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In order to assess the magnitude and significance of anharmonic effects in V,Si the Landau theory of Bhatt
and McMillan for the coupled-mode charge-density wave instability has been extended to higher order. The
higher-order coupling parameters are determined empirically and are used to calculate nine second- through
fourth-order elastic constants ys a function of temperature. The nonlinear stress-strain curve calculated from
these results is in good agreement with the experimental data of Patel and Batterman. The elastic-shear-
rnode softening has been investigated in the quasiharmonic anisotropic-elastic-continuum approximation, in

. which anharmonic effects enter through the third- and fourth-order elastic constants. A strong enhancement
of the electronically driven instability by the anharmonic phonon-phonon interaction is found.

I. INTRODUCTION

The elastic-shear-mode softening and the as-
sociated low-temperature structural phase trans-
formation in V,Si and other A-15-type intermetal-
lic compounds~ have been explained previously on
the basis of electronic effects. In the microscopic
theories the mode softening is considered to arise
either exclusively from a d-band Jahn-Teller ef-
fect at high-symmetry points of the Brillouin zone,
resulting from the three orthogonal sets of transi-
tion-metal chains, ' 4 or in conjunction with the
electron-phonon interaction giving rise to a Kohn
anomaly or a Peierls instability. In the more
recent phenomenological Landau theories the sof-
tening is attributed to a charge-density wave (CDW)
instability. "'" On the other hand,

'

the mode sof-
tening observed in ferroelectric and:ferroelastic
insulators has been accounted for in terms of an-
harmonic phonon-phonon interactions. ~4 ~' Since
there is substantial experimental evidence for
large anharmonic effects in A-15 compounds, ' we
have investigated the effect of the phonon-phonon
interaction on the mode softening in V,Si.

The most direct evidence for large anharmonicity
consists of the strongly nonlinear stress-strain
curve obtained by Patel and Batterman~' by uni-
axial compression of V,Si at 25'K, which shows a
doubling of the soft shear modulus c, =—,(c» —c»)
at a strain level as small as 5&&10 . This result
is 'corraborated by the effect of a radial compres-
sion on the ultrasonically measured shear modulus

c, observed by Testardi. ~' Although the dependence
of the elasti. c constants on hydrostatic pressure
is normal, the temperature variatioq of their first
pressure coefficients is unusual. "" In V,Ge the
second pressure derivative of the shear modulus

c, is unus. ually large. ~9 Other evidence of a more
qualitative nature consists of a strong dependence

of the low-temperature specific heat on nonhydro-
static stress'~ and the observation of acoustic sec-
ond-harmonic generation. " Furthermore, the ab-
solute magnitude of the Mossbauer recoil-free
fraction in Nb3Sn has been interpreted in terms of
strongly anharmonic vibrations of the Sn atoms, "
but this is not supported by x-ray measurements
of the Debye-Wailer factor. '4 Anharmonicity has
also been invoked for explaining the temperature
dependence of the specific heat of miscellaneous
A-15 compounds" and of the thermal expansion of
V,Si (Ref. 26) and Nb, Sn." However, in the case
of the specific heat, electronic effects cannot be
ruled out as the exclusive cause, and the thermal-
expansion data for V,Si, which were obtained on
polycrystals, are at variance with single-crystal
data" and appear to be in conflict with the pres-
sure derivatives of the single-crystal elastic con-
stants. " The temperature dependence of the
electrical conductivity at intermediate temperature
has been attributed to anharmonic effects, "but the
same data can also be explained in terms of inter-
val1ey electron scattering. ' The potential impor-
tance of anharmonicity for understanding some of
the unusual physical properties of A-15 compounds
has been emphasized by Testardi. »' In conclusion,
it can be said that although much of the evidence is
inferential and controversial, there are indisput-
able and quantitative experimental data, which
make it compelling to include anharmonicity in the
theory of A-15 compounds.

Therefore, it is the purpose of the present paper
to evaluate for V,Si the effect of the phonon-phonon
interaction on the softening of the shear modulus

c, . The anharmonic effects are treated in the
quasiharmonic anisotropic-continuum approxima-
tion and are characterized by the third- and fourth-
order elastic (TOE and FOE) constants. Their
magnitude and temperature dependence are evalu-
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ated empirically within the framework of a gen-
eralized Landau theory inspired by the coupled-
mode CDW model of Bhatt and McMillan. "

II. THEORETICAL MODEL

An adequate microscopic theory of anharmonic
effects in A-15 compounds would require consider-
ation of the coupled electron-phonon system with
electron-electron, electron-phonon, and phonon-
phonon interactions treated on an equal footing. In
order to circumvent the considerable difficulties
arising from the complexities of these interactions
and of the band structure, we choose a phenomeno-
logical approach based on the Landau theory of
phase transitions. "

While in the original Landau theory the physical
origin of the temperature dependence of the soft-
mode frequency and of the order parameter are
not specified in its more recent applications to
A. -15 compounds, the elastic-shear mode is con-
sidered to be driven soft by a CDW mode which
acts as the primary order parameter. In the the-
ory by Kragler and Thomas, "the shear-strain
amplitudes are coupled directly to the fluctuation
of the d-electron charge density in the three ortho-
gonal chains of transition-metal atoms. The the-
ory by Bhatt and McMillan ' is more general in
that optical modes are included in addition to the
CDW 'amplitudes and the elastic strains, but the
shear modes are coupled only to the optical-mode
amplitudes, which, in turn, are coupled to the
CDW amplitudes. In both theories the softening
of the shear mode arises from the temperature
dependence of the coefficient of the term puadratic
in the order parameter. In the Kragler-Thomas
theory this temperature dependence is determined
empirically, whereas in the Bhatt-McMillan the'-

ory the usual linear temperature dependence is
assumed. Both theories include dynamic effects
through a Debye-type relaxation mechan1sm, and
are able to explain the temperature dependence of
the TA phonon branch"'" associated with the shear
modulus c, and the occurrence of a central peak
observed in inelastic neutron scattering. "

In view of the strong evidence for anharmonic
effects discussed above, it is surprising to note
that these and other previous theories' "are able
to account for many of the anomalous properties
of the A-15 compounds without explicitly including
anharmonic effects. '4 In order to investigate the
effect of anharmonicity on the temperature depen-
dence and softening of the shear modulus c, and
the nonlinear stress-strain curve, we consider a
modified Landau model for A-15 compounds in
which the anharmonic contributions to the free
energy are included in addition to the electronic
effects arising from the CDW instability.

