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1The soft effective elastic constant' C, =
2 (C&&

—C&2): of Te02 has been measured at 77 K as

functions of the uniaxial-stress loads in the [110], [110],and [001] directions up to 4 kbar. By
using the method of Thurston and Brugger, we have determine'd the values of the third-order
elastic constants as C~~~

—
C&22 =3.85 and C~~3 —C~23 = —0.39 in 10' dyn/cm . These values are

not big in comparison with those of other materials. The origin of the pressure-induced ferroe-
lastic transition found by Peercy and Fritz can be attributed to the anomalously small elastic
constant C, at 1 bar as well as the negative pressure coefficient of C, . For the purpose of
evaluation of the elastic constant, by making use of a model lattice with two-dimensional co-
valent bondings, we have calculated Keating's strain energy which includes the homogeneous
strain and the internal displacement as variables. An internal displacement of oxygen atoms,
which corresponds to the spontaneous internal diaplacement previously found by Worlton and
Beyerlein in the high-pressure ferroelastic phase, is found concurrently to follow the homogene-
ous strain e~ —

e~~ so as to suppress the increase of an 0—Te—0 bond-bending energy: This
leads to the result C&&

—C~2 -—0. The pressure dependence of the spontaneous internal displace-
ments and the supralinear changes of the A ~- and B~-optical-phon&n frequencies under the

[100] uniaxial pressure are interpreted by using Landau's free energy which includes the interac-
tion terms between the homogeneous strain and the internal displacements, and the parameters
in the free-energy are determined.

I. INTRODUCTION

Paratellurite (Te02) has the anomalously small
elastic constant C, =

2 (C~t —Ct2). Peercy and Fritz'

found that the effective elastic constant C, decreases
with the hydrostatic pressure to vanish at a critical
pressure p, . The temperature dependence of p, was
found small. 2 In this pressure-induced phase transi-
tion of the second-order type, characteristics expected
from Landau's phenomenological theory were ob-
served: The square of the spontaneous strain was
found to develop in proportion to p —p„and the
soft elastic constants above and below p, change
linearly with pressure. ' We call this phase transition
the pressure-induced ferroelastic phase transition.
Neutron scattering experiments4 showed that the
softening of the corresponding acoustic mode is res-
tricted to the q 0 limit in the Brillouin zone. An
optical-phonon instability was not bserved by Rarnan
scattering measurements. ' Neutron-powder-
diffraction measurements, 3 however, gave microscop-
ic information that the oxygen atoms undergo large
internal displacements in going through the transi-
tion. In this point, we can find a phenomenological
resemblance to the case of the phase transition of
Nb3Sn, in which a sublattice diaplacement of I"

~2

(+) type takes place, without optical-phonon instabil-
ity, through bilinear coupling with the spontaneous
strain.

The purpose of the present paper is to give a
lattice-dynamical interpretation of the pressure-
induced ferroelastic phase transition in Te02. This
phase transition might take place due to the following
properties of TeOq.'(a) the initial elastic constant at
1 bar is anomalously small, and (b) the pressure
coefficient of the shear elastic constant is negative.
Furthermore, the symmetry of the crystal allows the
transition to be continuous. From the data of Ref. 2
(hC„/dp =5.2, EC33/Ap =13.5, EC44/hp = —1.1,
EC66/Ap =7.1, AC, /Ap = —2.6), we find that the
magnitude of the pressure coefficient hC, /Lip is not
large in comparison with that of other components of
the elastic constant. The values of the third-order
elastic constants, which are components of the
hydrostatic-pressure coefficient of C„will be estimat- .

ed in Sec. II by means of a uniaxial-pressure experi-
ment and found not large in comparison with other
materials. Thus, we find that the (a) property is im-
portant. The (b) property is not peculiar to Te02,
several materials (for example, rubidium halides,
KCl, and zinc-blende-structure crystals such as
CuC1 and ZnTe) exhibit this behavior. ' Thus, in
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this paper, we will consider, in Sec. III, the reason
why the elastic constant is small even at zero pres-
sure; and the Keating's method' for the evaluation of
the elastic constant wi11 be applied to a model lattice.
The relation between the soft homogeneous strain
e —e» and the internal displacement of the oxygen
atoms will also be found. In Sec. IV, the pressure
dependence of the internal displacement and the
optical-phonon behavior under uniaxial pressure will
be considered in the light of the phenomenological
free energy, which is analogous to that of Nb3Sn and
corresponds to the Keating's strain energy. -

II. UNIAXIAL-PRESSURE EFFECT ON THE
SOFT ACOUSTIC MODE

%e measured the velocity of the acoustic shear
mode in the [110] direction with [110] polarization as
a function of the uniaxial stress in the [110], [110],
and [001] directions. Single crystals of Te02 were
oriented by x rays to have (110), (110), and (001)
faces. . Typical dimensions of the sample were
2.5&&2.5&&5 mm3; the compressional stress was applied
along the longest length. The stress apparatus was
the sarr]Ie as the one used for the dielectric and Ra-
man mgasurements9; the sample and the pressing
blocks were directly immersed in liquid nitrogen.

