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The dynamical properties of a model describing the structural phase transitions in

(CH3NH3) 2CdC14 perovskite-type layer compounds as orientional order-disorder transitions of
the CH3NH3 groups, are investigated. It is shown that the soft order-parameter-fluctuation

modes observed in the low-frequency Raman spectra of (CH3NH3)2CdC14 and

(CH3NH3)2MnCI4, can be understood on the basis of the same model used to explain the static

properties of these systems. The nonlinear coupling of the motion of the CH3NH3 groups

among four equilibrium sites with the CdC14 octahedral matrix is not essential in the high-

temperature phases, but is necessary to describe the monoclinic ground state. The planewise an-

tiphase motion of the CH3NH3 groups is included in the model to explain the observed I 2+

mode of the orthorhombic room-temperature phase and. the 14+ mode of the tetragonal low-

temperature phase. If the interlayer coupling is assumed to be much weaker than the intralayer

one, similar fluctuation frequencies are obtained for the planewise antiphase modes as for the

. "planewise in phase" modes corresponding to the condensing order-parameter modes of the

four-site model.

I. INTRODUCTION

The structural phase transitions in the perovskite-
type layer compounds (CH3NH3) 2CdC14 and

(CH3NH3) 2MnC14 have their origin in the order-
disorder transitions of the basic reorientable units-
i.e., the CH3NH3 groups —each of which moves

among four possible equilibrium positions. ' ' It was
shown that a simple model accounting for all known
microscopic details is capable of describing the ob-
served phases in the correct sequence and with the
proper transition temperatures. " The above two
compounds exhibit the same unusual phase se-
quence, ' ' i.e., Table I.

TABLE l. Transition temperature phase sequence of (CH3NH3)&CdC14 and (CH3NH3)2MnC14.

14/mmm-

tetrago na1

high temperature

continuous

—: Cmca =

orthorhom hie

room temperature

disco nt.

- P42/ncm

tetrago nal

low temperature

discont.

-- P2)/b

monoclinic
low temperature

Z=1 Z=2 Z=2

(CH3NH3) 2CdC14

(CH3NH3) 2M nC14

484 K

394 K

279 K

257 K

163 K

94 K

3743 1979 The American Physical Society



3744 R. KIND, R. BLINC, AND B. ZEKS 19

The number of formula units Z is given for the prim-
itive unit cells. The phase transitions have been in-
vestigated in the past by several experimental tech-
niques i-io, i2-i5 and the knowledge of the microscop-
ic details is almost complete.

The structure consists of infinite sheets of corner-
sharing MC16 octahedra. Such an arrangement closely
resembles a plane of the perovskite structure with the
metallic ions (Cd, Mn) occupying the B sites in the
centers of the octahedra, whereas the 3 sites in the
cavities between the octahedra are occupied by the

Z(THT, TLT)

NH3 groups of the methylammonium ions (Fig. l).
The NH3 groups are attached to the chlorine matrix
by weak hydrogen bonds, accounting for the four po-
tential wells corresponding to the different orienta-
tions of the CH3NH3+ ions. The four possible N —C
directions of each CH3NH3 group are shown schemat-
ically in Fig, 1. Interlayer bonding is achieved by
long-range Coulomb forces' and by Van der Waals
forces acting between the CH3 groups of adjacent
layers. A more extensive description of the micro-
scopic details which have been important in deriving
the model Hamiltonian is given in Ref. 11.

The tetragonal high-temperature (THT),
orthorhombic room temperature (ORT), and tetrago-
nal low-temperature (TLT) phases are characterized
by a dynamic disorder of the CH3NH3 groups
between four potential wells which can be described
by the site-occupation probabilities n (u = l, 2, 3, 4).

THT

3 I g p \ j

1: -: 3 1

2 4
1 'l

3

4 2

-1
n) —np = ng = n4=4

LT.

n&&n& = n4&n&
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I 2 4

4

n) —np & ng —n4 real ground state

X(

FIG. 1. Structure of (CH3NH3)2CdC14 in the disordered

tetragonal high-temperature (THT) phase. The Cl ions are
situated at the corners of the octahedra. The Cd + in the
centers of the octahedra are not shown. The CH3NH3+

groups are shown schematically by the four possible N —C
directions a which are assigned by the numbers 1,2,3,4.
The small circles indicate the average N positions.

FIG. 2. Schematic representation of the four phases of
{CH3NH3)2CdC14 in the largest primitive unit cell of the sys-

tem (TLT phase: Z =4). The N —C directions of the four

CH3NH3 groups between two adjacent layers are projected

along the Z direction (see Fig. 1), The groups with closed
circles are attached to cavities in the upper layer and the
ones with open circles to cavities in the lower layer. The as-

signment of the four different orinetations n of the groups
(o. =1,2, 3, 4) is chosen in such a way that the probabilities
n —which are represented by the length of the bars —do not

depend on the site of the group in the unit cell for all the

phases.
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Although there are up to eight CH3NH3 groups, in the
primitive unit cell of the various phases, it is possible
to assign the orientations a of all of them in such a
way that all phases can be described by the probabili-
ties n of one CH3NH3 group only (see.Figs. l and
2) as follows:

1THT, nj =nz=n3=n4=
4

ORT, n~ & nz=n4 & n3,

TLT, n~ =nz & n3=n4,
The monoclinic low-temperature (MLT) phase can-

not be described in terms of the probabilities n, but

it can be understood as a distortion of a virtual
orthorhombic ground state with n~ =1,
nz = n3 = n4 =0 due to nonlinear coupling to the lat-
tice (Fig. 3). The distorted configuration of Fig. 3
yields the real ground state sho~n on the bottom
right of Fig. 2.