A. Quasiharmonic approximation

The simplest theory of anharmonic effects con-
sists of the quasiharmonic approximation" (QHA).
In th1s approximation the vlbratlons of the crystal
lattice are described by harmonic oscillators rep-
resenting 3' normal modes with frequencies co,-

(i =1, 2, . . . , 3sN; s is the number of atoms per
unit cell; N is the number of unit cells in the crys-
tal) which are explicitly strain dependent but which
depend on temperature only indirectly through the
temperature dependence of the thermal strain.
Anharmonic effects arise through the strain de-
pendence of the frequencies, and are described to
any order n by the dimensionless nth strain deri-
vatives (the microscopic nth Gruneisen param-
eters) defined by

where g& denotes the components of the Lagrangian
strain tensor in Voigt notation. ' The nth Griinei-
sen parameters depend on the anharmonic inter-
atomic coupling parameters .which give rise to
phonon-phonon scattering processes of the order
up to n+2.

Anharmonic properties that have been or which
can be successfully tackled by the QHA are the
temperature dependence of the linear thermal-
expansion coefficient and the temperature depen-
dence of the nth-order elastic constants. " In the
QHA the molar free energy is given by"

P (T fitot )
—y(fitot) + gf t& (T ~ (fl t t))O

Here Q(q"') denotes the strain energy of the static
1attice, where q«t is composed of the thermal
strain and an additional homogeneous deformation
strain. The sum in Eg. (2) is extended over all
normal modes i with their vibrational contribution
given by"

f'"(T, (o,.) =he T in[2 sinh(h(u, ./2ya T)] .
Eliminating the thermal strain from the con-

dition that the thermal stresses must vanish in
the absence of a homogeneous strain, the free en-
ergy can be written as the sum of three contribu-
ti.ons according to

The first term is the thermal free energy of the
strain-free cyrstal. The second and third terms
describe, respectively, the strain dependence of
the static crystal (without zero-point and thermal
motion) and the total anharmonic contribution re-
sulting from zero-point and thermal motion. Eo(fi)
is approximated by a truncated Taylor expansion;
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1
F'„(q) =V, g g —, c'„,...„q„,~ ~ q~ „,.

k=8 Pl ''
Pk

cy„=g yqE' /Vo, (8)

th E th cvT
cxv =gxp + rpOV V

5xopy c 0

where

g~„=&r„),+
I c~„+P c'„„,6, a' P&y, ),6, ,

Here Vp denotes the volume of the static crystal
in the undeformed state, and c'„,...„„denotes the
Qth-order elastic constants of the static crystal in
the Voigt notation according to Brugger, "where the
strain components are defined according to q„=g„
for p, =1, 2, 3, and g&t2g„ for p. =4, 5, 6. A formal-
ly identical expression is obtained for F„"(q),
where the corresponding expansion coefficients
c~a",h. ..„, denote the total anharmonic contribution
to the isothermal Qth-order elastic constants aris-
ing from zero-point and thermal motion. The total
isothermal Qth-order elastic constants are then
given by

C ... =C ... +C'""...~l &k &1 ~k ~l ~k (6)

In the linear approximation in the thermal strain
the total anharmonic contribution in the QHA is
composed additively of the zero-point and thermal
contributions:

~anh —~ zp + ~th
~ ~ 0 p M

p
0 ~ 0 p

& M
p 0 ~ 0 p 01 k 1 k I k

For the second-order elastic constants the indivi-
dual contributions in Eq. (7) are for cubic sym-
metry given by"

For the subsequent application to the A-15 struc-
ture the anharmonic contributions arising from
coupling parameters up to and including fourth
order will be considered. In addition, products
involving three or more coupling parameters of
any order, and two or more coupling parameters
of fourth order are neglected. In this approxima-
tion the third- and higher-order elastic constants
are independent of the zero-point and thermal con-
tributions, and the free energy reduces to

F(T, q) =F(T, 0) +F',(q) +F2""(T,q) . (12)

Thus the static free energy Fo(q) depends on the
static elastic constants of second through fourth
order. The anharmonic contribution F,'""(T,q) de-
pends on the temperature-dependent contributions
to the second-order elastic constants, which, in
turn, depend on the coupling parameters of second
through fourth order.

Equation (12) is the main result of this section.
For subsequent construction of a Landau free en-
ergy, it is necessary to express this result in
terms of the symmetry coordinates of the elastic
strain. They are the eigenvectors of the 6~6 ma-
trix of the second-order elastic constants. For
cubic symmetry the symmetry coordinates are
given by"

e, = (q, + g, + q, )/ i8, e, = (q, —g, )/v 2,
e, = {q,+ q, —2q, )/W6, e, =q, ,

85 g5 ~ ~6 g6

The two strain-dependent contributions to the free-
energy density are given by

' ~-o 2 1 ~-o
y

=
2 j c&&e&+ 6 ~ c&pvexepev

0 ~pv

(10)
and

mP+
24 ~ cyPPP8 yePeye P

p.,
(14a)

3sN 3sN

&A)„= P A,.w,. P ao, ,

where A denotes a Gruneisen parameter or a pro-
duct of Gruneisen parameters, and ce,. is the mean
thermal energy e, of mode i (including zero-point
energy), or the mode specific heat c, =(se, /BT)„.
6& denotes the Kronecker symbol in Voigt notation,
i.e., 5„=1for p, =1, 2, 3, and 5„=0for p. =4, 5, 6.
The superscript 0 in Eq. (8) refers to T =D.

and p' denotes the bulk modulus of the static crys-
tal. E" and E'" denote the zero-point and thermal
contributions to the internal energy, and c„
=(eE'"/BT)„, the molar specific heat. Equations
(9) and (10) depend on weighted mode averages of
the form

(14b)

Here and subsequently the second- through fourth-
order elastic constants referred to symmetry co-
ordinates are denoted by cqq, c z&„and cq„„z.
The second-order elastic constant matrix consists
of the diagonal elements37

~11 ~11+2~12 t

A A

C22 —C33 Cll Cl»

44 55 66 44

—,'0» = JP is the bulk modulus and is associated with
the totally symmetric mode 8, which belongs to
the irreducible representation 1"~. The second
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eigenvalue corresponds to the shear modulus
2(c» —c»), and is associated with the eigenvectors
e, and e, which form basis vectors for the two-
dimensional representation I'». The third eigen-
value is equal to the shear modulus e44 and is as-
sociated with the three-dimensional representation
r,', with e4, e, , and e, as basis functions.

The TOE and FOE constants cq„„and Pq„,~ re-
quired here are related to the higher-order elas-
tic constants in Voigt notation according to Brug-
ger's definition~6 as follows:

Clll = (Clll + 6C»2+ 2C]23)/W3,

]33 ( 111 123)

$1
C]111—

3 yC]]]]+ BC»]2 + 6C]122 + 12C]]23),
1(

3333
—2 ]C]1» —4C]l)2 + Cl]22) P

lg
0]]33—3 (Cllll + 3C1112—3C]123) q

1333 ( 1111 C]112 1123 3 1122)/

(16)

(17)

hP -aq +Qq +Cq + ~ . ~ .
The coefficient a is a function of temperature, and
changes sign at a critical temperature T, . Usual-
ly the high-temperature phase corresponds to the
disordered state characterized by q =0. By ex-
panding the coefficients c, b, c. . . in the vicinity of
T, with respect to T —T„ the coefficient a is ob-
tained in the linearly temperature-dependent form
a =a'(T —T,), and the remaining coefficients are
taken as constant. If the coefficient 5 of the third-
order term is identically zero, or if it also van-
ishes at T„ the transition is of second order, and

T, is identical to the transition temperature. For
g0 the transition is of first order.

