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Critical slowing down of energylike perturbation in the Glauber-Ising model
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A real-space renormalization-group analysis of Glauber's equation of motion for a two-

dimensional Ising system on a triangular lattice is carried out up to the second order of the cu-
mulant approximations. The study of the relaxation of the energy gives the dynamic exponent
bE =2.09.

I. INTRODUCTION

The Glauber-Ising model' is presumably the sim-

plest model exhibiting nontrivial dynamical behavior
near the critical point. Thus, although this model can
describe the time-dependent behavior of a real sys-
tem only at the limit of high temperature, ' it be-
comes one of the most studied dynamical models.
The Glauber model has an exact solution only in the
one-dimensional (I-D) case. ' In two dimensions, it

has become a subject for mean-field and initial-
decay-rate approximations. ' It has been studied using
high-temperature expansions and by Monte Carlo
simulations. ' Lately, the renormalization-group
(RG) approach using the expansion technique around
four and six dimensions was adapted to the study of
the critical dynamics' of the continuum-spin version
of the Glauber model" and some generalizations of
it. Following the vast amount of interest in the
Glauber model, one would expect a wide agreement
with respect to the value of the exponents describing
the singular behavior near the critical point. Howev-

er, this is not the case. The approach towards equili-
brium, near the critical point, is described by a time

scale r, r& —
~
T —T,~, where A is an index

describing the relaxing physical quantity and the per-
turbation from equilibrium, d is the dynamical index
which characterizes the singularity of ~ as the tem-
perature T approaches the critical temperatures T, .
The only exact results, concerning the Glauber model
(except of course its solution in one dimension) are a
few inequalities which the dynamical exponents
fulfill. "" These inequalities unlike the inequalities
between the static exponents, are not expected to
reduce to equalities in the general case. Thus, the
inequalities can only put bounds to the real ex-
ponents which have to be found by some approxima-
tion. Restricting ourselves from now on to the two
dimensional (2-D) case, one can find in the literature
dift'erent estimates to h~, measuring the relaxation
of the magnetization disturbance. The lower bound

of 4~ is 4~ ~ 4~ = y =1.75, ~here 4~ is the
initial-time decay exponent. ' The high-temperature
expansion gives 4~=2.0. and 2.125. The nu-
merical Monte Carlo simulations give even wider
range of values: 1.85 (Ref. 8) and 2.30 (Ref. 9).
The situation becomes even worse when one exam-
ines the estimates for AE, which measures the decay
of an energy perturbation. This ranges from' 0.3
to" 2.0.

In recent years the real-space renormalization-
group method' has been generalized to the treat-
ment of time-dependent problems. ' The value of
h~ obtained by this technique" 5~ =2.07 (in the
second order of the cumulant approximation"),
seems to be a reasonable estimate. This encourages
us to calculate AE by the same technique and to the
same order of approximation. The calculation of AE,
which is the subject of this paper, gives the value
6 E =2.09.. The difference between b,E and 4~ is of
the order of the uncertainty of the calculations. Thus
we get 6& —A~, which supports the idea that these
two exponents should be equal. '

The paper is organized as follows. In Sec. II we re-
view the Glauber model and the static RG. The ex-
tension to the time-dependent RG is discussed. In
Sec. II we perform the transformation using the cu-
mulant expansion' up to the second order of the in-
tercell potential. From the transformation of the
master equation we find the critical exponents hE and
z~. In Sec. IV we discuss the results and comment
on the generality of the method.

II. MODEL, METHOD, AND NOTATIONS

Glauber-Ising model

The Glauber-Ising model' describes the time-
dependent behavior of a large interacting spin system
whose equilibrium is determined by an Ising Hamil-
tonian. The system is brought to a constrained
equilibrium state. Then at t =0 the constraint is re-
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moved and the system relaxes towards the final
equilibrium via an interaction with a heat bath. The
heat bath is not treated explicitly in the model, and in
the relaxation neither the magnetization nor the en-
ergy of the system is conserved. During the relaxa-

tion only one spin is allowed to Aip at a time, with a
transition probability rate w, ((o)). This procedure
can be described by an empirical master equation for
the spin probability distribution P((o);t) and a bare
time scale r of a spin system (o =+I ),

r dP((o);t) wJ(4rl»' +J& ~ +n) P(irl ~. . . & 4ri& ~ Pn& t)
dt

+ X Jw( ilr» trJ» & )nP(iri ~ & &J» ~rn&t)
J

—= I (ir)P(tr t) —=—X(l-pJ)wJ(o)P(tr, t).
J

(2.1)