It was shown in Ref. 11 that the correct sequence
of phase changes is obtained only if in addition to the
two-particle interactions, the four-particle interactions
are also taken into account. In the molelcular-field
approximation (MFA) of the order-disorder model,
the free energy F per one CH3NH3 group was calcu-
lated to be

I

F'=-'a(nt +n3 +n3 +n4)+b(n, n2+n3n3+n3n4+n4n~) +c(ntn3+n3n4) +d(n, n3n3n4)

+ e(ntn2n3+ n3n3n4+ n3n4n& + n4n&n3) —kT(nt inn& + n31nn3+ n3 lnn3+ n41nn4) .

The analysis of the stability conditions for the disor-
dered tetragonal high-temperature (THT) phase
yielded three different symmetry-breaking fluctuation
eigenvectors Srlt, Sg3, and S» (Fig. 4), and the
corresponding stability limits, respectively, transition
temperatures T~, Tz, and T3, i.e.,

site-occupation probabilities n:
q~ =2n~ —2n3,

'gz =2nz 2n4,

g3 2n~ + 2nz —1 = 1 —2nz —2n4

(3)

5q~'. 5n~ =—5n3, 5nz = 5n4 =0,
57)z 5nz 5n4 5n] 5n3 P

5q3: 5n~ = 5n3 = 5nz = 5n4 ~

Tt = T3 = (c —a +—d +=e)/4k,1 1

16 2

T3 = (2 b —c —a + —,', d + —,
' e) /4k .

The order parameters q~, qz, and q3 corresponding to
the above symmetry-breaking fluctuation eigenvec-
tors are the following linear combinations of the

The conditions n; ~0 and n~+nz+n3+n4=1 impli-
cate. the following ranges for q;.

—1 «q3 «+1,
—1 —

v)3 «q) «+ 1 + v)3,

—1+q3 «qz «+1 —
q3 .

The different phases can be described by the equili-
brium values of the above three-order parameters as
follows:

THT: (Rt) = &n3) = &») =o

(71&) &0, (71,) =0,
j(qt) =0, (qt) AO,

(v))) =+2
ORT ground state: I z 0(1~) =

(q3) &0

(q3) &0

&n3)

t&~t) = (») =+1
TLT ground state: '(( ) & ) +1(»)

In these descriptions all possible domains are in-
cluded. The sign of (») in the ORT phase is a
consequence of the fact that in the orthorhombic
ground state the occupation probability n is equal to

1 for one potential well and zero for the other three.
As we see in Sec. III, the model also contains an in-
termediate orthorhombic phase with {q,) & 0,
(g3) A 0, and (q3) & 0, This phase was, however,
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FIG. 3. Representation of the eigenvector

(n& =1,n~=n3=n4=0) for one of the four possible model

ground states which corresponds to the frozen in ORT

domain shown in Fig. 2. The projection and the assignment

of the n are the same as in Fig. 2. The THT, ORT and

TLT phases can be constructed by linear combinations of
the four eigenvectors belonging to the orthorhombic model

ground state.

1 m i v i 5

not observed experimentally either in

(CH3NH3)2CdC14 or in (CH3NH» MnC14.

In order to obtain the monoclinic ground state, a
nonlinear coupling between the order parameter g3
and the phonon coordinates 5q~ and Sqq correspond-
ing to the monoclinic soft modes was introduced.
This takes care of the fact that the modes Sq~ and
Sq~ are stable and cannot get soft as long as the
corresponding site-occupation probabilities n~+ n& or
n 1, + n3' are higher than a critical limit. ""The free
energy F was calculated as a function of the five ord-
er parameters q~, q~, g3, q~, and q~ in units of
kT~ as follows:

2 4

4 2

'93

q3&P

1

Z Z
2 4 p

1

2

FIG. 4. Schematic representation of the eigenvectors 5q&,

hq~, and 5q3 according to Eq. (2) and of the corresponding

order parameters according to Eq. (3).

4 (21l + '92)
2

r 93 +
2 5(21I 92)'93 +

4 ~('93 '91'93 '92 93 +'gl '92) +
2 kT

('% '93)ql +
4 kT

'ql
1

+— ql + — (230+ g3) q2 + — q2 +— q2 +
4

t'1 h 6 1 f 1 g g 1 h

6 kryo 2 kT,

[(1 + 23l + 733) ln(1 + rtl + 313) + (1 + 212
—213) ln (1 + 212

—
213) + (1 —21, + 213) ln(1 —

alt + 213)

+ (1 212 213) ln(1 —
212 'g3) —8 in2] + K

where t'= T/Tl, r" ——T3/Tl, f3 =(d+4e)/64kTl, and /2=d/64kTl For the case of (CH3NH3), .CdC14, the fol-
lowing set of coefficients yielded the correct sequence of phase changes and the proper transition temperatures":
r" =0 30, g =p.4p, 1'3 =p.45, 21O

——0.625, f:g:h = —:—1:1.25, with g = kTl. —
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This set of coefficients will be used for all calcula-
tions in this paper. Figure 5 shows the temperature
dependence of the order parameters and of the free
energy for this set of coefficients.