In A-15 compounds the cubic to tetragonal tran-

B. Quasiharmonic Landau free energy

The essential point of the Landau theory of phase
transitionsis an expansion of the free-energy dif-
ference between two homogeneous phases of dif-
ferent symmetry in terms of an order parameter
q according to"

sition is weakly first order, "and the transforma-
tion strain is given by the symmetry coordinate e,
according to Eq. (13). Writing the Landau free
energy (LFE) with e, as the order parameter ac-
cording to hE =E(T, e3) -F(T, 0), it is apparent
from Eq. (14a) that a cube term in e, is present,
and that the transformation must be of first order.
This was pointed out first by Anderson and
Blount. "' These authors also suggested that a
primary order parameter other than the elastic
strain with no cube term present in the LFE is re-
quired to account for the essentially second-order
nature of the phase transition. One of the two pos-
sibilities suggested by them, sublattice distortions
associated with soft optical modes, has been ruled
out because of the presence of cube terms for the
I"» optical phonon modes which couple linearly
to the soft shear mode. 4' The second possibility
would require a primary order parameter of elec-
tronic origin. However, in most theories that
consider electronic effects as the primary cause
for the mode softening, the phase transition is of
fi,rst order, ' "'" except in the quasi-one-dimen-
sional morsel of Gor'kov, ' where the weak first-
order nature results from interchain coupling. It
has recently been pointed out43 that the essential
results of the CDW model of Bhatt and McMillan
are independent of a specific microscopic mech-
anism and would also follow from a Jahn- Teller-,
type instability.

In V,Si both the bulk modulus and the shear mod-
ulus i«are practically independent of tempera-
ture. 44 This suggests that the total anharmonic
contributions to both quantities are very small.
Hence we shall set g&»=c44" =0. Since the phase
transformation does not involve the shear strains
e4, e„and e„ they may be set equal to zero in
Eq. (14a). In the resulting expression for the elas-
tic free energy the orthorhombic strain component
e, must be retained because it belongs to the same
irreducible representation 1,, as the tetragonal
strain e„and the component e, will be retained
as a parameter because of its pertinence for the
volgme dependence of the transformation temper-
ature.

With these simplifications the quasiharmonic
free-energy difference per unit volume becomes

+F/I 3 2C]le] + 2C33(e2 +e,) + 3 0»]e, +-,'C»3 e](e2 +e3) + 3 8333 83(e3 —3e,) +,4 C»» e,2 &~ 2 2 1 3' 1 2 2 1 2 2 1 4

+4' C„33e]'(e2'+ e3) +—3,C]333e]e3(e'3 —3e,') + g;C3333(e2 +e3)' . (19)

Except for c3, , all elastic constants refer to the
static lattice without zero-point and thermal mo-
tion. However, because of the coupling to the
CDW amplitudes they depend now on temperature.

The soft shear modulus is given by

-g el ~p anh (20)

The first term represents the contribution of the
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"static" lattice; because of its temperature de-
pendence arising from electronic effects it has
been so labeled. The second term represents the
total anharmonic contribution from zero-point and
thermal motion, as given by Eqs. (8)-(ll).

C. Charge4ensity wave contribution to Landau free energy

The CDW model of Bhatt and McMillan ' was in-
spired by Gor'kov's theory9 of the shear-mode
softening in A-T5 compounds as the result of a
Peierls instability of the three orthogonal one-
dimensional (l-D) chains of transition-metal
atoms in the A-15 structure. Since at the X point
of the Brillouin zone of the A-15 structure, all
electron bands are twofold degenerate, if the Fer-
mi level lies close to the X point according to
Gor'kov, a Peierls gap may open up from a dis-
placement of nearest-neighbor transition-metal
atoms along the chain in opposite directions. The
irreducible representations F, and I'» of the opti-
cal modes containing these pairing motions have
the basis functions

Q1= (Q. +Q, +Q.)/~3,

Q. =(Q. -q, )/~2,

Q3 = (Q. +Q, —2Q,)/~6,

where Q, belongs to l, and Q, and Q, belong to
F». The subscripts x, y, and z refer to the di-

. rections of the three chains of transition-metal
atoms in the A-15 structure that run parallel to
the coordinate axes. The vibrational amplitudes
of adjacent transition-metal atoms in the x chain

are given by +Q„, etc. The F» optical modes are
coupled linearly to the soft shear modulus c, .'
The changes in the 4-electron charge density in-
duced by the pairing motion of the transition-metal
atoms represent an alternating increase and de-
crease of bond charges between adjacent atoms,
and are denoted by Q„, P„, and P, . Since the
Peierls gap is proportional to the CDW ampli-
tudes, the Q's may be treated as order param-
eters. '~' " The associated symmetry coordinates
are

41 =(4. +0,+A.)/~3,

42 =(A. —0,)/~2,

e.=(e. +~, 2e.-)/~&

(22)

In the model of Bhatt and McMillan ' the shear-
mode instability is caused by the CDW instability
through the coupling of the CDW amplitudes to the
I'» optical modes, which, in turn, are coupled to
the elastic strains.

Following Bhatt and McMillan" we consider a
static LFE hP~ in the approximation of a homo-
geneous phase as a function of the symmetry co-
ordinates for three CDW amplitudes Q„, Q„and
Q„ for the three optical-mode amplitudes Q„, Q„
and Q„and for the three diagonal components of
the Lagrangian strain tensor 1l„„, q„, and 1i„[cf.
Eq. (13)]. Considering EE1 as a function of the
seven variables Q2, Q3, Q, , Q„e1, e„and e3,
the truncated Taylor expansion up to fourth order
exhibiting the proper symmetry of space group
033(Pm3n) is given by

~~, /&, = '.&„(y', +-y,') +-',&„,y, (y', 34',) + ,—', &„„(y—,'+ y,')'+-.'a„(q,'+ q', ) +-,'a„,q, (q', —3Q,')

+ —
24 B3333(Q2+Q3)'+—,'C» e1+2C3,(e'2+e3') +—', C», e1+ 2C»3e1(e'2+e3') + —,C33383(e3' —Se2)

1+,1, C»»e,'+~C»»e', (e2+e23) +-', C»»e, e3(e3 —3e',) + ,', C»»(e22—+e3)2+F33($2Q,+$3Q,)

+&2.2[(4'- 4') Q. -24.43Q.]+&l 2[(q' -Q') 4. -2Q2QA ]+G. (4.& -0 &.)

