6/[(2 —x) —x ]} .

J. (1 —x) + (1 + —x)
5

(1 —x) ' +(1+—x) ' +e "
5

x =3w/(1 + 8w) (1.4)

In Sec. III we show that the most general integral ap-
proximant which possesses this invariance property
has the form of Eq. (1.2), with L = N = M —2. Both
[N/N] diagonal Pade approximants and [N, N, N]
quadratic Pade approximants possess this invariance
property, which is thought to. greatly expand the re-
gion of convergence of sequences of diagonal (and
even near-diagonal) sequences of the approximants.
For a complete discussion of the invariance and con-
vergence propeties of Pade approximants see Baker. '

In Sec. IV we investigate the nature of the first-
order inhomogeneous integral approximants. We ex-
amine the behavior of various members of that class
at the point of infinity. We also find the form of the
solutions of Eq. (1.2) in the neighborhood of their
singular points. Denoting the solutions of Eq. (1.2)
as [N/L;M], we show that near x,

[N/L;M] = A (x) 1 —— +8 (x)
X]

(1.5)

where A (x) and 8(x) are regular in that region, pro-
vided y; is:not a negative integer. We describe the
procedure we use to calculate the remainder 8 (x;).

In Sec. V we study the application of the first-order
approximants to the test functions introduced in I as
benchmarks for the comparison of the effectiveness
of different methods of series analysis. The test
functions are shown in Table I. Because of the in-

variance property and variety of limiting behavior
possessed by first-order integral approximants, we

use these in our analysis, and compare their effec-
tiveness with biased and unbiased forms of ratio,
Pade, generalized approximant, and recurrence rela-
tion analysis. For some of the test functions we can
show thai second-order homogeneous integral ap-

'pr'oximants (recurrence relation method) represent

the function exactly. Barring those cases we find that

the first-order integral approximants are at least as

good as, and often significantly better than, the other
methods under consideration.

Finally, in Sec. VI we analyze the low-temperature

Ising susceptibility series using integral approximants.
For each three-dimensional lattice we study, we have

tabulated the biased estimates for y' according to the

number of series coefficients used in obtaining each
estimate. We observe a rather marked shift in the
estimates toward y' = y =1.25. For each lattice this

shift occurs for a particular number of terms, which

seems to be smoothly dependent upon the number of
singularities in the low-temperature series. In fact, . it

appears that for each additional singularity in the
function six more series coefficients are required in

order to see the estimates of y' shift from y' & 1.30
to y'-—1.25. The number of terms available relative

to the number of singularities is most favorable for
thc bcc lattice, and hence the shift is most noticeable.
However, there is evidence that such a shift has oc-
curred for all 4 lattices studied. This shift has not
been apparent in studies using other methods of
analysis, and hence the bcc has often been regarded
rather suspiciously since the y' estimates seemed
anomalously low. We feel, however, that we have

now obtained rather more convincing evidence that
y'= y than has previously been available from direct
analysis of series expansions.

II. RELATIONSHIP BETWEEN INTEGRAL
APPROXIMANTS AND OTHER METHODS

The generalization to integral approximants is a

logical one to make because it is possible to show

that just about every method of analyzing series pre-

viously used is a special case of Eq. (1.1).
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A. Pade approximants

Pade approximants to the function under con-
sideration may be formed directly

for v =2, the. 2nd-order Neville extrapolants are

—a2 = [(L +4) rL, +4 —2(L +3) rL+3

+ (L +2) 'r„,]/2 = I„'", (2.7)

f(x) N( g (xN +D +1)
gD(x)

(2.1)

or more usually the derivative of the logarithm may
be approximated by a Pade approximant

d [[ ( )]
rpn(x) f'(x) LPN(x)

dx gD (x) f(x) ZD (x)

and for general ~, the vth-order Neville extrapolants
I„', where n = L + v+2 —S„p, is the order of the
highest coefficient used in forming the extrapolant.
The general solution for —a„can be shown to be

g (xN+D+1) (2.2) x (L +J +2)"rL+i+2

Equation (2.1) is equivalent to Eq. (1.2), with K =0
and R (x) —= &N(x), while Eq. (2.2) is equivalent to
Eq. (1.2), with K = I and R (x) =—0. Not only are
usual applications of Pade approximants a type of in-

tegral approximation, they are special cases of the
first-order inhomogeneous case we consider in detail
in the remainder of this paper.

B. Ratio method and Neville extrapolation

That the ratio method and the Neville Table extra-
polation of the ratios are special cases of integral ap-
proximants can be shown by considering the follow-

ing equations

It is clear from Eqs. (2.5) to (2.7) above that [see
also Eq. (2.26) of I]

—a„=I„" = —[nl„" ' —(n — ) I„",' ]
V

(2.9)

for the first few values of v. The proof by induction
that Eq. (2.9) is true generally follows in a straight-
forward way from Eq. (2.8).