A group-theoretical analysis' of all above phases

has shown that the order-disorder model is in accor-

dance with the symmetry of the lattice modes which

condense at the transition points. The linear combi-

nations of the Cl symmetry coordinates with the

lowest frequencies are rotations of the Cl octahedra
around the X, Y, and Zaxes of the TLT unit cell.

The rotations around the Y or X axes which condense
at T~ yield a washboardlike distortion of the layers.

They transform like Sq~ or 5q2, respectively, accord-

ing to the X4+ representation of the THT space group
14/mmm. " " Thus a linear coupling between 87it

and the corresponding lattice mode has to be taken

into account. Such a coupling leads, however, only

to a renormalization of the transition temperatures as

shown, e.g. , in Ref. 20. The mode Sq3 transforms

according to the I'q+ representation of 14/mmm, but
there are no nonvanishing symmetry coordinates
from the rest of the lattice having this symmetry.
Therefore no linear coupling does exist between Sq3
and the octahedral matrix, A nonlinear coupling
between q3 and the monoclinic modes Sq~ and Sq2
can account for the real monoclinic ground state.

The aim of the present work is to discuss the
dynamic properties of the above model in the light of
the soft modes observed by Raman spectroscopy. '~ In
Sec. II the dynamic properties of the four-site model
are studied in a relaxation approximation. In Sec. III
the orthorhombic intermediate phase Pccn —which is
contained in the order-disorder model —is analyzed.
In Sec. IV the model is extended to include the ob-
served antiphase motion of adjacent layers.

II. DYNAMICS OF THE FOUR-SITE MODEL

Low-frequency Raman scattering' revealed, below
40 cm ', a temperature-dependent overdarnped mode
in the TLT and ORT phases. In the ORT phase the
center of the signal is masked by the strong elastic
peak at 0 cm ', and only the wings can be observed.
On approaching the ORT-THT transition, the mode
becomes so narrow that it can no longer be dis-
tinguished from the elastic peak. Thus it seems justi-
fied to use a relaxation-type equation of motion for
the order-parameter dynamics.

dp; 8F(p;, T)
dt

'
Qp;

& = '9I R2 '93 q& q2,

I =1,2, 3, 4, 5,
~here the I; represent the kinetic coefficients which
are not critical. Expanding the equation of motion
[Eq. (7)] with respect to ail order-parameter fluctua-
tions Sp; =p; —(p;), yields

Q2 p'
Sp/r=r, X Sp,J-] ~Pi~PJ

l l I

(i = 1, 2, ... , 5) (8)

0 02 0.4 06 0.8 l.0 t'
t'= Tl T„

FIG. 5, Solution of the self-consistent equations for the

order parameters (qt), lq2), and lqs), of the rigid lattice

modei" for the ORT and TLT phases and the set of coeffi-

cients {~,b„5) given in the text. The equilibrium values of
the order parameters (fu11 lines) are plotted vs the reduced

temperature t'(a). The dashed lines correspond to unstable

solutions. From the difference in the free energy of the

ORT and TLT phases (T~L~ —FoR&)/kT& vs reduced tem-

perature (b) one can see which of the two phases is stable

for a given temperature.

The system of the five coupled equations [Eq. (8)]
has five eigenvalues 1/v, and the corresponding
eigenvectors determine the five order-parameter fluc-
tuations modes in all phases. By using the equilibri-
um values (p;) obtained from the minimization of
the free energy [Eq (6)], the eigenvalues 1/r, can be
obtained by diagonalizing the matrix of the coupled
equations [Eq. (8)]. In the general case this matrix is
not symmetric since the rows of the symmetric ma-
trix t) F/8p;Bp& are multiplied by the kinetic coeffi-
cients 1/ which are not necessarily equal. For sym-
metry reasons we have

I )
= I 2 and 1 g

= I 5
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The "rigid-lattice" (pure order-disorder) model also
yields I 3

= I i. But if the coupling to the lattice is tak-
en into account, I 3 is in the general case different
from I ~ since there are no symmetry coordinates in

any phase transforming like Sq3. In our approach we
assume that the kinetic coefficients I; do not show

any temperature dependence.
The following schematic representations show the

structure of the matrix [Eq. (8)] for the different
phases. For the ORT and MLT phases only, the
domains with (qs) &0 are shown. The nonvanishing
matrix elements are indicated by I

'X

one of them condenses at T~, where ~~ and ~2

diverge. v3 would diverge at T3 if T3 ) TI,. In our
case, where r ' = Ts/Tt =0.30, I/rs does not reach
zero. The doubly degenerate modes Sq~ and Sq2 are
not temperature dependent in our model.

Figure 6 shows the temperature dependence of the
order-parameter fluctuation frequencies I/r for all

phases with r& =I'2=1s=kT~/hand r4(f/kT))v)o
= kT~/t. The symmetry of the modes is given for the
standard setting of axes used in the International
'Fables for Crystallography" for the different space
groups. These axes are indicated also in Fig. 1.