+G», [$2(e'2-e'3) —2$3e2e3] +G231($2 e3 —$3e2) 81+G223 [(Q2 $3) e3+ 2/2/3 2]+G221(~2+ ~3)

+H23(Q2e3 —Q3e2)+H», [Q2(e'2-e3) — 2Qe32e ]3+ H» (1Qe23—Q3e2)e1

H223 [(92 Q3) e3 + Q2Q3 2] H221(Q2 Q3) 1 '

433 =A'(T —T,) . (24)

Consequently, Q2 and Q3 are the primary order

As specified below, certain fourth-order terms
allowed by the 0'„symmetry have been neglected.
There are a total of 28 expansion coefficients in
Eq. (23). They are assumed to be independent of
temperature, except A33 for which the usual lin-
ear temperature dependence pertaining to the Lan-
dau theory is assumed, i.e.,

parameters, and are coupled through bilinear and
higher-order terms to Q„Q, , e„and e, . The
symmetry coordinates Q, and Q1 have been omitted
from 4E~ because they belong to the F, represen-
tation and there are no bilinear coupling terms
with any of the other seven variables. Thus these
modes are inconsequential for the softening of the
shear modulus c, . Although e, does not couple
bilinearly to any other symmetry coordinate, it
has been retained in Eq. (23) because it is related
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to the volume dependence of all second- and
higher-order elastic constants and of the transi-
tion temperature. In order to reduce the number
of independent parameters, fourth-order coupling
terms among the three different species Q, Q, and
e of symmetry coordinates have been omitted.

The static model considered implies the adiabatic
approximation, so that the internal variables,
Q „(n= 2, 3) may be eliminated through minimiza-
tion, SEED /Sp„= BAFBE /SQ„=O S.ubstituting the
solutions P„(e,, e, , e,) and Q„(e„e,, e,) into Eq.
(23) results in Eq. (19) for the elastic free-energy
difference, where because of the mode coupling
and the temperature dependence of 233 all nine
"static" elastic constants cq„, c'q~, and P~», are
now functions of T. As outlined at the end of Sec.
IIB, in the present model these "static" constants,
except c33 are equal to the total elastic constants.
in the free-energy difference, Eq. (19). However,
according to Eq. (20), the anharmonic contribution
c33" must be added to the static constant c33 ob-
tained here. In order to obtain the leading terms
in the T dependence, we use the solutions in the
linear approximation according to

4'2 =~I'3 ~

Q, =b, 2e, ,

43 le2&

QS = -~2e2

CS"3 =C,*,(1+n338},

183
— 133( + 1838 +P133Q ) &

(I+n 8+P Q +y Qs),

3333 3333( + Q3383 Q + t 8333
/ 2

+ &33338 +633330 ) i

where
I

e =[1+A(r - r+)/r,*] '

(2Va)

(27b)

(27c)

(27d)

(28)

is related to the renormalized critical temper-
ature T,* defined by

C33(FSS) FSSG23 +38(G23)
~'[a„c„-(ff„)'] (29)

The coefficient A is given by

[+33 33 23 ] 33 33 23 33 23

The collstallts 633 0133 (233 F133 p133 etc lll
Eq. (27) depend on the 28 expansion coefficients in
Eq. (23). For example, c» and nss are given by

c,*, =[s„c„-(a„)']/a„, (31a)

833 G23 —F33H23 g 233+23 F33~23
&„a„-(F„)' ' ' ~„a„-(F„)'

(26)

In this approximation the temperature dependence
becomes

83 ( 33 SS SS 23 ( 33 23 38 23}

(31b}
I

The remaining five elastic constants 8», c», ,
0/$33 and Pi333 are independent of temper-

ature.
The three coefficients o.ssss, p»», and yssss are

interrelated through the relation

+3333 y 3333 (~3333} (32)

Thus the second- and higher-order elastic con-
stants and their T dependence according to Eqs.
(27) and (28) involve a total of 20 independent pa-
rameters, which in turn depend on the 28 expan-
sion coefficients in Eq. (23). It is apparent that in
the linear approximation of Eq. (25) nine of the
expansion terms in Eq. (23) do not affect the form
of the resulting Eqs. (27), although they are al-
lowed by symmetry. For example, either one of
the two third-order terms in Eq. (23) involving
the coefficients A333 or 8333 may be-omitted with-
out affecting the result. Also, the five terms in
Eq. (23) resulting from the direct coupling of the
CDW amplitudes to the strains are not essential
in this sense.

In fact, results formally identical to Eqs. (19)
and (27a)-(27c) can be obtained by omitting in Eq.
(23) all terms involving the optical-mode ampli-
tudes. This would be equivalent to a generaliza-
tion of the model of Kragler and Thomas, ~' in
which the charge-density fluctuations are coupled
directly to the elastic strains, without the inter-
mediate role of the optical modes. The only differ-
ence is that in this case the T dependence of the
FOE constant c3333 would consist only of the 8' term
in (27d), and that in order to obtain the terms of
lower order in 8 all fourth-order coupling terms
between the CDW amplitude and the strain must be
included in Eq. (23). Thus the essential result ob-
tained from the generalized CDW model of Bhatt
and McMillan, ~' consisting of the LFE as given by
Eq. (19) and the r dependence of the elastic con-
stants according to Eqs. (27) and (28), is largely
independent of the particular model used. We have
chosen to derive Eqs. (19) and (2V) from the CDW
model of Bhatt and McMillan ' because the under-
lying physical mechanism of the optical-mode-
driven Peierls instability provides an intuitively
convincing reason for the T dependence of the coef-
ficient A33 of the term quadratic in the charge-
density amplitude. On the other hand, in the in-
terchain charge-transfer model of Kragler and
Thomas" this T dependence is postulated in terms
of a T-dependent effective d-electron density of
states which is determined empirically from the
T dependence of the shear modulus.

It has been shown recently that the primary
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softening mechanism in A-15 compounds may also
be a Sahn-Teller effect occurring at the B point, 4

or at the M point and at two saddle points located
along the I"X directions'~ of the Brillouin zone. In
these cases the symmetry coordinates and their
transformation properties under 0'„would be dif-
ferent from those given in Eq. (22), but it is not
to be expected that this would lead to drastically
different results for the T dependence of the sec-
ond- and higher-order elastic constants.

Equations (23) and (19) are generalized forms of
Bhatt and McMillan's" Eqs. (31) and (32). Equa-
tion (31) of Ref. 13 involves seven independent pa-
rameters, 4' which are (in the notation of the pres-
ent paper) Ass A3»3 B33 C» F33 H23 and

G», . However, Eq. (32) of Ref. 13 involves only
four parameters, which are (in our notation) 7,*,
(cf,A), cf», and c,*», , in conjunction with n„=-l.
The reduction of the number of parameters from
seven to four results from Landau's apploxlm8, —

tion of a. linear temperature dependence of the soft
shear modulus c», and of taking the third and fourth-
order coefficients t".-333 and c3333 as constants. If
this approximation is not made, the resulting equa-
tion would involve the additional parameters P»,
and 53333 and c33 and A would enter individually.