Part of the usefulness of the ratio method lies in
possibility of obtaining estimates (both biased and
unbiased) for the critical exponent [Eqs. (2.6) and
(2.7) of I]. If one solves the v = I case of Eq. (2.4)
for ap, one obtains

ap = (L +2) [(L +3)rL+3 (L +2) rL+2] —(L +3)rL+3

(I +apx) f +RL(x) =O(xL+'), v =0, (2.3) = (n —I) [nr„—(n —I) r„ 1] —nr„

2

(1+a„x)—x-d d
dx dx

i V —1

f+ $ ai x —f +RL(x)d

p dX

O(xL+" +2) v )0 . (2.4)

= (n —1)y„-nr„ (2.10)

In Sec. III we show that the exponent associated with
the singularity x, in [W/L;M] is given by
P(x,)/0'(x, ) For [L/0;I] t.his becomes

These are special forms of Eq. (1.1) for a vth-order
integral approximant.

Solving Eq. (2.3) for —ap, we obtain the standard
ratios

P(x ) ap=—= nr„y„-' —n +I,0'(x ) ai
(2.11)

which by Eq. (2.7) in I is y„t"i, the unbiased ex-
ponent estimate obtained from the nth-order coeffi-
cient of the series expansion.

&L+1—ao= rn
AL

(2.5) C. Recurrence relation method

~here 0.; are the coefficients in the series expansion
for f(x), and where n = L + v+2 B„p is the cus-

tomary subscript associated with the ratios or
extrapolants —i.e., the order of the highest coefficient
used in t;alculating that parameter. The expressions
above and following are valid for all L ~—1, where
R t(x) is defined to be identically zero.

If we solve Eq. (2.4) for —a„, we obtain for v = I,
the linear extrapolants y„of the ratios [which are es-
timates of x, ', Eq. (2.5) of I].

As stated in the introduction, Guttmann and
Joyce' have shown that their recurrence relation
method and its generalization to orders greater than
two yields an approximant which satisfies a homo-
geneous form of the differential equation (1.1) and is
therefore a special case of integral approximation.

D. Quadratic Pade approximants

Quadradic Pade approximantsp to a function f (x)
satisfy

al (L +3)rL+3 (L +2)rL+2 I y (2.6) P f2+ 0 f +R g(xa+b+e+2) (2.12)
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and therefore are the roots cv of

P, co + Qbco+R, =0 (2.13)

where a, b, and c are the degrees of the polynomials
P, (x), Qb(x), and R, (x), respectively.

If a function exactly satisfies Eq. (2.13), then we
can show that it also satisfies Eq. (1.2). First elim-
inate the linear term in Eq. (2.13) by substituting
u = a&+ Q/2P, and Eq. (2.13) becomes

integral approximant (N/L;M], where

L = max(a +2b, 2a + c)

M = max(2a + c —l, a +2b —1)

N=a+b+c —1

E. Generalized approximants

(2.17)

u =(Q /4P ) —R/P (2.14)
The pure generalized approximant form without

Fade-type correction term as introduced in II is

Differentiating Eq. (2.14) and combining Eq. (2.14)
with the derived equation, one obtains

N N

F(x) = Fto'(x—) = $ A;(I —y,x) "—= X J, . (2.1s)

(PQ 4P R)—u'+ (2P R' —PQQ'+P'Q

—2PP'R) u =0 (2.15)

To show F(x) satisfies Eq. (1.1), differentiate the
function F(x) N times, writing the jth derivative as

(2.19)

Substituting back for co, one gets

(PQ 4P R) co'—+ (2P R' —PQQ'+P'Q2 —2PP'R) cu

+(P'QR 2PQ'R +—PQR') =0

(2.16)

It is obvious that the degree of the polynomial coeffi-
cients in the differential equation is greatly increased.
Thus, the function eo can be written as a first-order

where

We now have N+1 functions F,F", . . . ,F' ',
which are linear in the N variables Xi, and which,
therefore, must be linearly dependent. Hence, the
(N + 1) x (N + 1) determinant D must vanish

F(1)

F(N)

1

1 -y1x
0

~N1

(1 —y)x) N

1

1 —y2x

~N2

(1 —y2x)"

1

~1N

1 —yNx

~NN

(1 —ypgx)

=0 (2.20)

N

gF(, )P N(N —1) +.
i-0

(2.21)

where P;(n) is a polynomial in x of order n The fac-.
tor in square brackets must vanish independently and
this is equivalent to Eq. (1.1).

To have evaluated the generalized approximant, we
would have to solve 3N nonlinear equations for the
parameters y;, yi and Ai. On the other hand, by the
integral-approximant route, we must evaluate the

Expanding D about the first column, we find that the
coefficient of F ' has a polynomial of order
N(N +1)/2 —i in x in its denominator. If one factors

, (1 —y,x) "out of D, one obtains

N

D= Q(1 —yx) N

constant coefficients in the polynomials in Eq. (2.21)
from systems of linear equations. There are

N(N +1) + . + I I N (N +1) + N (2 22)
I 0 2 2

coefficients to determine (since the constant term in

Pn can be set equal to 1 without loss of generality),
in addition to the N initial conditions which must be
satisfied for the differential equation. Clearly the
transformation to a linear problem has become cost-
ly, in that the number of parameters is now cubic in
N, instead of linear.

