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New magnetic transition above the percolation threshold: Disordered Ising model on a Cayley tree
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Magnetic phase transitions in a dilute Ising spin system on a bounded Cayley tree are dom-

inated by the spins lying at the surface in the thermodynamic limit. An exact analytic treatnient

incorporating explicitly the spins at the surface of a site-disordered Cayley tree is developed for

constant nearest-neighbor exchange interactions, and the existence of a new type of magnetic

transition at low temperatures is demonstrated. This transition is characterized by the absence

of spontaneous magnetization, by a divergence of the magnetic susceptibility at the percolation

threshold p, as well as at {p,) ', and by a divergence of all higher-order zero-field correlation

functions at p, and at higher concentrations forming a discrete set. The divergence of the sus-

ceptibility at p, marks the onset of ferromagnetic ordering in the central region of the Cayley

tree. We also calculate explicitly the leading nonregular magnetic field dependence of the mag-

netization at high concentrations of spins, and show that the transition is effectively of infinite

order. The possible relevance of our results to the transition in a diluted two-dimensional xv

model is noted.

I. INTRODUCTION

A new type of magnetic phase transition has been
found recently for a spatially ordered (pure) fer-
romagnetic Ising model on a Cayley tree." This
transition is characterized by the absence of spon-
taneous magnetization per spin, a divergence of the
magnetic susceptibility' and of all higher zero-field
derivatives (correlation functions) of the free ener-

gy,
2 respectively, at temperatures forming a discrete

set extending from T =0 to the Bethe-Peierls critical
temperature (Tap) for ferromagnetism in the central
region of the Cayley tree. These unusual properties
arise from the fact that the majority of atomic spins
on a large Cayley tree lie at the surface, since the ra-
tio of the number of surface spins to the total
number of spins tends to I —I/K(K is the connec-
tivity of the lattice) in the thermodynamic limit. " In
particular, the divergence of successive zero-field
derivatives of the free energy marks the onset of suc-
cessively higher-order correlations of the spins lying
at the boundary. This is shown indirectly by the fact
that when the Cayley tree is treated implicitly as an
unbounded lattice, it has only an ordinary ferromag-
netic transition at the temperature T = T~p,

' as ex-
pected.

The transition occuring below Tgp on a bounded
Cayley tree has been referred to as a transition of
continuous order. This is because, for T & TBp,
the leading nonanalytic contribution in the free ener-
gy in the presence of an applied field of magnitude
It

—= ~h ( 0 varies as
~
h ("t ~, where K(T) smoothly

increases from 1 to ~ as T varies from zero to Tgp.

This implies that the order of the transition in an
Ehrenfest classification varies continuously from 1 at
T =0 to ~ at Tap.

In the present paper we study for the first time a
similar phase transition of continuous order occurring
in a dilute (i.e., site-disordered) Ising model on a
Cayley-tree lattice in the vicinity of the percolation
threshold at low temperatures. In this model the ex-
change interaction J )0 between nearest-neighbor
magnetic atoms on the lattice is assumed to be con-
stant, but a fraction 1 —p of the lattice sites are occu-
pied at random by nonmagnetic atoms. As is well

known, such a system displays a ferromagnetic transi-
tion when the fraction p of Ising spins is increased
beyond the percolation threshold p„provided all the
sites are regarded as equivalent, i.e., the system is
treated effectively as unbounded. This type of treat-
ment describes, therefore, the transition taking place
among. the spins in the central region of an actual
(bounded) Cayley tree. Of course, the neglect of the
boundary is justified if one is using the Cayley-tree
approximation to simulate the properties of a real
three-dimensional lattice, where the fraction of sur-
face spins is indeed small and has a negligible influ-
ence on the average bulk properties.

In general, however, the phase transition of a
disordered Ising model on a bounded Cayley tree
may be expected to be dominated by the spins at the
surface, just as in the corresponding ordered case. '

On the other hand, as far as the transition in the cen-
tral region of the Cayley tree is concerned, the pro-
perties (e.g. , critical indices) of the pure Ising model
near T~p, and those of the site-disordered Ising
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model near p, at T =0, are known to be quite dif-
ferent. ' Thus, one may expect similar qualitative
differences to exist between the thermodynamic
phase transitions below Tqp in an ordered Cayley tree
and above p, in a disordered tree at T =0, when the
distinct nature of the surface sites is taken into ac-
count.

Part of the motivation for the present work arose
also from the recent study of a phase transition of
continuous order in the spatially ordered two-
dimensional xy model by Zittartz. ' This study reveals
some remarkable similarities between the transition
of the xy model and that of the Ising model on a
bounded Cayley tree. This suggests that the bounded
Cayley tree gives to some extent a model description
of phase transitions in two-dimensional systems with
continuous symmetry (where usual second-order
phase transitions are ruled out), just as the Ising
model on an unbounded Cayley tree provides a sim-
ple picture of ferromagnetic transitions in three-
dimensional systems.

In order to study the dilute Ising model on a
bounded Cayley tree we first generalize the formal-
ism of Refs. 1 and 2 to the case of a disordered lat-
tice. The free energy of a random system is d'efined
in a probabilistic sense and must be averaged over
the probability distribution of the logarithm of the
partition function. Our study of this probability dis-
tribution will be based on the. moment-expansion
technique introduced recently in the context of criti-
cal properties of the dilute Ising model on an un-
bounded Cayley tree.