In the present model 13 additional parameters
enter. They are o.», n1» p133 n333 f333 @3333,
and P»», which according to Eq. (27) describe the
temperature dependence of the four temperature-
dependent second- through fourth-order elastic
constants, and c», c», , e„», c»„, c„„,and

cy33 which are required to describe volume-
dependent effects.

Inclusion of the temperature dependence of the
higher-order elastic constants is demanded by
the available experimental data for c~33 calculated
from the first pressure derivative of the soft shear
modulus" (see Fig. 1 below). Since the remaining
two T-dependent elastic constants c3» and c3333
represent the first and second derivatives of the
soft shear modulus 033 with respect to the tetra-
gonal strain e, , Eq. (13), they may also be ex-
pected to be temperature dependent, but no ex-
perimental data are yet available.

The extension of the CD% model of Bhatt and
McMillan" described in this section is necessary
in order to obtain all nine second- through fourth-
order elastic constants which are in the approxi-
mation of the present paper required to character-
ize and calculate the anharmonic contribution to
the soft shear modulus according to Eqs. (7)-(10).

D. Thermodynamic equilibrium conditions

,"' = (-'.W)(x' 1) +x', ,

e tot —g2e
2 2

e ' =A, 'e3 3

(33a.)

(33b)

(33c)

where X'= V(p)/V, denotes the volume ratio associ-
ated with the hydrostatic compr ession. Taking the
strain in Eq. (19) to be the total strain according
to Eqs. (33a)-(33c), and expanding b,F and 4V
with respect to the additional strain components
e, , e„e,, one obtains the LGFE for V3Si after
setting ' e~=e2=0 in the form

b, G/V =Ae'+Be'+Ce'. (34)

Here e =e, is the order parameter, and A, B, and
C are the pressure-dependent second-, thi, rd-,
and fourth-order effective elastic constants.
denotes the volume at pressure p for e =0. In the
approximation of the present paper anharmonic
effects are considered up to fourth order only,
and the pressure dependence of these coefficients
is then explicitly given by

33(p) c» 33P 2 33P

6B —0333(p) 333 +0333P p

24' =e,

(35a)

(35b)

(35c)

The pressure derivatives denoted by primed quan-
tities are expressed in terms of the elastic con-
stants of second through fourth order according

c to46

» (» 1»)/11 (36a)

c,",= [(1+c,', ) cs3+ (4+c11)W301»+ 3c11»]/(c11)',

e'„,=-(3e„,+vYe„„)/ee„+1/3'.
The quantities

(36b)

(36c)

from the available experimental data of the elastic
constants and of the transformation strain, in con-
junction with several thermodynamic conditions.
For this purpose pressure effects are included,
and instead of the LFE [Eq. (19)j the Landau-
Gibbs free energy (LGFE) hG =b,F + Pb, V must be
introduced in accordance with the nonlinear theory
of elasticity. " The term

6 V = V(p; e, , e, , e,) —V( p; 0, 0, 0)

represents the additional volume change associ-
ated with a strain (e, , e, , e,) superimposed on a
hydrostatic compression. The total strain com-
posed of the strain caused by the hydrostatic pres-
sure p and the additional strain (e1, e, , e1) is in
symmetry coordinates given by

As will be described in Sec. IIIA, the independent
parameters of the present model are determined

~11 ~3 ~111/~11

~11 = f(1 - 3~11 —(c'11)')c11+3~1111)/~11

(36d)

(36e)
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correspond to the first and second pressure de-
rivatives of the bulk modulus B= 3cgy.

The substance of the Landau theory is contained
in the two equations

(37a)

AC =@' (39)

obtained by substituting (38) into (3Va).
The. coefficients A, j3, and C are now functions

of pressure only, A. =A(T„(p),p), etc. , and Eq.
(39) is valid at any pressure p.

which express thermodynamic and mechanical
equilibrium between the cubic and the tetragonal
phase, respectively. From Eq. (3Vb) the strain
in the tetragonal phase satisfying the stability con-
dition s'AQ/ae'~0 is obtained as a function of T
and p in the form

e„,(T, p) = -(3B/8C) I
1+{1—32AC/9B2)~ '],

(38)

where in the present model the coefficients A, B,
and C depend on T and p according to Eqs. (27)
and (35), respectively. The transformation tem-
perature T (p) is determined by the condition

E. Anisotropic-continuum approximation

In the anisotropic-continuum model" " (ACM)
the phonon dispersion relations are approximated
by the acoustic branches in the long-wavelength
limit, and the third- and fourth-order coupling
parameters reduce to the TOE and FOE constants.

For O„symmetry there are 6 TOE and 11 FOE
constants. For lack of information the Cauchy
relations for these higher-order elastic constants
have been assumed, "whereby the number of in-
dependent higher-order elastic constants is re-
duced to three and four, respectively. "'" Thus
in view of Eqs. (8)-(11)cg~ is given by a func-
tional of the form

cp3"(T) —ep3"(egg y cats(T), C111 y cl»(T)q 03»(T), ellll r cii33 y c~»~ q e3»3(T)i T) ~ (40)

and depends on temperature both through the T
dependence of some of the elastic constants ac-
cording to Eqs. (27) and through the temperature
dependence of the weight factors zv,- in the mode
average defined in Eq. (11).

The relations for the anharmonic contributions
to the elastic constants in terms of the second-
through fourth-order elastic constants have been
given' '" for cubic symmetry (0, 0„, and T~) in
the limiting eases T = 0 and T & 8~ (= Debye temper-
ature). Numerical application to alkali halides,
noble metals, and P-brass has demonstrated that
in these limiting cases the ACM is capable of ac-
counting for the temperature dependence of the
elastic constants on the basis of experimental val-
ues for the TOE and adjusted values for the FOE
constants. ' " It has further been shown that for
a variety of materials the T dependence of the
thermal first Griineisen parameter y =pB'/pC~
can be accounted for semiquantitatively in the
entire temperature range on the basis of the
ACM.

Encouraged by this success, we have calculated
in this paper the temperature dependence of the
anharmonic contribution c33 on the basis of the,
ACM over the entire temperature range. In the
intermediate temperature range the standard ex-
pansions of the Debye function for the two ranges
h~,.&k~T and &k~T were used. In the ACM the in-
tegration over the first Brillouin zone reduces to

a directional average over the unit sphere which
has been evaluated by Gaussian quadrature by us-
ing a total of 64 integration points per octant. In-
creasing the number of integration points by a fac-
tor of 4 did not alter the results significantly.

III. RESULTS AND DISCUSSION

A. Determination of parameters for VSSi

As outlined in Sec. IIC, the model involves 21
parameters; three of these are interrelated through
one constraint according to Eq. (32). Since it was
found that a better fit to the diverse experimental
data was obtained without this constraint, it was
decided to omit this condition.