In the ORT phase the two modes Sq~ and Sq2 have
different relaxation times. The soft mode Sq~, with

some admixture of Sq3, becomes the fully symmetric
mode I ~+, and shows a mean-field-type soft-mode
behavior near Ti. At lower temperatures the cou-
pling between Sq~ and Sq3 becomes stronger. The
mode Sq2 remains a zone-boundary mode Y3+. Its re-

'X X X
XXX

TLT X X X

X

X

X

X

'4 /T

[k T, ]—
1.2

1.0

0.8

I I il

MLT

I I I [ I

X

MLT X
X

X X

X X-

X X
X

0.6

0.2

I"„(q„q,)

I/. , = I/. , = -, r, (r" —I),1

I/r, =r, (r' —r'),
I/&4 = I/&s = r4(f /kTi) Ro

(10)

In the tetragonal high-temperature phase THT, we
have Q;) =0. The matrix is already diagonal —i.e.,
there is no coupling between the five different
symmetry-breaking modes-and one obtains for the
eigenvalues

0
0.010

0.008

0.006

0.004

0.002

I I I I I

I I I

X,(q„~,)

0.2 1.2 t=T/T„0.4 0.6 0.8 1.0

The corresponding eigenvectors are, of course, Sq~,
5'g2 5 g3, 5q i, and Sq2. As it can be seen from Fig. 2
the two degenerate modes Sqi and Sq2 become soft
at the Brillouin-zone (BZ) boundary'~. Depending on
the ORT domain, we look at

(gt) &0, (g2) =0, (qs) &0,
or

(„,) =o, (,) ~0, (,) &o.;

FIG. 6. Temperature dependence of the order-parameter

fluctuation frequencies 1/7 for all phases. At the bottom the
lower part of the figure is expanded by a factor of 50 in ord-

er to display the soft modes Y3+ and I 3+ of the ORT-TLT
transition, which cannot be seen in the upper part of the fig-

ure. The kinetic coefficients I, of the equation of motion

were chosen as I
&

= I 2
= I 3

= kTi/g
I 4

= I 5
= (kT~/f gp) (kTi/A).



19 DYNAMICS OF STRUCTURAL PHASE TRANSITIONS IN. . . 3749

laxation frequency I/r is so low that the scale had to
be expanded by a factor of 50 to display it. Sq2 is the
soft mode of the ORT-TLT transition. With the ex-
pansion of the scale it became obvious that, just be-
fore reaching the TLT-phase, I/r of this mode be-
comes negative, i.e., the ORT phase becomes un-
stable before the TLT phase is stable. Thus for a
narrow temperature range an intermediate phase
must appear. This intermediate phase is treated in
Sec. III. The mode 6q3, with some admixture of Sq],
also has the full symmetry I ~+ of the ORT phase, but
it is not the soft mode. The modes Sq~ and Sq2 now
have different relaxation times and show a slight
temperature dependence. The coefficients I 4 = I & are
chosen arbitrarily, in order to show the qualitative
behavior.

In the TLT phase the fully symmetric mode I'~+ has
the eigenvector Sq~ = Sq2, Sq3 =0. This mode is,
however, not the soft mode of the ORT-TLT transi-
tion. The soft mode has the symmetry I'3+ and the
eigenvector Sq~ =-Sq2 with some admixture of Sg3.
The reason for this is that the tetragonal symmetry
must be broken on going from TLT to ORT and this
cannot be achieved by the I ~+ mode. There is anoth-
er symmetry-breaking mode I 3+ at higher values of
1/r. The eigenvector is very similar to the previous
one Sq~ =—Sq2, but with an admixture of -Sq3. This
mode does not lead to the ORT phase defined in Eqs.
(5) and thus cannot be the soft mode. The modes
Sq~ and Sq2 are again degenerate, and show no tem-
perature dependence.

In the MLT phase the fully symmetric mode (I"t+)
is a linear combination of Sq~, Sq~, and Sq3. Since
the order is almost complete, we have Sq~ = Sq3, i.e.,
n3 =0,Sn ~

=—Sn2 —Sn4. The relaxation times of the
modes depend not only on the coefficients I 4 = I 5,
but also depend strongly on the values of the coeffi-
cients f g, h of Eq. (6). The vaiue g. = kTt is at the-
lower boundary of the range —kT~ & g &—10kT~

given in Ref. 11. I'his value was chosen to have at
least some of the MLT modes in the range of the
scale of Fig. 6.

Figure 7 shows the temperature dependence of the
order-parameter fluctuation frequencies for
I )=I'2=kT)/t, but I'3=kT&/5K All other coeffi-
cients are the same as used already for the calculation
of the graphs in Fig. 6. The comparison of Figs. 6
and 7 shows that only the modes containing com-
ponents of Sq3 are affected by reducing I 3 from
kTt/g to kT~/5 fi, i.e., in THT I'4+(Sn3); in ORT the
two modes I'~+ (Sri~, Sq3): in TLT the two modes
I 3 (S'rtt =—S'F2, +Srt3); and MLT I' t"(Sqt, 8rt~. Srt3).
In the ORT phase, the coupling between the Sq~, Sq3
modes became much stronger, resulting in a change

- in the slope of the soft I ~+ mode.
The overdamped mode observed by Raman spec-

troscopy" contains components of the following sym-
metries: ORT: I ~+, I2+, TLT: I3+, I"4+. Obviously the
ORT I"2+ and the TLT I 4+ modes are- not contained in
our model. An extension of the model to include
these modes is given in Sec. IV.