(I —pJ) wJ(ir)P, ( )~r=0 (2.2)

The final equilibrium state P, (o) =—P(tr, t = ~) is
given by a reduced Ising-like Hamiltonian 0,

where pJ is a spin-flip operator

PJf(irl»~ ~ ~ irJ» on) =f(ir}»~ . irJ»~ ~ on)

and the transition probability satisfies the detailed
balance, which ensures the ergodicity of the system

For further properties of the Liouville operator L (or
&), the reader is referred to Refs. 3, 4, and 12—14.
We shall only note that since w; does not depend on
the history of the system, the Glauber model is a
MarkoSan one. As we shall see, the time-dependent
real-space renormalization-group (TRG) transforma-
tion does not preserve this property.

The relation (2.2) does not determine w; uniquely.
We will use

P, (ir) =exp( H/kJJ T)/Z =——e /Z

where the partition function Z normalizes P„
(2.3) P, (ir, , . . .

P, (ir),
&i& ~ &n)

~ & &i»~ ~ ~ irn)
(2.g)

(2.4)
Later, we shall discuss how our result depends on
this choice.

H((r) = QE.S, (ir) (2.5)

For example, in the usual nearest-neighbors (nn)
Ising-Hamiltonian (2.5) should read H(o) =E2Si,
~here

S2 = x o';O'J

i and j are nn. Further on we shall use also the fol-
lowing operators: S3(o) =, Xt,.„&

o.;ok, where i and k
are next-nearest neighbors (nnn) and,
S4(o) = Xl,,~

o;o i, where i and I are third neighbors
(tn).

The master equation (2.1), can be written in a
slightly different form

dP (ir,t),@(,)
dt

(2.6)

where $(a, t) measures the deviation from equilibri-
um

P(tr, t) = P(tr, t)/P, (tr)—
, and L is given by

The reduced Hamiltonian 0 is composed from exten-
sive functions of spina S,(o), B. Static renormalization-group (RG) transformation

In the application of the RG to the equilibrium
state one starts with a probability distribution P(o),
which is a functional of all the spins {o), tr; =+1
defined on a lattice. One defines a transformation of
this probability distribution to a new probability dis-
tribution of a set of spin variables (p.), p, =+1, on a
lattice with the same symmetry but having a larger
lattice constant by a factor of b. This transformation
is of the form

(2.9)

where T is subject to the following conditions:
(i) It has to preserve the normality of P,

XT(tr, p) =1
(pI

(ii) It has to be non-negative

T(o, p) «0 .

(2.10)

(iii) It should not change the symmetry of the lattice.
The first condition can be satisfied if T is a product

over all the new lattice sites a of {p,) of the form

2; =P, w;(I —p)
i

(2.7) T = fJ T, T.= —,
' [I + p,.y ( )] (2.11)
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while the rest of the conditions have to be satisfied
by the particular form of K .

According to Eqs. (2.3) and (2.5), P(a) can be
represented by a set of interactions K = (E,}. Simi-

larly, according to condition (iii), P(a.) can be
described using a similar reduced Hamiltonian

H'= XZ.'S.(&) (2.12)

and the RG transformation can be considered to be a
transformation upon the parameter space E„

K' =RK (2.13)

The fixed point of this transformation, '4 K"=RK'is
associated with a critical point (or with a zero correla-
tion).

The. RG transformation of a time-dependent proba-
bility distribution can be done in a similar way. First
one has to represent P(tr, t) by a time-dependent re-
duced Hamiltonian

(2.6) in which Z (o) is transformed into 2'(tt) and
the bare time scale v becomes r',

7'= b'v (2.19)

/=1+ Xh, (t)O, (o) =—1+(h 0) (2.20)

The master equation (2.6) then reads

where rP is an invariant of the RG transformation.
The TRG is the standard RG transformation [Eq.