The parameters of the model have been deter-
mined for transforming V38i in conjunction with
the thermodynamic conditions of Sec. IID from the
following experimental data: (i) The soft shear
modulus c»(T) from 37 to 300'K (Ref. 18); (ii) the
first pressure derivative c'„(T) from 37 to 300 'K
(Ref. 18); (iii) the bulk modulus B= —,e~, and its
linear pressure dependence from 0 to 10 kbar,
independent of temperature (Ref. 18); (iv) the lat-
tice parameters in the tetragonal phase as a func-
tion of temperature from 17 to about 21 'K (Ref.
48); and (v) the linear pressure dependence of the
transformation temperature from 0 to 18 kbar
(Ref. 54).

While all param'eters in the theory refer to the
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isothermal second- and higher-order elastic con-
stants, most experimental input data are either
adiabatic (c») or mixed isothermal-adiabatic (0»„
c»», and c»,). For c» the adiabatic and isother-
mal constants are identical, and for the remaining
data the difference will be neglected in the sub-
sequent numerical applications.

A constant value of the pressure coefficient of
the bulk modulus (B' =4.6) has been inferred from
only two data points at VV and 300 'K. However,
the extrapolation to lower temperature is ambigu-
ous and could lead to a weak temperature depen-
dence of B'. We have verified that the numerical
results of the present paper are not affected by
this.

The three parameters c», c», , and c»» are
directly given by the experimental data according
to (iii}, in conjunction with Eqs. (36d) and (36e).

The 14 parameters occurring in Eqs. (2Vb)-(2Vd)
and (28) are fitted to the data (i), (ii), and (iv),
with extrapolated values of c»(T) used below 3V 'K.
Since the elastic data (i) and (ii), and the x-ray
data (iv) were obtained from two different samples
with different transformation temperatures, the
temperature scale of the x-ray data was shifted.
The magnitude of the shift was determined through
minimization so as to give the best overall fix for
both sets of data.

The two FOE constants c»33 and c,333 are ob-
tained from the first and second pressure deriv-
atives of the thermodynamic condition Eq. (39),
evaluated at zero pressure, with the pressure de-
pendence of the transformation temperature in-,
volved taken from the data according to (v). Con-
dition (39) was relaxed to ~4AC/B' —1~ &10 ', in-
stead of zero.

Finally, the two remaining parameters c,*, and
0.», which determine the T dependence of the
electronic contribution c;, as given in Eq. (2Va),
are obtained in the following manner. According
to Eq. (20) the soft shear modulus c»(T) is ad-
ditively composed of the electronic part c;,'(T) and
the anharmonic part c,'","(T), which according to
Eq. (41) also depends on Des, (T) and, in addition,
on all previously determined second- and higher-
order elastic constants. For each of a sequence

TABLE I. Temperature-independent second-, third-,
and fourth-order elastic constants (in 10i dyn/cm ).

ci iii cii33 ci333

403.2 11,392 -33,457

of nine selected temperatures from 3V to 300'K,
6g,'.was determined iteratively from Eqs. (20) and

(40), with the experimental data according to (i}
used for the total value 0» in Eq. (20). The self-
consistent electronic part c,",(T) so obtained was
then least-squares fitted to Eq. (2Va}, thus com-
pleting the determination of the parameters.

The complete set of parameters so determined
is listed in Tables I and II. The results obtained
with these parameters are presented and will be
discussed in Sec. IIIB.

B. Third- and fourth-order elastic constants

All seven TOE and FOE constants were deter-
mined from experimental data within the frame-
work of the anharmonic CDW model only, and are
not affected by the assumptions underlying the
quasiharmonic anisotropic-continuum approxima-
tion. The four constants c»„c»», c»», and

0»» are independent of temperature, and their
numerical values are listed in Table I. As a re-
sult of the CDW instability the remaining three
constants A/33 0333 and $3333 depend, according
to Eqs. (2Vb) —(2Vd), on temperature, and are
shown in Fig. 1. All three curves are very simi-
lar. At low temperature they exhibit a steep rise
with increasing T, and after passing through a
maximum near 60 'K they decrease more gradually
with 7'. .

The transformation temperature T defined by
Eq. (39) as calculated with the parameters from
Tables I and II is found to be 21.95 'R. It is ap-
parent from Fig. 1 that both c333 and c3333 assume
small but finite values at 7'

The TOE and FOE constants cq„and cq&, , re-
spectively, in the conventional Voigt notation are
obtained from the quantities Qq» and c~&,& referred
to symmetry coordinates according to Eqs. (16) and
(1V), and are plotted in Fig. 2 as a function of T.

TABLZ G. Parameters describing the temperature dependence of the electronic parts of
the second-, third-, and fourth-order elastic constants according to Kqs. (27) and (28).
A=0.3169{K~ ii Tc =7.4287 K

pp ~ 0 ~

~ ~

(10 dyn/em 3) p p ~ ~ ~ p, p ~ ~ ~P

33
133
333.

3333

1.807
-16.457
-4.426
37.798

1.257
-4.187

-333.769
84.997

7.056
88.669

-109.783
710.776
-84.981 75.507
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FIG. 1. Temperature dependence of third-order con-
stants cq33 and F333 and of fourth-order elastic con-
stant c3333 Solid line, calculated; g, selected experi-
mental data calculated from Carcia and Barsch (Ref. 18)
with Eq. (36a).
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FIG. 2. Calculated temperature dependence of higher-
order elastic constants in Voigt notation: (a) third-
order elastic constants, (b) fourth-order elastic con-
stants.

With the exception of c»», all quantities cq„, and

cq»~ are temperature dependent. The type of de-
pendence is the same as for c ~~ and c q»~, but
there are differences 'in the magnitude of the tem-
perature variation, which is largest for c», and

cy~~i and smallest for cg|2, cg~g2 and clg22. The
absolute magnitude of these TOE and FOE con-
stants is unusually large. Typically, TOE con-
stants are about one, and FOE constants about
two order of magnitudes larger than the second-
order elastic constants. "" According to Fig. 1
for V,Si, the TOE constants at 300'K are about
one to two, and at 50'K about two to three orders
of magnitude larger than the soft shear modulus
c, . The FOE constants at 300'K are about four to
five, and at 50 "K up to six orders of magnitude
larger than c, . This, of course, implies unusually
large anharmonic effects, especially at lower tem-
peratures.

It is noteworthy that for V,Si the kind of temper-
ature dependence of the higher-order elastic con-
stants displayed in Fig. 1 has been obtained for
the Qruneisen parameter referred to the tetra-
gonal strain in Eq. (13) (which is equivalent to
c»,) on the basis of a microscopic linear chain
model with a step-function-like density of states. "

No experimental data of the individual TOE and
FOE elastic constants are available for compari-
son with the results in Fig. 1. However, these re-
sults will be used in Sec. IIIC to calculate the non-
linear stress-strain relation for comparison with
the measurements of Patel and Batterman" at
25 'K. Final. ly, in Sec. IIID the temperature-de-
pendent anharmonic contributions to c, calculated
from the TOE and FOE, constants of Fig. 2 will be
presented and discussed.