The paper is organized as follows. In Sec. II we
describe the general formalism for the study of the
configuration-averaged free energy. In Sec. III we
discuss the detailed calculation, of the averaged free
energy in the form of an expansion in powers of the
applied magnetic field. This enables us to demon-
strate the absence of spontaneous magnetization and
to study the poles (critical points) in the susceptibili-

ty, and in the higher-order derivatives of the free en-
ergy. In order to study the nonanalytic part of the
free energy above p =p, (and hence the order of the
transition) one cannot rely on an expansion in
powers of the magnetic field. Therefore, we proceed
in Sec. IV to discuss an exact calculation of the aver-
aged free energy in the limit of high concentrations
of atomic spins, where the nonanalytic terms dom-
inate. Some concluding remarks are presented in
Sec. V.

II. GENERAL FORMULATION

%e start from the usual Hamiltonian for a dilute
spin- —,Ising model

3C= J $6(6iCT(0'g ll $t;0'(, J )0

where o, = +1 and the symbol (ij ) means that the
summation is restricted to pairs of nearest neighbors.
The parameters ~& are independent random variables
equal to unity if there is an atomic spin at site i and
are equa1 to zero otherwise. The ferromagnetic
nearest-neighbor exchange interaction J is assumed
to be constant. The second term in Eq. (1) describes
the interaction of the spins with a uniform external
magnetic field parallel to the z axis and of magnitude
8 = &/p, s (p, a is the Bohr magneton).

It is convenient to introduce the following nota-
tions to describe the finite-Cayley-tree lattice. Con-
sider a reference site denoted by 0 on a Cayley tree
of connectivity K. The site 0 has z = K +1 nearest
neighbors denoted by 0, a~ =1,2, ...,z, and each ofa)0

the neighbors 0, is connected to K further neighbors

going outwards (i.e., disregarding the central site 0)
and denoted by 0,F2 =1,2, ...,K. Looking out-

wards into the network, each of the sites 0 isa)a2
again connected to K nearest neighbors, 0

A3 1, 2, .~ ., K, and so on. By analogy with the nota-
tion of Eq. (1) we introduce a random variable

equal to unity if there is an Ising spin at site
a]a2. ~ .al

0 and. equal to zero otherwise. Thus, the proba-

bility distribution p, (~o ) of to is
al. ..al al. ..al

p, (oo ) =p&(ao —1)
a1"'al

+(I —p) 5(., ), (2)a)...a(

where p denotes the fraction of sites occupied by Is-
ing spins. Following Eggarter' we define an n-

generation branch as a particular graph connecting
sites on the Cayley-tree lattice. A graph with only
one site i is called a one-generation b'ranch. A graph
obtained by connecting a reference site 0 to K nearest
neighbors, 0, n~ =1,2, ...,K, is called a two-genera-

1

tion branch. A graph obtained by connecting each of
the second-generation sites, 0,, of a two-generation

branch to K further nearest-neighbors,

0, , a2 =1,2, ...,K, is called a three-generationa(a2&

branch, etc. Finally, an n-generation branch is a
graph with n layers of successive generations of
neighbors such that any site 0 in the /th layer

(I ( n) is connected to K nearest neighbors of the
(I +1)th layer. Since an n-generation branch results
from attaching K (n —I)-generation branches to a
central site, one can immediately write down a set of
nonlinear recursion relations expressing the partition
function of a distribution of spins on the sites of an
n-generation branch, in terms of the partition func-
tions of the corresponding E (n —I)-generation

branches. %e call Z&„' =Z&+-„, e;=1, the partition
function of an n-generation branch starting from a
reference site i if the latter is occupied by a spin-up
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—Pp J 0, + Pgp J
p

Zp„+1 =e s" g (e Zp '„+e 'Zo,; )
a 1

Ob)

%0 V
+ fP P

Zpo „,1 = ff (Zp,„+Zo „), P - (ks T) '

a 1

(3c)

for a fixed configuration of spins, i.e., a given set of
6] values. The partition function 8 0 „+1of a finite
Cayley tree, with n +1 generations of successive
neighbors surrounding the central site 0, is then
given by

go,t. +1=p(go', .+1+a o..+1) +(1 —» go,.+1 ~

where p 0+„+1 is obtained by hanging z =K+1 n-

generation branches onto the site 0 assumed to be
occupied by a spin-up atom, and bp„+1 and pp„+1
are similarly defined. In the thermodynamic limit
n ~, one clearly has2

1 p
~ O, n+1 ~ O, n+1 2 O, n

so that

(4)

$ 0 n + 1 b-0 n + 1
+

(+) or a spin-down (—) magnetic atom, respectively.
Similarly, we denote by

+
Z(„=2Zln' =2Z]„'+=. 2Z; „, ~; =0

the partition function of an n-generation branch start-
ing from a site i, if the latter is occupied by a non-
magnetic atom. Since for a Cayley tree the traces
over spins in the various branches leaving from a site
0 are independent, we have

K Ptp J $0 &
+ Pfp J Ep p

Zp+„+1 =ee" fJ (e Zp +e Zp „)a'
a 1

(3a)

f(T', 12) = ——(1 —K ') lim (K "lnZp+„+1)

for a fixed configuration of occupied sites. The study
of the free energy per site thus reduces to that of the
quantity lnZp+, „+1 for an (n +1)-generation branch.
The latter must be suitably averaged over the spatial
configurations of the spins.