(2.9)] applied to the master equation (2.6) followed

by the time scaling [Eq. (2.19)] which leaves the
master equation (2.6) invariant. That is the situation
when there is only one mode in the master equation
(2.6). However, the real situation is more complicat-
ed since there exist transients and the TRG creates
memory effects. '9

To deal with the general situation, we represent $
as sum of perturbations

H(a, t) = XE.(t)S, (a.) (2.14)
P, ( )—[h O( )] =-~(h O( )) .

dl,
(2.21)

K'(t) =RK(t), (2.15)

where

K(t) =—(E,(t)} .

C. Time-dependent RG transformation

The dynamical scaling hypothesis' suggests that
the characteristic time for relaxation behaves as

ro —p (2.16)

which may require a larger parameter space. The RG
transformation [Eq. (2.13)] is parametrized by the set
(S,} of operators which are time independent. Hence
at a certain time t, which is taken as a parameter, the
RG is exactly the static one

Under the RG transformation, Xi i
T(o, tt) is ap-

plied on both sides of Eq. (2.21), and it becomes

P, '(p) —[h' O(tt)] = a'(Q—h O(tt)), (2.22)
dt

where h' = Ah is the static RG transformation of the
parameters h, and the matrix 0 is defined by the
transformation of the right-hand side of Eq. (2.21).
If A and 0 commute, any common eigenvector of A

and 0 will leave the master equation (2.6) in an in-

variant form. The slowest time scale will determine z
via Eq. (2.19), while the faster ones play the same
role as the static transients. " Usually A and 0 do
not commute. The main contribution to the right-
hand side of Eq. (2.22) after n RG transformations is
from the largest eigenvalue of 0, coi. Thus as
n ~ the rescale factor of ~ is

or
cut/A. ) =b ', (2.23)

ro-
I
&- &. I

' . (2.17)

where z and 5 are the dynamical exponents, connect-
ed via

(2.18)

where v is the static exponent26 which describes the
divergence of the correlation length g.

The value of z (or 5) is also a matter of the
definition of 70, e.g., one can discuss linear and non-

linear relaxation. However, the dominant slow time

scale, which enters into the calculation is the time

scale of an infinitely small perturbation near the criti-

cal point after a long time. ' Thus, under these
conditions and according to Eq. (2.16), we expect
P'(p„t) to fulfill an equation of motion similar to Eq.

where X~ is the largest eigenvalue of A. There is also

a contribution to the rescale factor [Eq. (2.23)] from
the elements of the matrix which transforms the set
of the eigenvectors of 0 into those of A. This con-
tribution goes like the nth root of a O(1) number,
hence does not contribute at the limit n ~. The A. ~

enters into Eq. (2.23) since in the light-hand side of
Eq. (2.22) we have h which has to be transformed to
h'. A more detailed discussion of the memory effect,
and the dynamical scaling properties which are ob-
tained by the matching to the high-temperature ap-
proximation are given elsewhere.

Near equilibrium, P contains a very large set of
operators (0}. In order to calculate D and A we

need to examine, in principle, the transformation of
all of them. But since we need only the largest
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eigenvalue of 0 and A, it is enough to examine h

subspace of the parameter space as long as this sub-
space is invariant under the RG transformation and
includes the most critical modes (the largest eigen-
values).

~ ~ ~
~ ~ ~ '

0 0

0

0

III. Qg IN THE CUMULANT APPROXIMATION

In this paper we study the relaxation of energylike
perturbations. Under the term. energylike we mean
(0,] which are even under spin reversal. The lattice
under study is a triangular lattice. The RQ we use
associates a new spin variable p, with a cell u such
that each old spin a.l belongs to one and only one cell
and each block consists of three spins (see Fig. 1).
The RG transformation [Eq. (2.11)] is