C. Nonlinear stress-strain relation

Patel and Batterman" have directly studied the
elastic softening at low temperatures of V,Si by
measuring with x-rays the temperature dependence
of the transverse strain q» for a series of constant
static stresses 0». From these data a stress-
strain relation has been obtained that shows
strongly nonlinear behavior. ' In a previous paper
this stress-strain relation has been calculated on
the basis of nonlinear elasticity theory from a
truncated series expansion of the form

-& =o'tt+Ptt +'Ytt

where the coefficients a, P, andy have been given
in terms of the second- through fourth-order elas-
tic constants. "'60 In Eq. (41), -a = &x3, is the com-
ponent of the Cauchy stress tensor for uniaxial
compression along x, , and q =q» the component
of the Lagrangian strain tensor corresponding to
the transverse strain. Numerical application to
V,Sj, based on estimates of the TOE and FOE con-
stants resulted in R nonlinear stress-strain curve
in rough semiqugntikative agreemente~ with the re-
sults of Patel and Batterman.

We have recalculated the stress-strain curve
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according to Eq. (41) by using as input the TOE
and FOE elastic constants of Fig. 2 and the sec-
ond-order elastic constants from Carcia and
Barsch. ' Because of the temperature dependence
of all elastic constants involved, the results are
also strongly temperature dependent. In Fig. 3 the
calculated results are shown for 26, 27, and 28 'K

together with the data of Patel and Batterman" at
25 K. It is apparent that, except for the data point
at the highest stress level, the calculated curves
for 2V and 28 K agree within experimental error
with the experimental curve at 25 K. The dis-
crepancy in temperature may be attributed in part
to the different transformation temperatures of the
V38l crystals us ed in the x-ray dete rmination of
the stress-strain curve" (20.5 'K) and in the ultra-
sonic measurements~' (about 22 'R) on which the
higher-order elastic constants in Fig. 2 are based.
Since the transformation temperature depends on
the concentration of such defects as determine the
residual resistance ratio, ""'"it is also con-
ceivable that the difference between the static and
the dynamic elastic behavior arises from a defect
relaxation mechanism. ' Finally, the discrepancy
in Fig. 3 at the highest stress level could perhaps
be attributed to the truncation error implied in the
cubic approximation of Eq. (41).

On the whole, the agreement between the cal-
culated and the experimental data in Fig. 3 ob-
tained without adjustable parameters suggests
that the TOE and FOE constants of Fig. 2 possess
the correct order of magnitude and temperature

variation. " Therefore, the results of Fig. 2 will
be used in the following Sec. IIID to assess the
magnitude and temperature dependence of the an-
harmonic contribution to the softening of the shear
modulus.
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D. Anharmoriic contribution to shear modulus

Figure 4(a) shows the decomposition of the soft
shear modulus c,(T) into the electronic and an-
harmonic contributions according to Eq. (20), and
Fig. 4(b) shows the decomposition of the anharmon-
ic contribution into the two separate contributions
from zero-point and thermal motion" according to
Eq. ('7). In Fig. 4(a) the experimental data for the
shear modulus are included in addition to the cal-
culated total shear modulus which was fitted to
these data by iteratively determining the individual
electronic and anharmonic contributions from Eqs.
(20) and (40) on the basis of the ACM. Also in-
cluded in Fig. 4(a) is the fit of the so-determined
electronic contribution to the functional form of
the CDW model as given by Eq. (2Va).

It is apparent that with decreasing temperature
both the electronic and the anharmonic contribu-
tions decrease by comparable amounts, and thus
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FIG. 3. Comparison of theoretical stress-strain rela-
tion calculated from Eq. (41) and higher-order elastic
constant data of Fig. 2 with experimental results of
Patel and Batterman (Hef. 16).

FIG. 4. Temperature dependence of the shear modulus
c = ~c33 and of its individual contributions. (a) Cal-
culated total shear modulus with selected experimental
data from Garcia and Barsch (Bef. 18) (g); calculated
electronic and anharmonic contributions from ACM
iteration according to Eq. (20) and (40); further shown
is the fit of the electronic contribution to Eq. (27a) of
the CD% model. (b) Calculated zero-point, thermal,
and anharmonic contributions according to Eq. (7).
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both are responsible for the sheAr mode softening.
The zero-point and the thermal contributions that
make up the anharmonic part are at high temper-
ature considerably larger th'an either the anharm-
onic or the electronic contributions, or than the
total shear modulus. With decreasing temperature
the thermal contribution has a stabilizing effect,
and zero-point motion as well as the total anharm-
onic contribution has a destabilizing effect. 6 The
zero-point contribution to the shear modulus is
temperature dependent because in the present mod-
el the corresponding second strain derivative of the
zero-point energy depends on the temperature-
dependent electronic parts of the second- through
fourth-order elastic constants. The negative sign
and the trend of the temperature dependence of the
thermal contribution are the same as typically
found in the temperature dependence of weakly
anharmonic solids, ' but the relative magnitude
with respect to the total ela,stic constants is con-
siderably larger than normal. Although the total
anharmonic contribution arises as the sum of two
large contributions of opposite sign, it constitutes
at low temperature a much larger function of the
total shear modulus than, and exhibits a temper-
ature dependence opposite to that which is typical
for, weakly anharmonic solids. " As a result, the
electronically driven weak softening is enhanced
by the anharmonic phonon-phonon interaction, in
contrast to all previous models of A-15 compounds,
which attribute the shear mode softening enti. rely
to electronic effects.

No direct experimental verification of the de-
composition of the shear modulus into the elec-
tronic and anharmonic parts, and of the anharm-
onic part into the zero-point and the thermal con-
tributions in Figs. 4(a) and 4(b), appears possible.

The decomposition of the shear modulus c«t into
c", and cg"" results from the iterative solution of
the equation c'(T) =c'0'(T) —c,'""(c'(T) T) for c, .
Here the explicit temperature dependence of c~"
arises according to Eq. (40) from the temperature
dependence of the higher-order elastic constants,
with all required parameters already independently
determined. Therefore the solution for c," involves
no additional adjustable parameters. This is all
the more remarkable since according to Eq. (40)
c,'"" is a very complicated function of T and depends
sensitively on c,". Depending on the initial trial
value of c,", several other solutions for c," were
obtained and discarded because the electronic and
anharmonic contributions involved were unrea, son-
ably large.