III. INVARIANCE PROPERTIES

When a Taylor-series expansion of a function is
.summed directly, each partial sum necessarily
diverges at x = ~. The existence of this special point
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directly effects the shape of the region in the com-
plex plane over which the values of the function can
be constructed by this method. When a Taylor series
is summed by the method of diagonal Pade approxi-
mants, the point x = ~ loses this special significance,
and the restriction of the convergence region to a cir-
cle centered at the origin is overcome. The proof
that the point at infinity, and in fact that no point,
other than the origin, is special to the Pade method is
based on the invariance of the method under homo-
graphic transformations of the form Eq. (1.4). We
will concentrate in this section on those integral ap-
proximants, described in the Sec. I, which maintain
invariance with respect to Eq. (1.4), at least for cer-
tain sequences of approximants in the hope that they
will be the most powerful ones like the diagonal and
near-diagonal sequences of Pade approximan7s. Sub-
stituting Eq. (1.4) into Eq. (1.1) and letting N be
K+2 plus the sum of the degrees. of the polynomi-
als, we se|'. that

K

to see that K ~ l is necessary to obtain an invariance
property, as if Ql is of degree Nl, then a factor of

N2 —3 .(1 +Bw) l is necessary to insure that the coeffi-
cient of dy/dw is a polynomial, but the same factor
necessarily raises by one the degree of the coefficient
of d'y/dw'. Thus, we find that

QM(x)y'(x) + PL (x)y (x) + R~(x)

O (xM + L + N + 2) (3 3)

subject to the restriction

M=L+2, %=L (3.4)

is the most general farm of Eq. (3.1) which is invari-
ant with respect to Eq. (1.4). The subscripts now
denote the degree of the polynomials.

Equation (3.3) is equivalent, if we expand y(x) in
a formal power series in x, to a set of linear equa-
tions for the coefficients of QM, PL, and Rz. If these
coefficients are now used to determine a function
g(x) by means of the equations

(3.1)

QM(x)g'+PL(x)g+Rg(x) =0,
QM(0) =1.0 ~

(3.5)

(3.6)

where yt"l means d"y/dx", can be form invariant only
if, after re-expressing the derivatives with respect to
x in terms of those with respect to w, the polynomial
form of the coefficients can be restored while simul-
taneously preserving the degrees. We can always
make the coefficients of the resultant equation poly-
nomials by multiplying by a suitable power of
(I + Bw), but unless special conditions are met, the
degrees of the Q„'s, and R will be changed. The
right-hand side of Eq. (3.1) is not changed in form
by this operation. It suffices to compute

then we cal! this function the [N/L;M] approximant
to y(x). The reason for this notation is that if Q =—0,
then we have exactly the [N/L] Pade approximant to
g(x). The d ln Pade approximant procedure has prov-
en in the past' to be a very effective method for
analysis of critical phenomena problems. As we have
pointed out, approximants defined by Eq. (3.5) are
also a direct extension of the [L/M] Pade approxim-
ants to d lny/dx and would result for R =—0. Be-
cause of Eq. (3.6) Q sa0, so, the [N/L;M] are
thought of here as direct generalization of the d 1n

Pade approximants,

y"'= y (I+Bw)'/A
dw

y"'= y (1+Bw)"+2B y (I +Bw)'d d
dw dw

(3.2)

IV. NATURE OF THE APPROXIMANT

We will concentrate our attention on the integral
approximant defined by Eqs. (3.3), (3.5), and (3.6).
By standard methods we may solve Eq. (3.5) expli-
citly as

I'" PL(C) " Rg(g) & Pr. (g)g(x) =exp —
J~

— d( g(0)—
~ Q.(H, o Q (~) o QM(r)

exp d$ dl! (4.1)

Since our goal is the investigation of the singularity
structure of certain thermodynamic functions, we will
be particularly interested in the behavior of the solu-
tion near its singular points. Standard theory shows
that the only possible singular points are the zeros of
QM and x = (m.

=p'(x) + X
P (x) M

M X XI
(4.2)

In the usual way we can analyze the behavior of
Eq. (4.1) at its singular points. Let us write
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FIG. 1. Map of the divergence behavior at x = ~ for the

[4'/L;M] integra1 approximant.

where p'(x) is a polynomial of degree equal to the
maximum of zero and L —M, and the x; are the M
roots of QM(x) =G. We assume here that the roots
are simple and, consequently, all the finite plane
singularities are regular singular points. The parame-
ters y& are given by

CX X +cxN M+1 (4.6)

unless the two exponents are equal, in which case the
dominant term is

c3x~ ~"lnx . (4.7)

tions $t;(x) and qh2;(x) are regular in the neighbor-
hood of x =x;.