V'~(a) = —,(a)+a2+a3 —o.)o 2o )3,

~ ~
~ ~

~ ~

~ ~ ~
~ ~

~ ~ ~
~ ~

0
~ ~

~ ~ ~

~ ~
~ 0

/ ~
0

~ ~ ~1 ~

0

0

~ ~ 0 ~
~ ~ ~ 0

~ ~ ~
~ ~ 0 ~ ~

0

0

0
0 ~

0

0

l=1
h
1

a
~ ~ ~ ~

0 ~ ~ ~
0 ~ ~ ~

0 ~ 0 0 0 ~

0

where o, , i =1,2, 3 are the spins which make up the
cell Ot. This is the majority role transformation
I4 sgn((JJ + o 2 + a3) which was suggested in Ref.
16. To evaluate the RG transformation we need a
suitable scheme of approximation. We work with the
cumulant approximation, '6 which has the advantage
of avoiding boundary effects. In this approximation
we assume that 0 can be expanded as

FIG. 1. Spin-cells transformation and the cumulant ap-
proximation. The cells are the triangles, whose boundary'ies

represent the contributions to the unperturbed Hamiltonian.
The interactions contributing to Vappear as dotted lines

)nn, 0(V)j, line of crosses fnnn, 0(V2)) and broken line
(tn, O(V )). A cr; which enters Eq. (3.8) is marked. The
nn interactions which do not appear in I' ' were erased.

H=XH +V (3.2) 1.8966 1.3446 0.8964
A = -0.0403 0.0 0.4482

-0.0782 0.0 0.0
(3.4)

where the zero-order Hamiltonian is the interactions
within the cells X H (solid lines in Fig. 1) and the
intercell interactions (dotted lines in Fig. 1) are taken
as perturbations. The RG transformation is per--
formed up to the second order of the cumulant ap-
proximation

(e~) exp[(V) + —((V —(V)) ) + ] (3.3)

The reader is referred to Ref. 28 which discusses the
convergence of Eq. (3.3) with H divided according to
Eq. (3.2).

The transformation of the left-hand side of Eq.
(2.21) and the calculation of A were discussed in de-
tail in Ref. 16, hence they will not be discussed here.
We shall only quote the result. The appropriate
parameter space, which is invariant under the. RG
transformation is K = (Kq, K3,K4) the fields cortlugate
to S2, S3 and S4 the nn, the nnn, and tn interactions,
respectively. The interactions E3 and Ã4 are of
0 (V') while K2 is of order 0(1) (intracell interac-
tion) and 0(V) (intercell interactions) (although it is
the same K2.). The equilibrium Hamiltonian is at
the critical point K -K ' and the disturbance from
equilibrium is h = SK =K(t) —K . A is the linear
RG transformation'

and

A.i = 1.7835 (3.5)

1
exp X 0'' /t2 X lTg + /l3 $ ITk + Q4 X o I2 I, J k

'

I

—exp —X oIE,
2

(3.6)

where ~~, ~k, and o-I are nn, nnn, and tn of cr&,

respectively, and h is time dependent. The right-
hand side of Eq. (2.21) reads to 0(E,)

E. —E.
P, (a) Xw, (a,)o,(e ' —e ')

I

where we used the identity

(3.7)

exp(a, E,) —exp( —o.,E,) = a., (expE& —exp E,)—

which corresponds to v 0.950.'
The transformation of the right-hand side of Eq.

(2.21) is a little more complicated, although the cal-
culations are of the same nature as the static ones.
First we will write the right-hand side of Eq. (2.21) in
a more convenient form. As in the calculation of
Ref. 16, we shaB leave @ in an exponential form
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X T(a, p)P, (o.) w;(o, ) o'; expEI
{~}

(3.8)

we rely on the fact that according to the de6nitiqn of
Eq. (2.8) of w;, P, (o) w, (o;) is independent of o,
(Ref. 20). Hence the summation over o.

&
can be per-

formed exactly, leading to

(-X II Ts(a i)
{cr}Pea

Now we perform the RG of Eq. (3.7). We will

demonstrate it on one term in the summation over i,
and will include in it only the Grst exponent in
parentheses. Since we keep only linear terms in E;,
the renormalization of Eq. (3.7) will be then obtained
immediately.