For the purpose of solving the recurrence relations
(3) to calculate the average free energy per site, it is
convenient to make the following transformations.
First, using explicitly the fact that the- random vari-
ables « take the values 0 and 1, we rewrite the Eq.a
(3a) in the equivalent form

K

1nZp+„p1 =ph + X lnZp+ „
a 1

K Zp, +
O, n

+ Xln (1 —op) +eo
a 1 Zp, na'

K Zp n

+ X ln 2(1 —op ) +op e~j+e ~J

a 1 Zp a'

(9)

Next we define the quantity G1 „=Z, „/Z, +, giving the
probability that the spin at the origin i of an n-

generation branch is down for a given configuration
of occupied sites, divided by the probability, that it is
up for the same configuration. We note in passing
that if we had placed the magnetic field antiparallel to
the z axis we would be led to introduce G&„=G;„' in-
stead of G;„as our basic variable. The final results
for the free energy would be identical to those ob-
tained by assuming the field parallel to the z axis, as
expected. Taking now the ratios of Eqs. (3a) and
(3b) and of Eqs. (3a) and (3c), respectively, and
again making use explicitly of the values 0 and 1 of
«, we get

= lim
+n+1
+n +1

1nPP n, 1 . ~ +1= ——ljm = ' —= hm
/3 -- Z. +1 "-"&.+1

Also, if 9„+1denotes the free energy of a Cayley tree
with n +1 generations of neighboring sites (total
number of sites&„+1), and F„+1denotes that of an

(n +1)-generation branch with

W„+1 = (K"+' —1)/(K —1)

sites, the free energy per site is given by

.f(T, /)

and

1 + vgp a
K

Go„yt=)L g 1 —oo +op
a1 a a V+Gp n

~+ aZp, n +1 a-1

1+GO „
Vl 2+ (V. 1)1 2G

a'

(10)

From the analogs of Eqs. (4) and (6) for the partition
function Zp „+1of an (n +1)-generation branch we
then obtain

where

e2PJ

Z-e '&" .

(12a)

(12b)
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Equation (10) which defines the variables G; as ran-
dom variables related to the parameters ~& was, in
fact, the starting point for studying the critical pro-
perties of the ft;rromagnetic transition taking place in
the central region of the Cayley tree. 9 In the
present treatment, this latter transition is masked by
the effect of the spins at the surface which dominate
the critical behavior as discussed in Sec. I.

We now substitute Eqs. (10) and (ll) in Eq. (9),
and since our further analysis will be restricted to low
temperatures such that k~T && J, we expand the
resulting equation through linear order in
(v ')'j'=e s. After some manipuiations, using the
fact that e; takes the values 0 and 1, as well as the
expressions Zo+-1 = e+-~", we obtain

K K K

lnZo+„ t =Ph+ X lnZp+ „+ X ln (1 op ) (1 5„])e " g [1—oo +op e
a1 1 1 a1 1 a2-1 a1a2 a1a2

x (1+Gp „ t)]+e P"g„ t + op eP' + O(v ')
a1a2' a1

Equation (13) may now be solved in terms of the variables G;„by means of successive recursions. The final

result is

(13)

1

gn, +1
inZo+„+t =Ph +

an

in[(1 —6p )8 s + po.8s]
a1, a2, ..., a a1, a2, ..., a

K K

+ X ln~(1 —op )e ~" Q [1 —op +op e (1+Go t)]+op e
a1,..., a n a1"' n a1,..., a a1,..., a

a1'- an-1 a 1
n

K

+ g ln(1 —oo )e s"
a1,...an—

1"'" n —2

K

0 [1-po + &o
e-&'

1 n —1 a1""an-
n —1

+ (1 +Go, ) ] + oo esj +
1"' n —1 1"' n —2

K K

+ g ln (1 —op )8 s g [1 —6p +op 8 P (1+Gp „~)]+op 8j' +O(v ')
a1 1 a1 a1a2 a1

The average free energy is obtained from Eqs. (8) and (14) by averaging over the probability distribution of the

random variables ~; and Gi . This means that any function

g (&1 ' ~ ~ &J Gl, m ~ ~ ~ Gj m)

of independent random variables p~, ..., oj andG~, . . ., GJ in Eq. (14) is replaced by the average value

J
(g) = gdp;dG; p, (o;)pG(G; )g(o~, . . ., pj G] ~ Gj )

i-1

where po(G; ) denotes the probability distribution of G; . Before studying this probability distribution in vari-

ous cases we perform explicitly the average over the variables o;, using Eq. (2). After a little algebra the average

of Eq. (14) is found to be of the form

(inZ p+„+ ~ ) = 1/(K —1)K"+ ' —1 —(1 —p) K (K"—1)]ph + K/(K —1) [K"—1 —(1 —p) (K"—K) )p pJ +p (1 —p)

rf

x X K J dGp „)pG(Go „&)ln(l + Go „&)
N ~2 am

The a~erage free energy per site (f(r, h)) is given by

Eq. (8) with lnZp „+[ replaced by the average value
in Eq. (15).