It is gratifying to observe that above 50 'K the
electronic contribution so obtained shows the posi-
tive temperature dependence characteristic of the
CDW model. This dependence is a purely harmon-

ic effect described by Eq. (2Va), and involves the
two additional parameters 03~, and &33 in Table II.
On the other hand, the negative temperature coef-
ficient of c," below the minimum at 50'K is in con-
flict with the CDW instability, and could be attrib-
uted to the approximations made in order to incor-
porate anharmonic effects into the CDW model.
Specifically, the rather abrupt change of the tem-
perature coefficient of c,'"" near 50 'K and the
greatly enhanced negative values of c,'"" shown as
the dotted line in Fig. 4(a) seem to suggest that
below 50 'R the anharmonic contributions to the
higher-order elastic constants should also have
been included. Because of the other approxima-
tions summarized in Sec. IIIE, the specific nu-
merical values of c c "

.c", and c should
be regarded only as first estimates, even above
50 'K.

Since the quasiharmonic approximation does
not give the imaginary part of the phonon self-
energy, investigation of phonon lifetime effects,
for which there appears to be some evidence, ~'

would require extension of the theory by using
field- theoretic techniques.

E. Order of the transition

The LGFE, according to Eq. (34), used in the
present work with the cubic term present de-
scribes a first-order phase transition. However,
as is apparent from Figs. 1 and 4(a) in connection
with Eq. (35) for zero pressure all three expan-
sion coefficients A, B, and C become zero near
21 'K. The extrapolated shear modulus c33 2A
used in the present work-becomes zero at 21.74 'K.
At this temperature the third-order coefficient B
has decreased to 2% of its maximum value, there-
by rendering the transition almost second order.
On the other hand, at this temperature, the fourth-
order coefficient C has decreased only to 10% of
its maximum value, so that the LQFE expansion,
Eq. (34), presumably is still valid.

The phenomenon that the second- and third-order
expansion coefficients va.nish almost simultaneous-
ly seems to arise from the presence of the two
distinct but interrelated softening mechanisms of
electronic and anharmonic origin.

From the numerical data of Table I and Eq. (36c),
one obtains for the pressure coefficient of the
third-order expansion coefficient B a value of
+300. This implies that the first-order character
of the transition becomes more pronounced with
increasing pressure.

F. Limitations of mode1

The main objective of the present paper has been
the assessment of the anharmonic contribution to
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the shear mode softening. For this purpose the
TOE and FOE constants were determined within
the framework of a generalized Landau theory
from experimental data, and were subsequently
used to evaluate the temperature dependence of
both the anharmonic and the electronic contribu-
tions to the soft shear modulus c, on the basis
of the quasiharmonic ACM. Consequently, the
TOE and FOE constants are subject to the limita-
tions of the specific Landau model, but the indivi-
dual contributions to the soft shear modulus are,
in addition, affected by the limitations of the quasi-
harmonic ACM

The basic presuppositions of the Landau theory,
namely, the analytic behavior of the free-energy
function with respect to the variables Q, Q, and e
and with respect to temperature in the vicinity of
T, are postulates that are usually justified a pos-
teriori by the success of this approach. In the
present work it has been possible to describe the
temperature variation 6f the lattice parameters in
the tetragonal phase and of the elastic constants

033 and 8133 in the cubic phase up to 300 K and to
account, without adjustable parameters, for the
nonlinear stress-strain relation in V,Si. Because
of the additional assumption of homogeneity and
restriction to static mean-field theory, fluctua-
tions of the order parameters are ignored, except
for the long-wavelength acoustic-phonon mode,
for which fluctuations are included without dissi-
pation effects in the quasiharmonic approximation.
Since the instability appears to be confined to one
shear mode propagating in the vicinity of the [110]
directions, critical fluctuations are unimpor-
tant 67, 68

The specific properties of V,Si enter through
the free-energy expression, Eq. (23). The par-
ticular form of this expression is determined by
the coupling of the quantities Q, Q, and e at the I'
point in accordance with the 0'„symmetry. The
Peierls-Gor'kov-type instability provides the me-
chanism for the softening of the primary order
parameter Q, via the linear temperature depen-
dence of the coefficient 233 in Eq. (23). As dis-
cussed in Sec. II C, other mechanisms for the
instability, or other locations of the associated
wave vector in the Brillouin zone, would lead to
a different functional form for the free energy
[Eq. (23)] but the temperature dependence of the
second- and higher-order elastic constants ob-
tained through elimination of P and Q might not
be significantly different.

In addition, the following assumptions were
made: The free energy [Eq. (23)] was truncated
beyond the fourth-order terms, and certain cou-
pling terms of lower order were also neglected.
The elimination of the variables Q and Q was based

on the linear approximation (25), and in the tem-
perature dependence of c3333 the constraint given
by Eq. (32) was neglected. Anharmonic effects
were not included in any of the elastic constants,
except c33 and in the evaluation of c33 the Cauchy
relations for the higher-order elastic constants
were assumed. Furthermore, any interaction be-
tween the mode softening and the onset of super-
conductivity was neglected.

The numerical application of the general theory
to V,Si is further subject to the simplifying as-
sumptions made in the data reduction as enumer-
ated in Sec. IIIA.

IV. SUMMARY AND CONCLUSIONS

Based on an extended version of the Landau the-
ory of Bhatt and McMillan13 for A-15 compounds,
numerical values for the TOE and FOE constants

/ ~

~111 112 123 1111 ~1112 1122,~ 1123 ~

Voigt notation) and their dependence on temper-
ature have been determined for V,Si from experi-
mental data in conjunction with thermodynamic
equilibrium conditions. The experimental input
data used are the lattice parameters versus tem-
perature in the tetragonal phases, the elastic con-
stants and their pressure coefficients as a function
of temperature in the cubic phase, and the pres-
sure coefficient of the structural transition tem-
perature. Most of the higher-order elastic con-
stants are found to be exceptionally large and
rather strongly temperature dependent. Although
no experimental data on the individual higher-order
elastic constants are available for comparison,
these data are consistent with and reproduce the
measured nonlinear stress-strain curve. '

The higher-order elastic constants so obtained
were used to calculate the zero-point and phonon
contributions to the soft shear modulus in the quas-
iharmonic ACM. Above 100'K, these two contribu-
tions are of opposite sign and comparable to the
electronic contribution. The total anharmonic con-
tribution is negative, and with decreasing temper-
ature it has a destabilizing effect. Only a friction
of the total softening arises from the electronic
contribution, with the remaining softening resulting
from the balance between the zero-point and the
phonon contributions.

The origin of the large anharmonicity cannot be
explained on the basis of the present phenomeno-
logical theory. Equally plausible microscopic
causes are electronic band-structure effects, "or
defect-induced local structural instabilities. ' '

Previously A-15 intermetallic compounds and
ferroelectric materials were believed to be quali-
tatively different, in that the mode softening in the
former was attributed exclusively to electronic
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band-structure effects, and in the latter to anhar-
monic phonon-phonon interactions. However, it
has recently been suggested that the optical-mode
softening in oxide perovskites is caused by the
nonlinear anisotropic electronic polarizability of
the oxygen ion via strong phonon-phonon interac-
tions. " Therefore, the essential difference be-
tween the two classes of materials now disappears,
since both electronic and phonon mechanisms con-

tribute to the mode softening in both classes of ma-
terials.
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