We can explicitly compute the behavior of x = ~
directly from Eq. (4.1) for various values of L, M,
and N. We summarize the results in Fig. 1. The
special approximant [M —2/M —2;Ml is regular at
infinity. The cases [N/L;M] with L~ M —2,
W ~ M —2 are all regular at infinity but may have
certain derivatives with respect to I/x necessarily zero
there. If L ~ M —2 and N = M —1, then the solution
(4.1) diverges logarithmically as x goes to infinity. If
L ~ M —'2 and N )M —1, then g(x) diverges like
x ~+' as x oo. In the special case L =M —1,
the polynomial P(x) in Eq. (4.4) vanishes identically,
and the dominant behavior at infinity is characterized
by

y; = Pr. (x;)/Q~'(x;)

lt follows immediately that the first factor of the
right-hand side of Eq. (4.1) is

&" PL, (g)
exp —

J~~ dg =exp[ —p(x)] g (1 —x/x;)
Q~(f) I

(4.3)

(4.4)

For L & M —1, the behavior at x -~ is dominated
by the polynomial in Eq. (4.4), and an essential
singularity of order L —M+1 results.

Since, for applications, we wish to know the param-
eters, x;, y;, Q~;(x;), and @2;(x;) corresponding to
the singularities, we find it convenient to recase the
solution (4.1). To this end let us introduce the nota-
tion

g (x) = Pt;(x) (1 —x/x;) '+ d 2;(x) (4.5)

where p (x) is the integral of p'(g) from g =0 to
g =x. Thus this factor, the solution of the
corresponding homogeneous equation, has a power-
law behavior at each singular point. The structure of
the solution (4,1) for the inhomogeneous equation
(3.5) near x;, is given by

then

Qr(x) = QM(x)/(x —x;)

P, (x) = [PL(x) —y;Q;(x)]/(x —x)

Pz (x) P; (x) y;
Q~(x) Q;(x) x —x;

(4.g)

(4.9)

except when y; is a non-positive integer. The func- Thus we may rewrite Eq. (4.1) as

&i rx P(() i" Rg(q) ' t'~ P;(g)g(x) = I —— exp —
J

—'
dg g(0) —

Jl I —~ exp J~
'

dg dq
x; a Q (() a {?m(g) x; -' Q;(()

( ) ", ,(g)+ I —— Ji I —~ exp Jl d( dq
x; Q (v)) x; Q;(t") (4.10)

which yields explicit expressions for rtrr;(x) and P2;(x), provided Rey; )0. A different recasting is required oth-
erwise. If we take the limit as x x;, and use Eqs. (4.3) and (4.10), we obtain the expression

@2;f(x;)=—Rrr(x)/PL(x;)

for the remainder, and

(4.11)
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@~;(x)=exp —
Jl 'P;(g) and Q;(g) d( g(0) Jo I exp J

' d( d»t

"i R~(»l) »L»~
'

pg p. (()
0 M 9 x; 0 Q)(() !

(4.12)

for the amplitude of the singular term.

We remark that if y;=1, 2, . . . . then the separation described in Eq. (4.5) is not well defined, as for any g(x)
regular at x =x;, we may also write

g (x) = [g~;(x) + (x —x,) "h (x) ] (1 —x/x;) "+ [Pz; (x) —h (x) ] (4.13)

This formula has the consequence that Q2;(x;) is undefined in this case n =positive integer. We will, however,

define it by continuity to be the value given by Eq. (4.11).
In order to evaluate numerically Eq. (4.12), we must compute the value of an integral with a singular end point

,
—1

of known type. The integrand behaves like (I —»t/x, ) at the upper end point. As a practical expedient, we

have divided the range 0 to x; into 99 intervals and used Simpson's rule on the first 96 of them, We have used a

generalized version of the three-eights rule especially suited to deal with that type end point. Thus, if we let

99h =x;

then we approximate
1

F(q) d q ——(3/t)» 9 9+ — F(99A)
2(y+ I) y+2 2(@+3)

9 45 + 27 F(98h) + — 9 + 18 27

y+I 2(y+2) 2(y+3) 2(y+I) y+2 2(y+3)

1 9 9.
&& F(97h) + — + F(96h) + 0(h4+») . (4 14)

This scheme has been adequate to our accuracy re-
quirements for the test cases reported herein. These
procedures for the amplitude and remainder calcula-
tions are only valid for y;.)0, for, as we mentioned
above, a different rearrangement than Eq. (4.10),
and, consequently, different formulas from Eqs.
(4.11) and (4.12) are required to compute the critical
parameters if y; ~0.