The probability distribution of the independent

variables 6; must be determined self-consistently
from Eq. (10) in such a way that the probability dis-
tribution of 60, when used on the right-hand sidea'
of Eq. (10), yields the same distribution for Gp, „+t
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on the left-hand side. In order to determine the ex-
plicit form of PG(G; ) in various limiting cases it is

convenient to proceed in two steps. Define

Since the Eqs. (10) and (16) are, in fact, valid for
any site in the interior of a generation branch, we
have

Rp „=I pp +tp (1 +VGp s)/(v+Gp „)

=I pp +pp Gp „+O(v )

so that Eq. (10) reads

K

Gp „+i = A. ff R p „
a=1

(16)

(17) .

K

Ro „=1—ep +pp )i. Q Rp „ i+O(v ')
al' al a2

(18)

The variables R; (like G; ) are independent ran-
dom variables and from Eq. (18) we find that their
probability distribution PR (R; ) obeys the self-
consistency condition

pg(Rp ) = J/d ppp, (ep )
al sn al . al J

K

J II dRo, &Ps(Ro—
1 2 ala2

2

K

x 5'Rp „—1 + pp
—pp k g Rp, il 1

1 1 1 a 1 12. (19)

This equation may be easily converted into an alge-
braic equation for the moments,

F,„= dR; R PR(R, „)

(m) = —IspB(f(T, h))/Bh

2 6 (f(Th))
i

Bh

(27)

(28)

~,„—~sF (22)

of PR(R; ). Indeed, using Eq. (2) we obtain

F, „=l—p+PX'F,"„ i +O(v '), s=1,2... . (21)

Similarly, from the self-consistency relation for the
probability distribution PG(G, „) which follows from
Eq. (17), we get

In Secs. III and IV the nature of the phase transition
on the bounded Cayley tree at low temperatures is
analyzed by calculating (f( T, h )), (m ), and X expli-
citly in various limiting cases.

III. LOW-FIELD EXPANSION AND SINGULARITIES
IN THE AVERAGED FREE ENERGY

where

M m=sJ dGimGimPG(Gim) (23)

denotes the sth-order moment of PG(G; ). Further-
more, by comparing Eqs. (21) and (22) we have

M, „=1/p (F, „—1 +p) (24)

P, (G, „)= Jj dk e '"@„(k), (25)

where

y„(k) =1+ g
s=1 S

(26)

Note that the ranges of integration in Eqs. (20) and
(23) reduce effectively to the interval (0, ~) since
6; and 8; are intrinsically positive.

Finally, the average magnetization (m) and the
susceptibility per site X are defined by

The probability distribution po(G;„) is then defined
as usual by the Fourier transform of the characteristic
function @„(k),

Like in the ordered lattice case (p = 1) we expect
the free energy of the dilute Ising model on a Cayley
tree to be regular for h =0. The phase transition
which takes place at low temperatures (ks T (( J)
when the concentration of Ising spins is increased
beyond. the percolation threshold, will show up
through various singular dependences of the free en-
ergy on the applied magnetic field. Due to this
singular behavior a simple iteration of the equations
of Sec. II, in powers of the magnetic field, is expect-
ed to converge only over a restricted range of low
concentrations at any given order in the field. As
usual, such an iteration enables one to discuss the
zero-field susceptibility above the lowest critical point
defined as the highest concentration at which this
quantity becomes infinite. However, as in the pure
lattice case, it turns out that there exists an infinite
set of additional critical points corresponding to
singularities of all higher-order derivatives of the free
energy, respectively.

We first determine the probability distribution
PG(Gi ) to second order in h. In order to solve Eq.
(21) we require the value of F, i, for h =0(h. =1). In
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fact, the probability distribution of the variable R; i

may be easily found exactly. For a one-generation
branch involving a single site i we have, by defini-
tion, G;) =e z~"=)). and from Eq. (16)

R; ) = I —e, + e;)). + 0 (v ') (29)

F,„=&+F~'~+F(2i+ (31)

and by expanding Eq. (21) through order hz we ob-
tain a pair of linear recurrence relations for F, „' and
F,~„, respectively. After resumming the explicit solu-
tions obtained by successive recursions of these
linear relations we get

P',,'7) =2psP/y„"),

f."' = (I —p "K")/(pK —I)

(32a)

(32b)

A self-consistency condition similar to Eq. (19) then
yields

pR(R , 7)7=(1 —p)8(R, , —I) +ps(R, , —)).) . (30)

This shows that F, ~
= 1 for h =0 and hence, from

Eq. (21), F,„=I for h =0. We now write the mo-
ment F, „ in terms of linear and quadratic corrections
in the field

F() =2ps /3 h fu) (33a)

2pK + K(K —I)p (pK)" ' —I
pK —I (pK —I) 7 pK —I

+ 2pK(p —I) ( I)( K)„7+p'K(K —I)
(pK —l)'7 (pK —1)3

x p "K"[(pK)" ' —I] + (pK) " ' . (33b)

Then, by performing the summation in Eq. (26) for
@„(k),using Eqs. (24), (31), (32a), and (33a), and
taking the Fourier transform we obtain the normal-
ized probability distribution

pG(G, ,„)=5(G,,„—I) -2p/f 7') g'(G7„- I)
—2P'/ 'f„")[5'(G,„-I) —S"(6,„-1)]
+0(/') . (34)