In the calculation of

Pw;=gP P'e
PWa

(3.11)

where

= p, ZpN 'Z((exp(V("+E)) (3.12)

Z, = X T,P, , Z, = X s.P(»
{ ~P} {a2,03}

and

where P&—= (Z) ~exp [Ha), N is the number of cells
-and (i) means that all the interactions which contain

o, are omitted. Substituting Eq. (3.11) Eq. (3.9) be-
comes

I

p, X g T&P& v' P" exp ( V" + E&)
{ty}P&a

where

x r.(a,)P,(a) w, (o;) expE;, (3.9) (A ) = Xg F,(o)A (o.
{~} y

X F,(o)
y { (-y}

(3.13)

v'«= —,(1 —o2a.2) (3.10) where

in which cr2, F3, and a-; are the three spins included
in the a cell, By multiplying P, by w, [Eq. (2.8)] all

the interactions around the spin o.
&

are removed from
P, while the other interactions are unchanged (see
Fig. 1). Hence' using Eq. (3.2),

g p(i)

T~P~, y W o.

Using the cumulant expansion we obtain to O(E,),

(exp(yo)+E)) exp[(y(»)«+ ((V(i) (V(l))«)2)«+((E (E)«) V(i))«+ ((V(l) (V(»)«)2E)«+(E)«+. . . ]

A few of the terms which appear in Eq. (3.14) will
be discussed in the Appendix. Here we shall discuss
only two terms (V")) and (E) which demonstrate
the main steps of the calculation. V ' is a sum of
terms, of the form E,crjo-I, where j and I belong to
different cells. Hence (V(')) will contribute
K (0J) (o () . If j g a, ((ri) = p,«f), where

ft = [exp(3K2) +exp( —K2)]/Zp

If j c a, (o&)"=0 since the weight function F is
even under spin reversal in the cell o., while 0-& is
odd. Thus

(3.15)

where l3, y are nn, p, y & a. Equation (3.15) is con-
nected to the P, '(i4) via, 'p"

exp(V(')) =(Zp) ~P, '(i4)w (p, ) +O(V ) . (3.16)

The calculation of (E;) is very similar. A typical

(3.14)

term (h, o.
&) becomes h, f(p,&, l3 A a or zero if j (:a.

The only h2 which 0 (1) is associated with spins in a,
hence will not contribute to (E~) . The other terms
in E; give [after summation over i in the a cell, and
taking Eq. (3.16) into account]

h2' = (2h2f( +3h)f) +2h4f)) Z&/Zp

h2' = h2f) Z(/Zp, h4' =0
(3.l7)

Equation (3.8) takes into account only half the
terms in Eq. (3.7). The other half is obtained by in-
verting the sign of h. From Eq. (3.17) we see that h'
is at least of O(V), hence to order O(V'), terms
which do not depend on h, should be taken to O(V).
Thus the correction in Eq. (3.16) and the
((V(') —(V(')))2) term in Eq. (3.14) will contribute
O(V') corrections and do not have to be calculated
in O(V'). The other two terms in Eq. (3.14) are dis-
cussed in the Appendix. Collecting together their
contributions Eqs. (A3) —(A6) and using Eq. (3.17)
we 6nd

Z 2+4(1+f2)K2[1+2K2(g) +g2)] +4K2(g(+g2)

Z K (g +7g2) +2K,'(1+f,)(g +'7g ) 0 1

8K2 (1 +f2)g2+4K2g2 0 0 (3.18)
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where

and

gl =1 —fl, g2= f2 fl

f2 exp(3K2) —exp( —K2), Zl -2 exp( —K2)

Zp -exp(3K2) +3 exp(-K2),

f2=—1.
At the fixed point value (K2 =0,2789) 0 has the

largest eigenvalue, co~ -0.5317. Together with Eqs.
(2.23) and (3.5) we have

zE -2.203 + 0.03 (3.20)

where the error was estimated by examining the
effect of the 0 (V') terms in Eq. (3.18) on the value
of z.

IV. DISCUSSION

depend on cr, itself. These functions can be expand-
ed in terms of the operators 0, (o) and be included
in P before the RG transformation. This procedure
contributes a factor of order unity to the nth power
of the time rescale factor, and hence will affect the
transients connected to the memory effects, but will
not affect the asymptotical behavior as t

As a last remark on the above calculations, we note
that by examining the terms appearing in a solution
to the master equation one can And interaction like
nnn which are of 0 (V). ln our calculation we as-
sumed that such terms are of 0 (V'). However, after
few RG transformations these terms will disappear
and new 0(V ) terms will appear, from the transfor-
mation of O2. The only one to reproduce itself under
the RG to the same order is 02 which was taken
properly into the account.