We remark that in the recent numerical studies of
Guttmann" of the related "recursion relation"
method which revolves around the solution of

then instead of form (4.5) we get

g(x) = wt;(x) ln(1 —x/x) (I —x/x) '+ w2;(x)

(4.16)

with the w s regular near x;. If Q~(x) has a double
root, then the solution (4.1) can have an essential
singularity at that point. (See also Ince'2 and
Kamke" for a fuller discussion of some of these as-
pects. ) Clearly, a number of other special cases can
also arise.

zQ~(z), +RM(z) +S~,(z)y=0,d Q dp
dz dz

(4.15)
V. APPLICATION TO TEST SERIES

instead of Eq. (3.6), the amplitude and remainder
calculations were not attempted. In this case, since
the point x =0 is a singular point [unless
R~(0) = S~ t(0) =0, and Q~(0) A 0], and there is
no simple, explicit, general form of the solution simi-
lar to Eq. (4.1), the numerical problem of obtaining
the amplitude and remainder is much less straightfor-
ward.

There are a fair number of special cases where the
above description of the solution (4.1) fails. We
mention, for example, that if y~=0, —1, —2, —3, . . . ,

In order to test the effectiveness of a method for
analyzing series expansions, it is necessary to apply it

in a controlled situation, i.e., to test functions where
one knows the exact behavior. In I, we introduced a
set of test functions, chosen to represent a variety of
singularity patterns. These test functions are a con-
venient bench mark and have been used by
Guttmann" for the sake of comparison. We choose
the functions A —K (Table I) to test our integral-
approximant method. For a plot of the singularities
in these functions see Fig. 2 in I.

The number of approxirnants one can form for a
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TABLE II. Comparison of our integral-approximant IA results with other methods of analysis: (ratio R), Pade approximant

P, generalized approximant G, and recurrence reltions RR. The parameter tabulated is ~„ for the critical point on the left and for

unbiased critical exponent estimates on the right. The main entry under IA is from the most accurate approximant using «n
terms of the series; an alternate entry in parenthesis represents a more realistic assessment of all the approximants using n terms

if the. main entry is anomalously precise. Asterisks indicate the method(s) judged to be most successful for each series.

Critical-Point estimates

IA

Unbiased-Critical-Exponent Estimates

P G IA

10

15

20

3.2
8.1

'13.9

2.7

4.0
4.8 '&10

3.6
6.2

1Q.1 (9.0)

exact

exact

exact

2.4

7.1

'12.8

1.7
2.6

3.0 ' &10

2.8

4.7
8.4

exact

exact

exact

10

15

20

2 ' 3 2.7

2.8 3.9
3.1 5.1 3.5

3.9
6.8

'8.9

4.2

9.4
exact

1.3
1.6
1.7

1.7
2.5

3.3 1.9

3.1
4.9

'7.5

2.9
3.9

exact

10

15

20

2.3

2.5

2.9

2.5

3.4
4.0 3.1

4.1

4.2
Q7 9

3.2
4.1

exact

1.0
1.3
1.4

1.2
2.2

2.4 1.5

2.4

2.6
'6.2

1.9
3.3

exact

10

15

20

1.7
2.6

3.6

1.9
2.2

3.5 '5.4

2.1

4.0
5,3 (4.9)

2.0

4Q

0.8
1.4
2.0

0.7
1.0
1.9 '4.3

1.7
2.2

3.6
0.8
2.4

E 10

15

20

1.6
2.4

3.0

1.3
2.5

3.7 3.8

2.7

3.6
'4.8

2.0

3.6

0.7
1.3
1,7

0.4
1.4
2.2 1.7

2.3

2.3 0.7
2.1

10

15

20

1.5
2.8

3.0

1.1
1.4
2.7

1.8
3.4

'5.5 (4.3)

0.9
1.7
5.4

0.8

1.5

0.3
0.3
1.2 1.5

1.3
2.8

'3.4 (2.7)

—0.4
0.5
2.8

10

15

20

1.4
1,6

1,9

1.3
1.3
2.7 2.3

1.8
2.8

'4.4

3.2
2.1

2.0

0.6
0.6
0.9

0.4
0,4

1.3 1.2

0.9
1.8

'3.9 (2.3)

1.7
1.2
0.7

10

15

20

1.6
2.0

2.2

1.7
1.8
2.4 2.5

2.5
3.0

'3.4 (2.6)

2.7

2.8
2.0

0.7
0.9
1.3

0.7
0.9
1.3 1.7

1.9
2.6

'2.6 (1.6)

1.7
1.2

10

15

20

1,0

1.2
1 ' 5

0.9
1.4
2.2 1.6

3.3
3.3

'3,3 (r.4)

2.0

1.7
2.6

0.1

0.1

0.4

—0.4
2.3

1,3 0.4

1.2
2, 1

'2.1 (1.7)

0.9
0.8
1.5

10

15

20

1.1
1.7
2.0

2.2

3.5
44 7.2

3.7
7 ~ 1

'8.7 {8.0)

exact

exact

exact

0.2
0.5
0.8

1.4
2.2

2.7 6.3

3.0
5.2

'7.4 (6.7)

exact

exact

exact

10

15

20

1.7
2.0

0.7
3.0
3.9 6.5

3.4
5,2

'6.9

2.4

3.2
5.3

0.1
0.5
0.8

0.1
1,7

2.3 5.5

1.7
3.8
5.5

1.2
1.9
3.4
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TABLE III. Comparison of our integral-approximant IA results with other methods. The

parameter tabulated is e„ for biased critical exponent estimates. See Table II caption for further

details.