Finally we insert Eq. (34) in Eq. (15) to evaluate
(InZO+„+7 } explicitly. After a change of summation
variables we obtain from Eqs. (8) and (15) in the
thermodynamic limit

(f(1;17))= ph —p J ——~(I —p) ln2 —
17

2 p (1 —p) (K —1) ", phzg (K ' p') — -p-(I p) (K —I)—
pK —1 2

7

2pK + K(K —1)p2
X
~', 2(p —I) X( )

pK —I pK —1 (pK —I)7, ) pK (pK I)7,

+ X [(p'K)' Kp'"]+ —X p' (35)
(pK - I)', ,

For p K & 1 the various geometric series in Eq. (35) may be summed explicitly and, after some rearrangements,
we find

(f(T,h)) = —p J —~(1 —p) ln2—2 Phzp (K —1)
/3 2(1 —pK)

1 «+2p pK) — -+0(/'), p&1, p'K&1 .
pz I+pK

K —I

(36a)

On the other hand, for p = I Eq. (35) reduces to

(36b)(f(T,I7)) = —I —
17

Equations (36a) and (36b) reveal a number of in-
teresting features.

(i) In the cases h =0, p arbitrary, and h %0, p = I
the free energy is an analytic function of T, p, and h,
respectively. In particular, Eq. (36b) coincides with
the low-temperature limit of Eggarter's result for
h =0' and the first term of Eq. (36a) is just the aver-
age interaction energy per spin at T =0, h =0.

(ii) Except for p = I, there is no term linear in i7 in

the free energy which implies absence of spontaneous
magnetization, when the concentration p ( 1 is
varied across, e.g. , the percolation threshold,
p, = I/K = I/(z —I). We emphasize that this conclu-
sion remains valid for all values p (1 since in this
range the linear term in Eq. (35) converges. This
implies that the phase transition is dominated by the
spins at the surface since a ferromagnetic transition is
known to occur in the central part of the Cayley tree
when'p exceeds the value p, ."
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(iii) The average susceptibility given by Eq. (28)
has a simple pole singularity not only at p =p, but
also at the concentration p =p, 2

= (z —1) ', and ac-
cording to Eq. (35), it is formally infinite for all

higher concentrations. The pole at p =p, corres-
ponds, of course, to the onset of ferromagnetic ord-
ering of the spins in the central region of the Cayley
tree. This is in fact, the only vestige of this transi-
tion in the averaged free energy for a bounded Cay-
ley tree. The pole at p =p, 2 corresponds to ordering
of the spins at the surface which is not accompanied
by spontaneous magnetization. The critical concen-
tration p, 2 is the analog of the "surface critical tem-
perature" at which the average susceptibility of an or-
dered Ising modei (p =1) on a Cayley tree is found
to diverge. ' We note, -incidentally, that in the case
of the ordered Cayley tree the average susceptibility
remains finite at the Bethe-Peierls critical tempera-
ture for ferromagnetic ordering in the bulk. 2'

(iv) Like in the case of the second-order contribu-
tion in (f(Th)), we may locate the poles of the
higher-order terms from the general structure of the
linear recurrence relations for the corrections
J','„', / &2, to the moments F,„. Firstly, the form of
Eq. (21) shows that the correction F,t„'~ at any order
h'in the field, involves terms proportional to various
powers of the quantity (1 —pK) ', similar to those
occurring in Eqs. (32b) and (33b). As in Eq. (36a),
this dependence on (1 —pK) ' leads to a simple pole
in the contribution of order h' in the free energy
(f(T h)), and is associated with the ferromagnetic
ordering of the spins in the bulk region. In addition
F,tg has a term proportional to (pK)'" [see Eqs. (32b)
and (33b) for the cases I =1, 2 ] which leads to con-
tribution in (f(T,It)) proportional to (h = Ih I),

I

I XK—
(pK) I i I

f=l plK/ 1

or

»o=-lnlI itin(pK) (39)

Following Zittartz and Muller-Hartmann, one might
argue, therefore, that the leading nonanalytic contri-
bution to the free energy in the range p & p, ~ is prop-
erly determined by cutting off the summations on the
left-hand side of Eq. (37) at an upper limit t = »o for
all orders e ~ l. This would yield a nonanalytic con-
tributien of the form

the Ith-order derivative (I-point correlation function)
of the free energy with respect to the field h.

For p & p,~(l «2) the Eq. (35) (I =2) and the

left-hand side of Eq. (37) cease to converge. This in-

dicates that the free energy is a nonanalytic function
of lb I

for p & p„where an expansion in powers of
I
It

I
has thus only a formal meaning, as it is invalid.

Actually, however, the form of Eq. (37) for the I-th

order contribution suggests that the free energy is
composed of a regular (analytic) part and of a non-
analytic part. In particular, for p,~ (p & p, ~ ~ the
free energy has in general, l —2 regular terms pro-
portional to Ihl, Ihl, ... , Ihl' ', respectively, and an
irregular part associated with the formally divergent
terms of order lit I', IIt I'+', . ... The question arises
then, whether it is possible to modify the expansion
of (f(T, I

h I) ) in powers of
I
It I so as to remove the

divergencies of the terms proportional to
I
it I, »t « I,

for p & p,~. Of course, this amounts, in principle, to
determining the actual form of the nonanalytic part
of the free energy.