In a previous paper" we calculated z~ which
describes the critical slowing down of the magnetiza-
tion. We obtained z~ =2.18 which differs from zE by
1'k. In their margins of error the two exponents are
overlapping. This result seems to support the as-
sumption" that the main contribution to the slowing
down of the energy comes from the coupling to the
order parameter, hence z~ =z~. The prediction
zE-z~ has also been con6rmed in the exact solution
of the one-dimensional Glauber model, ' and in the ~

expansion for the kinetic Ising model.
In order to compare our result to other values in

the literature, we have to compute 4. Using the
value l =0.950 [Eq. (3.5)] which is obtained from
the renormalization of the left-hand side of Eq.
(2.21), we have
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APPBNDIX

In this Appendix we discuss the evaluation of the
high-order contributions to 0 [Eq. (2.22)] which
result from (a) (El —(El) ) V" } and (b)
((V ' —(Vt' ) ) E,) in Eq. (3.14). To all the values
given here one has to add a factor zl/Zp coming from
Eq. (3.16) and (3.12).

(a) A typical term in this sum is

hE 2.09, h~ =2.07 (h2(a, (a,) )K—2o„a ) (Al)
This /2. E seems to be quite close to the value 2.0, [Eq.
(4.8)] and it satisfies the inequality'3 hE ~ y.

In order to obtain the value of b E we did not rely
upon the dynamical scaling hypothesis, ' as in previ-
ous calculations. To the contrary, our calculations
support this hypothesis (the extended one). This can
be seen by renormalizing the master equation (2.6)
to the high-temperature region, and then to perform
a 1/T expansion. The result is matched back, and
expressed with the unrenormalized parameters. The
scaling arguments are similar to those of the stat-
ics, ' and are discussed in more detail in Ref. 22.
Another advantage of this calculation is that we get
by exactly the same approximation the static ex-
ponent, and we can examine scaling laws in which
both static and dynamical exponents appear.

In our calculation we used a particular form of ~&,

given by Eq. (2.8). Most of the other forms of w,

which are found in the literature, as Eq. (117) in Ref.
1, or Eq. (13) in Ref. 4(a) differ from Eq. (2.8) only
by a function of the spins around cr&, which does not

where j is a nn of i. In order to have a nonzero con-
tribution to Eq. (Al), one of the spins o „or o. (e.g.,
cr„), has to be in the same cell p as cr& is. a„ is in a
different cell y. There are two possibilities:

(i) p=a, y&a ((r;Ca),

thus

(aj) =0

Eq. (Al) becomes

1, n j,
h2K2flP~ X'—

&j ~

(A2)

where y is a nn of o. and

f2= (ago„) (/, n C a', j A n Wi)

Summation over the different choice of i in the cell
e will contribute to 0 the term
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FIG. 2. Contributions to Eq. (A1) from two diff'erent

orientations of cr; and o.
&

which appear in the disturbance

o;E; as h2a;o&. The interactions K2o-„cr which contribute

a factor g& to Eq. (A4) are marked by dots, and those con-

tributing a factor g2 are marked by triangles.

FIG. 3. Contributions to Eq. (A5) from two diA'erent

orientations of the cells P and y to which a.„and cr be-

long, respectively. 0., are the possible locations of the ceH n

to which o-& and o& belong. The locations of ej are marked

by arrows. The dashed line contributes f~. The dotted lines

contribute g&(1+f2) and the double-broken lines contribute

g2(1+f2).

hi' =4fiEp(l +fi) hp

(ii) a W P W p . (A3)
(b) A typical term in the sum is

((h2~j)+2 (ak~l (~kol) )(~ am (a ~ ) ))
(AS)

hg' =4fiKtg2h2
(A4)