III. INTERMEDIATE-PHASE Pccn

It was shown in Ref. 17 that the orthorhombic
space group Pccn [orthorhombic low temperature
(OLT)] with Z =4 is obtained when both (qt) and
(rt2) differ from zero. Also, (q3) may differ from
zero in this phase. The TLT-phase P42/ncm is real-
ized only if ( (q~) [= ( (q2) ) and (rt3) =0. Thus it has
to be expected that the OLT phase is stable in the
temperature range around t' =0.6, where the TLT as
well as the ORT phases become unstable. In order to
obtain the stable minima of the free energy F, one
has to solve the self-consistency equations for all
three-order parameters of the "rigid-1attice" mode1 as
follows:

Yl'[ + 5'rt]YJ3 +
2
6( ri(rt3 + ri)'rig) —+ —,r" [In(1 + rl) + re) ln(1 vl] + ri3)] =0

rt2 Srt2'rt3+
2

~( rt2ri3 + 02rtl) +
4

r [ln(1 + 62 93) ln(1 rt2 rt3)]

=—r're+
2 S(rt) —g2) +

2 5[2g3 —rt3(rt( + q2)] +
4

r'[ln(1+ v)(+ g3) —ln(1+F2 —q3)8'g3

For the ORT phase where (qz) =0, we always have
BF/Bq2 =0, so'that only two coupled equations have
to be solved. In the TLT phase we have (g~) = (rt2),
with (re) =0, and the problem is reduced to one
equation only since SF/Sg3=0, and SF/Bgq =
BF/Brt2 for all temperatures. For the OLT phase,

however, all three equations have to be solved simul-
taneously. The sohitions are shown in Fig. 8(b).
From Fig. 8(a) one can see that I/r is now always
positive, i.e., the solutions. correspond to-minima of
the free energy. In Fig. 8(c), differences of the free
energy FoRT —FnT and FoRT —Fon versus ternpera-



3750 R. KIND, R. BLINC, AND B. ZEKS 19

Q/p I I I
]

I I I

v,'(q, i

MLT ~
1.0

[IT„]
0.004

0.002

TLT
stable

OLT
stable

0,8

0.6' —,
I", (q„q,q, )

10

I

0.50 0.55 0.60

V

l I I

0.65 t'

08

0
0.010 I

i
I I I

0.6

04 (b)

0.008

0.006

0.004

0.002

0
0

I; I q, = -q„q,)

I I I

0.2 0.4 0.6 0.8 1.0

x„'(~,~, )

I I I

1.2 t = T/T1

FIG. 7. Temperature dependence of the order-parameter

fluctuation frequencies 1/~ for all the phases. The values of
the constants are the same as in Fig, 6 except for I 3, which

now equals kT~/5 t. The modes containing no admixture of
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ture are shown for the values of the coefficients stat-
ed in the Introduction. From this, the stable solu-
tions are obtained. The dashed lines correspond to
metastable and unstable solutions.

. For the "rigid-lattice" model, the phase sequence
obtained in Ref. 11 was THT-ORT-TLT-ORT. Since
the intermediate phase is also stable at the lowest
transition temperature (TLT-ORT), the phase se-
quence of the model becomes

THT —ORT —OLT —TLT—OLT —ORT .

FIG. 8. Solution of the coupled Eqs. (11) for the order

parameters (1II), (q2), and (113) for the temperature region

of the ORT-TLT transition. The order-parameter fluctua-

tion frequencies 1/~ (a), the equilibrium values of the order

parameters (b), and the differences in the free energies of
the various phases (c), are plotted vs the reduced tempera-

ture t'. The dashed lines (a), (b) correspond to metastable

or nonstable solutions.

IV. EXTENSION OF THE MODEL TO INCLUDE
ANTIPHASE MOTION OF ADJACENT LAYERS

The OLT phase has not been observed in

(CH3NHs) 2GdC14 and (CH3NH3) 2MnClq. This may
be due to the fact that this phase is stable only in a
temperature range which is too narrow to be ob-
served (less than 1 K) or that it is not stable at all

and is just an artifact of the above simple three-
parameter (r; tl, b,) model.

With the introduction of the nonlinear coupling to
the lattice modes ql and q2, the coefficients f, g, h,
and qo can be chosen so that one can reach the MLT
phase directly from the TLT phase without passing
through the OLT phase. We are thus left with this
minor discrepancy at the ORT-TLT transition only.