A procedure which enables one to find the form of
the leading nonanalytic term in the free energy in the
case of the ordered Cayley tree has been proposed by
Zittartz and Muller-Harimann. Its extension to the
present problem amounts to making use of the fact
that, for pK & 1 the recursion process giving rise to a
leading term proportional to Ih I!(pK)"' in F,tn, is ap-
proxirnately valid up to a value n0 of n such that

I
h I

i(pK)
"o'

O (1)

1
pg) (( ])/( f l 2 f 3p ~ ~ ~

K
(38)

as is evident from the general structure of Eqs. (8)
and (15) after averaging over distributions of the
.form of Eqs. (2) and (34) with the Ith-order term in-
cluded. This shows that the free energy has simple-
pole infinities at the concentrations

where

—mK —m +1
p

n0
m rn m —1 0

II lm X ( mKm —I), IItl (I K
f=l

—mK —m +1
p

(40)

where p, =p, =1jK is nothing but the percolation
threshold. We note that, awhile for the ordered Ising
model the existence of contributions involving odd
powers of h is ruled out by the general structure of
the free energy for arbitrary fields, this is not so at
the higher orders in the present site-disordered case.
The divergence at p, corresponds to the onset of
correlations of the spins at the surface described by

K(p) = lnK/ln(pK) (41)

for any order m ~ /. From this expression one sees
immediately that I —1 ( K(p) ( I for

p, ~ & p & p, ~ ~, which shows that the nonanalytic
term '(40) is of higher order than the I —2 regular
terms, proportional to lb I', .. . , Ih I' ', respectively.
In particular, it follows that when
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p )p, [K(p) ( 2], this nonanalytic contribution

dominates all regular terms.
The above discussion of nonanalytic terms in the

free energy using the cutoff procedure of Zittartz and
Muller-Hartmann indicates that in the whole range of
concentration p, (p ( 1, the free energy has contri-
butions of the form ih i

"(",where the exponent K(p)
increases continuously from unity at p =1 to infinity
at p =p, . Thus, for i h i 0 the transition above p,
would be an ordinary first-order transition at p = 1

(ferromagnetic transition) and a transition of "infinite
order" at p =p, . Moreover, the smooth variation of
s((p) as a function of p would suggest that one is

.dealing with a transition whose order varies continu-
ously as a function of concentration.

In Sec. IV we present an exact calculation of the
free energy for p 1, which avoids expanding in
powers of the magnetic field from the outset. This
calculation leads to an unambiguous identification of
the form of the leading nonanalytic terms and shows
that the above conclusions concerning nonanalytici-
ties in the free energy are only partially correct. We
find that while the free energy has indeed a contribu-
tion of the form of Eq. (40), the latter is not the
leading nonanalytic term, which turns out to be pro-
portional to lnih i and implies a transition of infinite
order (at least in a range of concentrations near
p =1). Furthermore, this treatment will give us a
clue for correcting a posteriori the procedure of Zit-

tartz and Muller-Hartmann to obtain the correct form
for the leading nonanalytic term in the present case.

IV. HIGH-CONCENTRATION LIMIT

For concentrations p & p, 2 the free energy involves
nonanalytic contributions from every order of a for-
mal expansion in powers of h. As shown in Sec. III,
the expansion of Eq. (21) in powers of h, and its
solution by successive recursions, breaks down in this
concentration range for sufficiently large n. In this
case it is necessary to solve the recursion relations
(21) in their actual nonlinear form in order to treat
correctly the nonanalytic behavior of the free energy.
An analytic treatment of this problem is possible in
the high-concentration limit p 1, where we may ex-
pand Eq. (21) in powers of 1 —p. Writing

F,,„=F,0„+F,',„+g((1 —p)') (42)

FO &-[si(SC —i)](]—It. ")
s, n (43)

where F, „ is of zeroth order in 1 —p and F,', n is linear.
Starting the recursions from the values

F,', =)(, F,', -(l-p)(1-V),
which follow from Eq. (30), we obtain after some
algebra

n 2

F 1 (1 p) I Kn —m —1 ()(
—(s/(K —1)]K +

)(
—/( sKl)) ) (s/(K —1)lK"+ 1 ) (s/(K —1))(K"-()

s, n

+ Kn —1(1 ) s) ) [sK/(K —1)l(K" -1) + g ((1 p)2)

By inserting these results in Eqs. (24) and (26) and performing the summation in the resulting expression for the
characteristic function, we obtain for the Fourier transform

s

pg(G)n) = 1+ (1 —K" ') 5(G/ —)(K ' " ')+(1 p)K"—
I

( 1

n —1

X5(G —)K K 1/K 1))+(1—p) $ Kn mg(G —)
K K )/K 1)g(n —2)+g((1 —p)2)

m ~2

(45)

Using Eq. (45) to calculate (lnZO+„+1) given by Eq. (15), we obtain for the average free energy to order (1 —p)',
in the thermodynamic limit,