The contributions from two orientations of cr& with
respect to o; are given in Figs. 2(a) and 2(b). After
summation over i in the cell a we have

h, '=4f, x:,(g, +g,)a, , I,' f,X,(g, +7g,)h, ,

A nonzero contribution is obtained only if each of
the brackets in Eq. (A5) has a spin in a cell to which
at least one other spin, from other bracket, belongs.
Since this term is of order 0 (V l't2), the only. contri-
butions are from h2 O(1) which connects o& and oz
in the'same ceH n. The arrangement which gives
nonzero contribution is

where a and b are defined in Eq. (3.18). o'k C u, al, a'n C P, a'~ C y
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and

a&Ply
In Figs. 3(a) and 3(b) we plot two diII'erent orien-

tations of the cells P and y. We preferred, for con-
venience to keep the cell y constant and to mark by
arrows the possible locations of 0-&. The contribu-
tions from these terms are

h2 =gf1+2 (I +f2) (gl +f2) h2 ~

h3 =2f1+2 (I +f2) (gl + 7g2) h2

h4' =8f)E2 (1+f2) g2h2

(A6)

Collecting together Eq. (A3) —(AS) and Eq. (3.17),
one obtains 0 [Eq. (3.18)].

Permanent address: Nuclear Research Center Negev,
P. O. B. 9001, Beer-Sheva, Israel.

'R, J. Glauber, J. Math. Phys. 4, 294 {1963).
2S. P. Heims, Phys. Rev. 138, A587 (1965); H. Metiu, K.

Kitahara, and J. Ross, J. Chem. Phys. 63, S116 {197S).
K. Kawasaki, in Pha'se Transitions and Critical Phenomena,

edited by C. Domb and M. S. Green (Academic, New
York, 1972), Vol. 2, and references therein.

4H. Yahata and M. Suzuki, J. Phys. Soc. Jpn. 27, 1421
(1969);H. Yahata, ibid. 30, 657 (1971).

5Z. Racz and M. F. Collins, Phys. Rev. B 13, 3074 (1976).
N. J, White, J. Phys. C 9, L187 (1976).

7N. Ogita, A. Veda, T. Matsubara, H. Matsuda, and F.
Yonezawa, J. Phys. Soc. Jpn. Suppl. 26, 145 (1969).

E. Stoll, K. Binder, and T. Schneider, Phys. Rev. B 8, 3266
(1973).

9H. C. Bolton and C. H. J. Johnson, Phys. Rev. B 13, 3025
(1976).

P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49,
435 (1977), and references therein.

~'R. J. Myerson, Phys. Rev. B 14, 4136 (1976),
B. I. Halperin, Phys. Rev. B 8, 4437 (1973).

' T. Schneider, Phys. Rev. B 9, 3819.(1974).
' R. Abe, Prog. Theor. Phys. 39, 947 (1968).

~5M. Suzuki and H. Ikeda, Prog. Theor. Phys. 55, 2041
(1976).

T. Niemeijer and J. M. M. Van Leeuwen, in Ref. 3, Vol. 6.
S.-K. Ma, Phys. Rev. Lett. 3'7, 461 (1976).

' W. Kinzel to appear in Zeit. fur Phys. B29, (4) {1978).
' Y. Achiam, J. Phys. A: Gen. Phys. 11, 975 (1978).
OY. Achiam and M. J. Kosterlitz, Phys. Rev. Lett. 41, 128

(9 8).
Y. Achiam, J. Phys. A 11, L129 (1978).
Y. Achiam and M. J. Kosterlitz (unpublished).
G. F. Mazenko, O. Valls, and M. Nolan, Phys. Rev. Lett.
{1978),

K. G. Wilson and J. Kogut, Phys. Rept. C 12, 75 (1974).
B. I. Halperin and P. C. Hohenberg, Phys. Rev. 177, 952
(1969); R. A. Ferrel, N. Menyhard, H. Shmidt, F.
Schwabl, and P. Szeft'alusy, Ann. Phys. (Leipzig) 47, 565
(1968).

H. E. Stanley, Introduction to Phase Transitions and Critical

Phenomena, (Clarendon, Oxford, 1971).
M. E. Fisher and Z. Racz, Phys. Rev. B 13, 5039 (1976).
P. C. Hemmer and M. G. Verlarde, J. Phys, A 9, 1713
(1976).
B. I, Halperin, P. C, Hohenberg, and S.-K. Ma, Phys. Rev.
B 13, 4119 (1976).