Biased-Critical-Exponent Estimates

R P IA RR

10

15

20

4.1

94
'15.4

2.4

3.0
3.6

3.1

7.1

10.1 (9.0)

exact

exact

exact

10

15

20

1;7

1,9

2.0

2.7

3.3
3.7

3.5
5,9

'9.9 (s.6)

3.4
4.6

exact

10

15

20

1.3
1.5
1.6

1.7
2.4

3.1

2.7

4.6
Q7 5 (6.9)

1.9
3.3

exact

10

15

20

1.5
2.6

3.7

1.0
1.9
2.3

2.2

3.9
'4.7 (3.s)

0.8
2.4

E 10

15

20

1.6
1.8
2,0

1.3
1.8
2.4

3.5
3.5

'4.7 (4.o)

0.7

2.1

10

15

20

0.8
1.3
1.6

0,4

1.2
* 1.8

2.1

3.4
Q4 (3.5)

—04
0.5
2..8

10

15

20

1.3
1.4
1.5

0.8
1.1
2.0

2.0

2.2

2.2 (1.6)

1.7
1.2
0.7

10

15

20

1.5
1.6
1.6

0.9
1.2
1.7

2.9

2.9

3.0 (1.6)

2.5

1.7
1.2

10

15

20

0.8
0.8
1.2

0.6
0.8
1.7

2.7

2.7

3.3 (1.6)

0.9
0.8
1.5

10

15

20

0.7
1.2
1.4

1.7
2.7

3.2

3.9
6.1

'9.3 (s.o)

exact

exact

exact

10

15

20

0.7
1.2
1.4

1.4
2.0
2.5

3,4

4.8
'6.7 (6.o)

1.2
1.9
3.4
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function using up to 20 terms of the series is very
large. 'Because of the invariance property for the
[M —2/M —2;M] approximant and the variety of
behaviors at x = ~ exhibited by approximants in the
5 x 5 blocks centered on the [M —2/M —2;M] (see
Fig. 1) we have chosen to do the analysis using only
those approximants, i.e.,

[M —i/M —j;Ml, 0«i j «4 (5.1)

To compare the data with methods considered in I
and II, we use the first 20 terms in the expansions of
the test series. This allows us to form approximants
of the form (5.1) with M «8.

We have calculated unbiased estimates for the loca-
tion of the physical singularity x1 and the exponent
y~, using Eqs. (4.2) and (4.3). In Table II the
results of this analysis (IA) are compared with the ra-
tio method R, Pade-approximant method (using loga-
rithmic derivatives) P, the generalized approximants
G, defined in Eq. (2.28) of II, and the integral ap-
proximants from a second-order homogeneous dif-
ferential equation [Eq. (1.1), with K =2] used by
Guttmann" and called, by him, the recurrence rela-
tion (RR) method.

The quantity tabulated is

Pn Pexact
&n log10

Pexact
(5.2)

f"=—", (1 —x) "+e " .

By direct computation we find

(1 —x)(—', —x)f"—(—", +2x x')f'—
(5.3)

where p„ is the best estimate of the critical parameter

p using n terms of the series. In Table II, the critical

parameter p represents the principal singularity x1 or
x, in the left columns and the corresponding expon-
ent y1, or simply y, in the right columns. Guttmann
points out that functions A, 8, and J (also L, which
is not included in our present analysis) can be deter-
mined exactly by the RR method using 10 terms in

the series expansion for each. It appears to us that
this statement is correct for functions A and J, i.e.,
that they exactly satisfy Eq. (1.1), with K =2, and
that 10 series coefficients are necessary to determine
the appropriate coefficients in the polynomials Q„(x).
It is also true for L, but only 7 series coefficients are
required. However, for 8, and also for C, the equa-
tion is satisfied exactly, but 16 series coefficients are
required to evaluate the Q„(x). Guttmann (private
communication) has agreed with this analysis.

The proof that A satisfies the equation is as fol-
lows: for series A, we have directly

f=(1 —x) '+e", f' 2(1 —x) 2 —e",

for series-A. By the usual theory of differential equa-
tions, we know that test series A must be given as
the solution of Eq. (5.4), determined by the initial
conditions

f(0) =2, f'(0) =0.5 (5.5)

The proof for the other series is similar, and the
equations can be found by writing the first and
second derivatives as a rational factor times each
non-rational term in the function, and then using
standard algebra to form a combination which is in-
dependent of the non-rational terms.

Because we allow the order of the polynomials in
Eq. (1.2) to vary over a much wider range than does
the RR method, we have several approximants using
a given number of terms in the series. The values of
~„ tabulated under the IA column heading are ob-
tained irom the most accurate approximant using ~n
terms of the series. Usually the other approximants
have converged sufficiently that the value quoted is a
fair one. In those cases where the best estimate is
anomalously accurate, we quote in brackets a more
realistic value which we feel more fairly represents
the accuracy of the method.