In order to explain the presence of the components
with the symmetry I'2+ (ORT) and I'4+ (TLT) in the
soft-mode part of the Raman spectrum, the
corresponding symmetry coordinates of the two

phases were analyzed. It can safely be assumed that
the Cl octahedra are rather rigid and that the internal
modes are at high frequencies. Thus the relevant
linear combinations of symmetry coordinates are the
rotations of the octahedra around the X, Y, and Z
axes. The mode with the symmetry I 2+ in the ORT
phase ((ql) WO, (q2) =0, (TI3) & 0) corresponds for
one layer exactly to Sq2, but in the adjacent layers it

is in antiphase compared with Sq2. Similarly the
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mode with the symmetry 14+ in the TLT phase is a
superposition of the antiphase modes of sq1 and sq2.
Since the planewise antiphase modes are nearly
equivalent to the soft modes, one can expect that
they occur also at low frequencies, but do not be-
come critical. In order to describe the antiphase
modes in our order-disorder model, the free energy

has to be calculated for two CH3NH3 groups belong-
ing to adjacent layers. This leads to a system with
eight potential wells. Figure 9 shows the new assign-
ments of the CH3NH3-group orientations
a (n =1,2, . . . , 8) for eight-site model. In the
molecular-field approximation, the free energy per
one CH3NH3 group reads now as follows:

F"= a'—(nt +n2 +n3 +n4 +ne +ne +n7 +ns) +
2

b'(n~n2+n2n3+n3n4+n4nt+nsne+nen7+nsns+nsns)

+
2

c'(ntn3+ n2n4+ nsn7+ nens) +
2

a "(n&n5+ n2ne+ n3n7+ n4ns)

+
2

b "(ntne+ n2n7 + n3ns+ n4n5 + ntns+ n2n5 + n3ne+ n4nq) +
2

c"(ntn7+ n2ns+ n3n5 + n4ne)

1+
2

d(ntn2n3n4 + nsnen7ns)

1+
2 e(n~nqn3+ n2n3n4+ n3n4n~ + n4ntn2+ nsnen7 + nen7ns+ n7nsn5 + nsn5ne)

+
2

kT [nj In(n &) + n2 ln(n 2) + n 31n(n3) + n4 I a(n4) + n 5 ln(n 5) + ne ln(ne) + n 7 ln(n7) + ns In(ns) ] .
1

(12)

The n are the occupation probabilities of the po-
tential wells with the conditions

4 8

gn =1, gn =1, 0 ~n ~1.
a =-5

a', b', and c' are the coefficients of the two-particle
interaction within the layer, whereas a", b", and c"
describe the two-particle interaction between adjacent
layers. The four-particle interaction is assumed to be
essentially an interaction within the layer since it
describes the correlation between the four CH3NH3
groups surrounding one Cl octahedron. The coeffi-
cients d and e are therefore the same as used already
in Eq. (1). For n~ =n5, n2 ne, n3==n7, and n4 ——ns,
the free'energy of the-eight-site model must be the
same as the one given in Eq. (1), i.e., the two-

particle coefficients of Eqs. (1) and (11) are related
by a = a'+a", b = b'+ b", and c = c'+ e".

The stability conditions for the disordered high-

symmetry parent phase (THT: n = —,n=1 —8) are1

obtained by diagonalizing the matrix of the second
derivatives of F'as follows:

~here A
' = a '+ 4k T 8 b +

16
d +

C'=c'+ —d+ —e and16 2

The eigenvalues x; of this matrix are given by

x1 =x2 = a' —c'+ a" —c"——d ——e +4kT
16 2 J

x =a' —2b'+c'+a" —2b" +c"——d ——e+4kT

x4 = x5 = a —c —a + c ——d ——e +4kTI 1

16 2 7

x =a' —2b'+c' —a" +2b" —c"——d ——e+4kT I

x7 =a'+2b'+ e'+ a" +2b + c +
16

d +
2

e +4kT,

x8 = a'+2b'+ c' —a" —2b" —c"+ —,6
d + —,e +4kT,

(14)

and the corresponding eigenvectors —representing de-
viations from the THT equilibrium-occupation
probabilities —are

Sn1 Sn5 Sn3 Sn7 Sn2, 4, 6, 8

Bl
C'
8'

Qn Qn& 2 A"

8 II

C"
8tt

Bt CI Bl A
tt Btl

A' 8' C' 8"
Bt A

I Bt CII Btl

C' 8' A
' 8" C"

Bll Clt BII A
I Bt

A" 8" C" 8' A'
Blt A

tl Blt CI Bl
C" 8" A" 8' C'

8 II Clt

Att Bl

8 II
A

tl

C' 8'
Bl
A' 8'
8' A'

Sn2 Sn6 Sn4 Sn8 Sn1 3 5 7
—0

SYJ5 ~ Sn2 Sn8 Sn4 Sn6 Sn 1 3 5 7 0

S 96 Sn 1
= S 3 Sn6 Sn8 Sn2 = Sn4 = Sn5 = Sn7

Sn„=p,
0 A lt2t ~ ~ I t8 t

98 (15)

Sq3.' Sn1 = Sn3 = Sn5 = Sn7 =—Sn2 =—Sn4 =—Sn6 =—Sn8,

Sv)4. Sn1 Sn7 Sn3 Sn5, Sn2 4 6 8 0
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T4 s = (—a'+ a" + c' —c"+ t6 d +
2

e)/4k,

T6 ——[—a'+ a" +2(b' —b") —c'+ c"

+ —,', d+ —,
' e]/4K .

(16)

T~ 2 and Ts are the same as already given in Eq-. (2).
In order to have a phase transition from THT to

They are represented in Figs. 4 and 10. Comparing
expressions (2) and (15), we see that the eigenvec-
tors 5q1, 5q2, and 5q3 of the two models are identi-

. cal. The new eigenvectors Sq4, 5q5, and 5q6
correspond to the antiphase motion of adjacent
layers. Thus the model contains now the missing
modes. The THT phase is stable as long as all eigen-
values xl are positive. The stability limits T& for the
six nontrivial eigenvectors q; are given by

T~ 2
= (—a + c + —, d + —e)/4k,1 1

Ts = (—a +2b —c + —, d + —e)/4k,1 1

ORT, T1 2 must be higher than T4 5. For the same
reason T6 must be lower than T1 2.