(f(T,h)) = —p2J pI) —p (1 p)K(K——1)—
p

(

x —1+ X K-'in(1+)'"' "/'" ")— g in-(1+)-(K'-'»("-")
K K —1 ( K(K —1) 1

C)O

(
oo l-1

$ ln(1 + )((K —K)/( —1)) + p Q Q K-kin(1 + ) (K —K")/(K —1)) + g ((1 p)3)
w2

( 3(c 2

(46)
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Before proceeding with the explicit evaluation of this exact expression we note that, for p = 1, it coincides with
Eq. (36b) as it should. It follows by inspection that for p & 1 Eq. (46) is valid for h A 0 only. On the contrary
Eq. (35) is valid down to h 0 provided p'K & 1. This difference is not surprising, since for p sufficiently close
to unity the condition p'K ( 1 is violated. This shows that Eqs. (36a) and (46) apply in different ranges of con-
centration. The form of Eq. (46) indicates that it will be difficult to get accurate detailed results for very small
values of the field h, as this requires a numerical summation of large numbers of terms.

In order to extract the leading nonanalytic contributions in the free energy expression (46) one may perform
approximate summations of the various infinite series using the Euler —Mac Laurin formula. Actually, a more
relevant quantity to discuss is the average magnetization per site. From Eqs. (27) and (46) we obtain

1

(m) =(Map —2pap(1 p)K K—'+ X (1 —K ') {1+exp[b(K' 1)]} ' —— P X (K' I)—(, K (K —1),

x {1+exp[b(K'—1)]} '+ X (K' ' —1) {1+exp[b(K'—K)]} '
K (

I —1
p X X (K( kl) {1-+exp[b(K' K")]} ' +—0((1 —p), v ')

I 3k 2

(47)

where S+ = K+-'e '~ I
+1=

l~l
(51)

K —1
(48)

In using the Euler —Mac Laurin formula we have
chosen to retain the following leading contributions'

n —1

X a(= '~ a(l) dl"0

S pe bK—
( 1

(so)

—
2

[a(0) +a(n)]+ —,2
[a'(n) —a'(0)] . (49)

The nonanalytic behavior of (m) arises from I values
such that the arguments of the exponenials in Eq.
(47) are larger than unity. Therefore, the form of
the nonanalytic field dependence of various terms
(but not their precise magnitude) may be obtained by

neglecting unity compared to the exponentials in the
terms to be summed in Eq. (47). This leaves us with
the following distinct sums to be performed

k

e b(K —K )—
~k

I 3k-2
(52)

The evaluation of Eqs. (50) and (51) using Eq. (49)
is straightforward. After expanding the results for
small fields we get

So= —lnb/lnK+0(bo= 1) +0(b)

S( =. 1/b in K + 0 (bo = 1)

S ( = 0(bo= 1) + 0(blnb)

(53)

(s4)

The series Si which converges only for b ~0, and
which also enters in the following evaluation of S2,
gives the leading nonanalytic field dependence of
(m) at order (1 —p)~. In evaluation S2 it is con-
venient to use K' —K as a new variable when apply-
ing the Euler formula to perform the summation
over k. In this way we obtain

(
oo K' —KS2= g (ink) '(1 —bK')e '" [Ei(b) —Ei (bK')] — e " +(lnK) '(K'e '" "—I)

I 3 K

[(Kl I) e b(K () + (K 1)e
——bK () —K )] ~ lnK

—
[ Ke bK (I —K ) + bK((1' —

K —))
2 12

x e '""-" '+(K' -bK'+b)e ' "]---(56)

where Ei (x) is the exponential integral. '0 The only summation in Eq. (56) which requires some further
approximation is

S2( = —(lnK) ' g [(1—bK')e ~Ei (bK ) +1]
(=3
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which we approximate by (with y the Euler's con-
stant)

i.e.,
lo = —inb/in K

I —10
$2( = —(lnK) ' X (I —bK') p

x [,+in(bK') +.. .] -(inK)-'(/, -2)

(58)-(inK)-' g [(I-bK'), +I],
'-'0 bK'

and where the quantity f (bK') may be replaced by
unity for our purposes, ' in which case the last term
of Eq. (58) reduces to K[(1 —K)lnK] '. In the first
term of Eq. (58) we expand the exponential and use
Eq. (49) to perform the summation over l. After
some algebra we get

( 'I 1 'I

S'= 'nb ~+ +—+-
lnK lnK 2 2 lnK

+O(b =I) +O(blnb) (60)
where I0 iS defined by

IbK0=1, (59)
Finally, by collecting the various contributions in Eq.
(56) we obtain

1 1. 1 1 1

b, (InK)2 KlnK 2lnK 12

1

1 lnb lnb 1 K lnK+——+—1+ +O(b = I) +O(b lnb) . (61)
2 lnK lnK 2 2 6

'I

InK 1 + I (lnb)'
12 b 2 lnK

&y using the approximation stated after Eq. (49), and inserting the above explicit values for $0, $+t, and $2
in Eq. (47) for (m) we find

1 /

(m) =2p, p(1 —p) +lnb 1 —p 1 1 1

lnK lnK K —1 2 lnK

2 2 K —1 12
——+—— + lnb +O(ho= I) +O(b lnb)

j

Since 1/b varies more rapidly than any finite power of lnb, we may drop the terms proportional to lnb and to

(Inb)' in the contribution of order(1 —p)', so that finally

(62)