In the discussion that follows, the cases where the
RR method is exact are excluded from the compari-
son.

It is apparent from Table II that the integral-
approximant procedure is nearly always at least as
good as any other non-exact method. In fact, for
functions 8 and C integral approximants give nearly 4
more significant figures than does the Pade method,
the best of the other three. For functions E and G
we find integral approximants are significantly better
than the other four methods, and for F integral ap-
proximants and the recurrence relation method are
similar but both much better than the other three
methods. For functions J and K there is evidence
that integral approximants are slightly better than the
generalized approximant scheme, but both are signifi-
cantly better than the traditional ratio and Pade pro-
cedures. For function A, the ratio and generalized
approximant methods do better than integral ap-
proximants, and for D the generalized approximants
do better than integral approximants. For G and H
all methods are poor; but interestingly the integral
and recurrence relation approximants show little or
no improvement as additional terms are used. This
remark will be relevant to some observations we will

make about the analysis of the low-temperature Ising
susceptibility series.

It is possible to modify the integral-approximant
scheme by forcing the approximant to have a singu-
larity at x =x, and thereby obtain biased estimates
for the critical exponent at the singularity. In the
[N/L;M] approximant the polynomial

+(-x-—)f =03 21

2 4 (5.4) QM(x) = I + q)x + q2x'+ + qMxM
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is replaced by

0~ "(x) = 1 ——(1+qi "x +q2'x'+X

xc,
«XM —1)

There is now one fewer unknown coefficient, hence
the fixed singularity approximant will use one less
series coefficient than the regular apprqximant of the
same order.

In Table III results of the analysis of the test series
using fixed singularity integral approximants are com-
pared with biased estimates of the critical exponent
obtained from other methods. The same qualifica-
tions apply to the entries in the IA column as applied
in Table II. Again, we exclude from the discussion
the 4 cases where RR is exact. For functions 8, C, J,
and K, the IA approximants predict y with 3—6 signi-

ficant figures additional accuracy. For D, E, and I',
we also find IA is more effective but not so decisive-
ly. The functions 6, 0, and I are not amenable to
analysis by any of the methods considered; all seem
equally unsuitable, and again we observe the tenden-
cy in IA and RR for there to be essentially no im-
provement as many additional series terms are used.

VI. APPLICATION To ISING L0%-TEMPERATURE
SUSCEPTIBILITY

One of the principal motivations for devising new
methods of analyzing series is to improve the estima-
tion of the critical exponents for the low-temperature
three-dimensional Ising-model series. Scaling theory

TABLE IV. Biased estimates of y' for the low-temperature Ising susceptibility on the bcc lattice

using [N jL;M] integral approxirnants, tabulated by number of series coeScients used.

No. terms

used 19 20

bcc

21 22

1.3356

1 ~ 3153

1.3550

1.3561

1.3484

1.3493

1.3603

1.3304

1.2987

1.3267

1.3130
1.3314

(1.1444)'

(0.9586)b

1.3271

1,3289

1.3032

(0.0061)b

(0.7581)b

1.2463

No. defects'

Average 1.3438
f

1.3175 1.3280 1.3032 1.2463

24

1,2316

1.2293

1.2816

1.2512

25

1.2330

1.3123
1.2750

1.2576

26

1.2488

1.2629

1.2526

1.2616

1 ~ 2580

1.2847

1,2592

27

1.2562

1.2555

1.2388

1.2537

1.2247

1.2650

No. defects'

Average 1.2484 1.2695 1.2611 1.2490

'Number of approximants containing "defects. " See I.
Interference caused by presence of a singularity on positive real axis slightly beyond physical singu-

larity. These values are excluded from averages.
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TABLE V. Biased estimates of y' for the low-temperature Ising susceptibility on the fcc, sc,

and D lattices using [N/L;M] integral approximants, tabulated by number of series coefficients

used.

3819

No. terms

used

30 31

fcc

32 33 34 35

1.3771

1.3721

1.3747

1.2898

1.3631

1.2922

1.2489

1.3641

1.3215

1.3131
1.3305

1.2589

1.2390

1.2937

1.2871

1.3048

1.2381

1.2382

1.3026

1.3068

1.2367

1.2801

(1.0272) b

1.2776

1.2413

1.2885

1.2433

1.2429

(1.1276)b

1.2545

No defects'

Average

3

1.3448

2

1.3062

4

1.2812

1

1.2686

2

1.2541

No. terms

used

13 14

sc

15 16 17 18

1.3423

1.3387

1.3238

1.3186

1.3389

1,1925

1.3417

1.2567

1.3101

1.3309

1.3437

1.3146

1.2476

1.3311
1.3339
1.2217

1.3084

1.2901

1.4108

(1 1123)b
1.2586

1.3955

1.2038

1.2584

1.1833

1.3675

. No defects'