The order parameters corresponding to the eigen-
vectors hq; can be defined as

'g1 = N1 N3+ f5 —+7 'g2 = 62 ~4+ 06 08

J3 ~1+n3+nS+n7 —1 =1 —n2 —n4 —. n6 —n8,
~4 "1 &3 ~S + fI7, q5 = n2 —n4 —n6+ P8,

6 = n1+ n3+ n6+ g8 —1 =1 —n2 —~4 —n5 —n7 .

(17)

The free energy F' can now be expressed by the ord-
er parameters ql, the stability limits T;, and the coef-
ficients 6 and 5 for the four-particle interaction as al-
ready used in Eq. (6). Since there is no coupling
between the monoclinic modes q1, q2 and the 5q; in
the THT, ORT, and TLT phases, the free energy has
to be calculated for the order-disorder model only.
In units of kT1, the free energy is now

( l4 + Os) 2 T les 2 'O6 +
2 8['ris(ri& + ~14

—'O2 —'Os) +2&6(q&q4 —q2gs)]
2 2 1 4 2 2 T3 2 ] T6 2 1 2 2 2 2

1 T1

'qs + 'q6 + 2 ps q6
—(qs + %)( ylt + 112 + g4 + Os ) + (Ot + q4) (q2 + qs +4~, ~ ~4~s 4~s6~( ~ 4~ ~ ~

+ —, r'[(1+q&+g4+qs+q6) ln(1+&)t+g, +gs+v)6)+(1+&), +ps —q, —71,) ln(1+~, +~, ~, „,)
14 Os 16) ( l & l4 + '93 + 'g6) + (1 'ri2 ris 'g3 7)6) ln(1 —

q2 —qs —q3 7)6)

+ (1 + q&
—'114+ gs —

716) ln(1 + q &

—
q4 + q, —q6) + (1 + el~ gs —

gs + q6) ln(1 + q2 —qs —~s + ~6)

14 + 13 'O6 n(1 —
1, + O4 + os —i6) + (1 —

ri2 + ris —ris + ri6) ln(1 —
rl2 + 'ris 'Ils + p6) —16 ln2] + K

(18)

+11 +12

$2F +31 +32

9~.9~~ 0 0

0 0

0 0

X13 0 0 0

X23 0 0 0

X33 0 0 0

&44 &12 &13

+21 +55 +23

+31 +32 +66,

(19)

The observed crystal symmetry requires that the
equilibrium values (q4), (qs), and (g6) are zero in
all the phases. For this case, also, the first deriva-
tives dF/Bg4, 'dF/Bqs, 'dF/Bq6 are always equal to
zero, and we are left with the three coupled Eqs. (11)
for the order parameters q1, q2, and q3. This shows
that the static properties of the "rigid-lattice" model
remain unchanged when antiphase motion of adjacent
layers is taken into account.

The dynamic matrix O' F/Bq;Bq& has the following
structure for any value of (q~), (g2), (7is) if the condi-
tion (g4) = (qs) = (q6) =0 is fulfilled:

where

1 —T4/Ti
X44 =X11+

2

1 —T4/T)

2
T3 T6

X66 =F33+
T1

(20)

The new modes 5q4, Sq5, and Sq6 are coupled among
each other but are not coupled to the modes

5Y/3. Thus the modes shown in Fig. 6 remain
unchanged. The temperature dependence of all six
modes is shown in Fig. 11 for 1'; =1(i =1,2, . . . , 6),
T4/T~ =0.8, and T6/T~ =0.25. The Raman active
modes are represented by full lines, whereas the inac-
tive modes are represented by dashed lines. For sake
of simplicity only the modes Sq4, Sq5, and Sq6 are as-
signed in Fig. 11. One can see that the ORT mode
I 2+, as well as the TLT mode I 4+, which is now con-
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n2 n8

n3 n1
I

n7 n5

n6

n6 n4

n2

FIG. 9. Eight-site assignment of the CH3NH3-group

orientations a(o. =1,2, . . . , 8), allowing for antiphase mo-

tions of adjacent layers as demonstrated by the experimen-

tally observed modes I"2+ of the ORT and I 4+ of the TLT
phases.

tained in the model have similar relaxation times as
the order-parameter fluctuations.

Due to lack of suitable experimental data, only a
qualitative, and not a quantitative, comparison
between theory and experiments can be made at this
stage: The Raman data'" give only qualitative infor-
mation about the spectral evolution of the I'i+ (ORT),
and I"3+ (TLT) soft modes. This is especially so in
the ORT phase, where the signal intensity progres-
sively decreases and the width narrows when heating
the sample, so that close to the ORT-THT transition
the soft mode can no longer be distinguished from
the strong elastic peak located at 0 cm '. For the
I'2+(ORT) and I'4+(TLT) modes, we know only the
approximate intensity ratios to the I'i+(ORT) and
I'3+(TLT) modes, respectively, near the TLT-ORT
transition, but not the temperature dependence.