(m ) = 2 p, sp (I —p) +lnb (I —p) 1 I I+
lnK lnK K —1 2 lnK

lnK
12 b

(63)

We recall that Eq. (63) is valid only for p W I and

h A 0 as shown, in particular, by the above explicit
evaluation. However, since we know from the study

of Sec. III that lim (m) = p,s and lim (m) =0 for
@~I Ill 0

p A 1, we may attempt to adjust Eq. (63) to a slightly

more general expressiori of the form

nt =2p(lnK) ', (66a)

2p 1 1 1

1nK K —1 2 1nK
(66b)

12

and expanding Eq. (64) through O(1 —p) we get by

comparison with Eq. (63)

(m) =D(p)e[t/~(~)li"b+ C(p) e ~(u (64)

D(p) =pa[1+0(1 —p)]

I/&(p) =~((1 —p) +O((1 —p)')

C(p) = p,a[1 —p + O((1 —p)2)]

y(p) =Pi(I —p) +O((1 —p)')

(65a)

(65b)

(65c)

(65(l)

which incorporates the above limiting values if we as-

sume D(1) = pa and I/g(I) = C(1) = y(1) =0. Thus,
using the following expressions for p 1,

Finally, we note that while the first term of Eq. (63)
corresponds to a contribution in the free energy vary-

ing as ~h ~'+'/ (~~ (which is similar to the leading non-
analytic term found at finite temperature in the case

'

p = 1)2, the second term corresponds to a nonanalytic
term in (f(T,h)) proportional to In~h

~
which dom-

inates at small fields. The existence of this in~h
~

term implies that all zero-field derivatives of the free
energy are infinite. Hence, the transition is of infin-
ite order, at least in the range p —1.
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In closing this section we wish to show how the ap-
proximate procedure introduced by Zittartz and
Miiller-Hartmann' for the ordered Ising model must
be modified in order to yield the leading nonanalytic
term in (m) proportional to I/b We. focus on the
expression St in Eq. (51) which gives rise to the 1/b
term. A straightforward application of the cutoff pro-
cedure of Ref. 2 would amount to formally expanding
Eq. (51) in powers of b, and to evaluate the resulting
expression at any given order b by summing the
contribution K'( bK') —/m! over I in a range where
we have bI(. " & 1, that is, for I varying from 1 to
ia = —lnb/lnK. In fact, this would yield an incorrect
result because the terms to be summed in Eq. (51)
have a maximum as a function of /Ior K''= I/O. A

correct approximate evaluation of Eq. (51)) by series
expansion consists, therefore, in. writing the individu-
al terms in the form of expansions in powers of
K' —1/b, i.e.,

St = I /eb + 0 (bo = I) (68)

which is of the same form as Eq. (54), as expected.
This shows that one must be extremely careful in us-
i'ng the results for the free energy in a range of con-
centrations where an expansion in powers of the
magnetic field is valid, to make predictions about the
nonanalytic behavior in a range where such an expan-
sion breaks down and has only a formal meaning.

An approximate value of S~ is then obtained by re-
stricting the summation over I in Eq. (Sl), to an inter-
val of width unity for K' —I/O around the position of
the maximum at 1/b. Thus, for this estimate l is al-

lowed to vary from Ia =lnb/lnK to

lt = in(1+ 1/O)/lnK. In particular, if one keeps only
the zeroth-order term in Eq. (67) (i.e., 'the term in-

dependent of K' I/O) one obtains—for St

stant nearest-neighbor interactions, is characterized
by the absence of spontaneous magnetization, and
the onset of correlations described by the higher-
order derivatives of the free energy above the perco-
lation threshold. Spontaneous magnetization appears
only in the ordered limit, p =1. These features
result from the topology of the Cayley tree which im-
plies that the critical behavior is dominated by the
spins lying at the surface in the thermodynamic lim-
it. '3 More precisely, we have shown that the lth-
order derivative (correlation function) of the free en-
ergy diverges at the percolation threshold p =p„as
well as at a higher concentration p =p,i (p, i ~ & p, 2,
defined by Eq. (38). For p greater than any of the
threshoids (38), the free energy involves nonanalytic
contributions and a detailed treatment in the range
p —1, shows that the leading nonanalytic term is pro-
portional to In~ h ~. Therefore, the transition occur-
ring for p (1 and for h - 0 at low temperatures, is
an infinite order transition in the sense of the Ehren-
fest classification. On the contrary, the order of the
transition found in the case of an ordered Cayley tree
varies continuously from 1 at T =0 to infinity at the
Bethe-Peierls transition temperature.

Phase transitions with absence of long-range fer-
romagnetic order are expected to occur in various
spatially ordered two- and one-dimensional systems
of continuous symmetry, and in particular, in the
two-dimensional xy model studied recently by Zittartz
and others. In fact, as shown by Zittartz, the transi-
tion in the two-dimensional xy model is similar in

many respects to that found for the ordered Ising
model on a Cayley tree. It is thus tempting to specu-
late that the abo~e results provide a qualitative
description of some features of the magnetic transi-
tion of a disordered two-dimensional xy model.
However, because of the absence of closed loops on a
Cayley tree it is not clear what would be, e.g. , the to-
pological "defect" analogous to a vortex pair, which
plays a central role in the exact treatment of the or-
dered two-dimensional xy model. "
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