Average

2

1.3138
3

1..3112
2

1.2888

7

1.4108

4

1.2791

6

1.2754

No. terms

used

10 13

1.5148

1.5092

1.3957

1.4338

1.4128

1.4168

1.4521

1.3659

1.4310
1.4309

1.4038

1.4309

1.4301

1.2316

1.1867

1.0699
1.3519
1.2843

1,2129

1.1938

1.2311

1.2462

1.2556

1.2667

1.1697

1.2668

1.2626

1.2616

1.2431

1.2472

1.3120
1.2713

1.2469

1.2773

1.2560

1.2973

1.2728

1.2943

1.2956

1.2517

No defects' 0 0 3

Average 1.4472 1.4207 1.2249

1

1.2251 1.2639

1

1.2779

'Number of approximants containing "defects. " See I.
blnterference caused by presence of a singularity on the positive real axis slightly beyond the physi-

cal singularity, These values are excluded from averages.
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suggests that the low-temperature exponents should
equal the corresponding high-temperature exponents
(a'=n, y'=y, v'=v). This symmetry is implicit in
all the applications of the renormalization-group tech-
niques to critical phenomena. However, for the Ising
model, a11 series expansion studies of the susceptibili-
ty X have shown quite poor convergence of estimates
for y', but nevertheless, a tendency for the y' esti-
mates to be greater than those for y. On the basis of
series evidence, alone, one would conclude y' ~ y.
The extent of the discrepancy between y' and y in
most studies seems to be lattice dependent, strongly
indicating that the method(s) of analysis used is not
able to adequately fit enough of the structure in the
low-temperature function. The number and location
of additional singularities in the low-temperature X

series is known to be lattice dependent; there are 4,
2, 1, and 0 singularities closer to the origin than the
Curie point on the fcc, bcc, sc, and diamond (D) lat-

tices, respectively. Hence it is hoped that new
methods can be devised which will fit the structure of
the low-temperature functions and thereby produce
well-converged estimates of y', etc. , which will either
agree with the scaling predictions, or show a clear
difference from them.

In our analysis of the low-temperature Ising sus-
ceptibility series on three-dimensional lattices, we
have observed a rather striking onset of convergence
in the y' estimates toward the high-temperature ex-
ponent value y =1.25. This effect is most apparent
in the data for the bcc lattice. In Table IV are tabu-
lated in separate columns the biased exponent y' esti-
mates from the [N/L;M] integral approximants
which use a given number of terms in the series. At
the end of the table, we have used the 32-term ex-
pansion of Elliott. " From the Table it is evident that
at term 23 or 24 the estimates of y' suddenly drop
from values above 1.30 to values very close to 1.25.
The estimates using from 28 to 32 terms are also
close to 1.25, although there tends to be a large
number of approximar;ts in this range containing de-
fects (see I).

In Table V we give similar tabulations for the fcc,
sc, and diamond lattices. Here we use the series of
Sykes et al. " The last column in this table uses the
last published term in the series expansion. For the
fcc lattice there is evidence that the estimates are just
reaching the onset of convergence to values close to
1.25. One might conclude that the onset occurs at
term 34 or 35. For the sc, although one estimate at
term 17 and both at term 18 are poor, there are,
nevertheless, three good estimates at term 17 that
suggest this might be the onset. For the diamond lat-

tice, in spite of the short length of the series, the on-
set appears quite sharply at term 11.

It is instructive to compare the number of singular-
ities in X which are less than, or equal to, the dis-
tance of the Curie point from the origin of the com-

TABLE VI. Dependence of onset of agreement between
y' and y on number of series coeScients used calculating

the integral approximant.

Lattice sc bcc fcc

Number of
singularities (n)

Number of terms to

observe onset 17

5+6n 17 23

ACKNO%LEDGMENTS

Work supported in part by the U. S. Department of
Energy, in part by the National Research Council of
Canada and in part by the St. Francis Xavier Univer-
sity Council for Research.

ples u plane (u = e J~"r is the low-temperature ex-
pansion variable), with the number of series terms
which must be used to just observe the onset of
agreement between y' and y. This is done in Table VI.

It is suggestive that, for every additional singularity
in the function, one requires 6 additional series terms
in order for the integral-approximants to accommo-
date the additional structure. The "order" of an in-

tegral approximant may be said to have increased by
one when the order of each of the polynomial coeffi-
cients (1.2) increases by one. For the first-order in-

homogeneous case, this increase requires three addi-
tional terms in the series. Hence an additional singu-
larity requires an increase of two in the order of the
approximant, one to accommodate the singularity it-
self and one to accommodate the additional "valley"

which is created.
The bcc lattice, by virtue of the large number of

terms available relative to the number of singularities
near the origin, gives the strongest evidence of the
agreement between y' and y. However, we believe
that the integral-approximant method has given us
some insight into the difficulty with low-temperature
Ising series and that although the expansions for the
other lattices are not known much beyond the thres-
hold of the convergence we seek, they agree with the
bcc result and support our case that direct series ex-
pansion evidence is now consistent' with y'= y.
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