A qualitative agreement between experiment and
theory for the I'i+(ORT) and I'3 (TLT) modes is
reached by assuming that the very low-frequency
I'3+(TLT) mode is hidden in the strong elastic peak at

I I I I I I

h

',~(1 '9 "fi"

3 1 7'::'5

5':::7 1'

4
q4& 0

=0

'l.0

0.6

5~1 7':::5
4 6

6 4
5.':::7 1~3

g&0

,
=0

0.4

Q2 —p'(~

2
7HQ 5

4

6

5++7 1: ~ '3
t 2

q~&0

q, =0
i t6

0 I I I I

0.008

0.006

0.004

0.002

0
0.4 0.6 08

0.010 I

/
I

I
I

I
I

I
I

I
I

I
I I

I I
'
I

I

I

I
I

\ I

\ I

gl

1.0

I I I

I I I

FIG. 10. Schematic representation of the eigenvectors

Sq4, Sq5, and Sq6, which in the eight-site model occur in ad-

dition to the eigenvectors 5q~, 5q2, and bq3 shown in Fig. 4.

FIG. 11, Temperature dependence of the order-parameter
fluctuation frequencies 1/v. for the eight-site model. Only

the modes which are not shown in Fig. 6 are assigned. The
full lines indicate the Raman active modes, whereas the

dashed lines correspond to inactive modes. .
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0 cm ', so that only the I 3+(TLT) mode, which does
not become soft, is observed. A crucial test for our
theory would be a measurement of the temperature
dependence of the I 2 (ORT) mode which, according
to Fig. 11, should not depend on temperature.

V. CONCLUSIONS

From the above results the following conclusions
can be made:

(i) The soft-order parameter fluctuation modes ob-
served in the low-frequency Raman spectra" can be
described by a simple orientational order-disorder
model, where the CH3NH3 groups move between
four potential wells. The same model is also capable
of describing the static properties of the various
structural phases occuring in the pseudo-two-dimen-
sional-layer structure compounds (CH3NH3) 2CdCl4
and (CH3NH3) 2MnC14.

(ii) The nonlinear coupling of the motion of the

. CH3NH3 groups with the CdC14 octahedral matrix is
not essential in the high-temperature phases
(THT, ORT, TLT), but is absolutely necessary to
describe the monoclinic ground state.

(iii) To explain the observed I'2+ mode in the ORT
and the I 4+*mode in the TLT phases, the planewise
antiphase motion of the CH3NH3 groups is included
in the model. If the iriterlayer coupling is assumed to
be much weaker than the intralayer coupling, similar
fluctuation frequencies for the planewise antiphase
modes are obtained as for the planewise "in-phase"
modes corresponding to the condensing order-
parameter modes for the four-site model.

ACKNOWLEDGMENT

This work was supported by the S~iss National Sci-
ence Foundation and by the Research Community of
Slovenia.

'R. Kind and J. Roos, Phys. Rev. 8 13, 45 (1976).
G. Chapuis, H. Arend, and R. Kind, Phys. Status Solidi A

31, 449 (1975).
G. Chapuis, R. Kind, and H. Arend, Phys, Status Solidi A

36, 285 (1976).
G. Heger, D, Mullen and K. Knorr, Phys. Status Solidi A

31, 455 (1975).
5G. Heger, D. Mullen, and K. Knorr, Phys. Status Solidi A

35, 627 (1976).
6N. Lehner, K. Strobel, R. Geick, and G. Heger, J. Phys. . C

8, 4096 (1975).
D. Brinkmann, U. Walther, and H. Arend, Solid State

Commun. 18, 1307 (1976).
R. Blinc, M. Burgar, B. Lozar, J. Seliger, J. Slak, &. Rutar,

H. Arend, and R. Kind, J. Chem. Phys. 66, 278 (1977).
J. Seliger, R. Blinc, R. Kind, and H. Arend, Z. Phys. 8 25,

189 (1976).
' A. Levstik, C. Filipic, R. Blinc, H. Arend, and R; Kind,

Solid. State Commun. 20, 127 (1976).

"R.Blinc, B. Zeks, and R. Kind, Phys. Rev. 8 17, 3409
(1978).

'2H. Arend, R. Hofmann, and F. Waldner, Solid State Corn-
mun. 13, 1629 (1973).

' K. Knorr, I. R. Jahn, and G. Heger, Solid State Commun.
15, 231 (1974).

' M. Couzi, A. Daoud, and R. Perret, Phys. Status Solidi A

36, 285 (1976).
' I. A. Oxton and O. Knop, J. Mol. Structure 37, 59 (1977).
'6R. Geick and K. Strobel, J. Phys. C 12, 27 (1979),
"R. Kind, Phys. Status Solidi A 44, 661 (1977).
' J. Petzelt, J. Phys. Chem. Solids 36, 1005 (1975).
' R. Geick and K. Strobel, J. Phys. C 10, 4221 (1977),

R. Blinc and B.Zeks, in Soft Modes in Ferroelectrics and
Anti ferroelectrics„Selected Topics in Solid State Phvsics,
edited by P. Wohlfahrt, (North-Holland, Amsterdam,
1974), Vol, 13, p. 169.

'International Tables for Crystallography, (Kynoch, Birming-
harn, 1969).