The magnitude of the applied stress was measured by
the calibrated strain gauge in a load cell. For the ex-
citation of the transverse acoustic mode we used a
Y-cut quartz transducer(15 MHz). When the ultra-
sonic propagation direction ([110])was perpendicular
to the uniaxial stress axis ([110]or [001]), the trans-
ducer, as small as (1.5)2 mm~, was bonded with indi-
urn metal and the round-trip time was measured by
the standard pulse-echo-overlap technique' " by us-
ing a Metec 950 unit. %hen the ultrasonic wave was
propagated along the stress axis, the transducer was
sandwiched between the specimen and the pressing
block, and Nonaq-stop-cock grease was padded
between the sample and the transducer. In this
case, pulse-echo traces on the oscilloscope changed
their shapes irregularly at each stress load, possibly
because of the inhomogeneous region of strain near
the pressing blocks; then, we measured directly the
time intervals between pulse echoes on the oscillo-
scope.

Figures I and 2 show the uniaxial-pressure (o;)
dependence of the elastic constant C, normalized by
the free-stress value Cp, which was deduced from the
ultrasonic velocity. For the stress direction
([110] (a.t) or [001] (o3)) perpendicular to the
ultrasonic-propagation direction ([110]),C, changes
linearly in a wide pressure range, as shown in Fig. 1.
In Fig. 2 for the case of the [110]stress (o2), experi-
mental points scatter, since the pulse-echo-overlap
technique could not be used, as mentioned above.
Thurston and Brugger"" gave a general expression
for the pressure coefficient of the elastic constant for
arbitrary crystal symmetry. On direct application of
the result'~ to Fig. 1, we get for stress along [110],

1.00&

O0

oo
Oo 0

ACs 2 I s2' = —s'C33-
Cp ~~& 2C66 4Co

[ (Cl1 1 C112)C33 2(C113 C123) C13]

= —4.92x10 "cm'/dyn,

and for stress along [001],

1 ~c',
2

s'=2s C&3+ [(C», —C&&2)C$3
Cp ho3 2Co

(C113 C123) (Cl1 + C12)]

0.9Q
0

!
l

2
UNIAXIAL STRESS ( kbar)

=2.24X10 "cm'/dyn .

From Eqs. (1) and (2), we get the following values:

FIG. 1. Change of the effective elastic constant

C, =
2 (C~~ —C&2) as a function of the uniaxial-stress load

~~(//f110/) « ~3(//(001]) (both perpendicular to the
ultrasonic-propagation direction tI10]).

Ct~~ —
C~~q =3.85X10'2dyn/cm',

Cf/3 C$23 —0.39&&10"dyn/cm',
(3)
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where the C„„values of Ohmachi and Uchida'
(150—390 K) are extrapolated to liquid-nitrogen tem-
perature

C() =5.96, C)2 =5.59, C)3 =1.50,

C33 1 1 .14, C44 = 2.71, C66 =7.32

Co =0,186 in 10"dyn/cm2,

s'=—NCil+ C12) C33 —2Ci'3~ '

=8.05x10 "cm'/dyn' .

= —10.2x10 "cm2/dyn .

In Fig. 2 the predicted values of Eq. (4) are shown by
a broken line which agrees fairly well with the experi-
mental results.

For the case of hydrostatic pressure, we get from
Eqs. (I), (2), and (4),"

I

AC, 1 AC, d, C, hC,+ +
Cp Ap Cp A(r) hcr2 Acr3

= —12.9x10 "cm /dyn . (5)
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FIG. 2, Change of ("., as a function of uniaxial-stress load
cr2 (parallel to the ultrasonic-propagation direction [110)).
The broken line is drawn by the theory in the text and the
data in Fig, 1.

The values of Eqs. (3) may contain an experimental
error of 15% due to the error in the C&„values at
77 K.

For stress along [110),on application of the formu-
la of Ref. 11,

hC, 1 AC,

Co hcr2 Co h~& C66 Co

Then, the elastic constant goes to zero at a pressure
corresponding to the inverse of Eq. (5),
p, =7 Sx. 109dyn/cm2, which agrees with the previ-
ously reported values' (7.76 or 7.84x109dyn/cm' at
75.6 K)

The third-order elastic constant of Eq. (3) are
found to be only one order of magnitude 1arger than
the second-order ones except for Cp. The absolute
values of these constants are also rather common to
other normal materials; for example,
C», = —8.2x10"dyn/cm' for Si,"and
—9.7x10'2dyn/cm2 for NaCl. '7 Thus, it is concluded
that the p'ressure-induced ferroelastic phase transition
is ascribed to the anomalously small elastic constant
C, =

2 (Cii —Ci2) at 1 bar and the negative pressure

coefficient of C, .

III. DISCUSSION OF THE SMALL

ELASTIC CONSTANT

Figure 3 shows the crystal structure which was
determined by using the neutron-diffraction
method. '8 We can find the strongly distorted square
pyramids of Te04, which are linked with the common
oxygen atoms to form the three-dimensional lattice.
The structure could be regarded as covalent, because
(a) the distances between Te and 0 are equal to co-
valent bond lengths, '8 (b) the directions of the bonds
are highly anisotropic, "and (c) the refractive index
is large, so that the effective charge is small. ' Thus
the stiffness of the crystal might be determined main-
ly by the short-range bond-to-bond interaction.

Worlton and Beyerlein' found that the oxygen
atoms undergo large internal displacements in going
through the pressure-induced phase transition, as
shown in Fig. 3(b). The Te-atoms displacements are
small. It is noted that the 0-atoms displacements are
nearly perpendicular to the collinear bond vectors, for
example, xt~ and x~t~, which link Te~ to O~~~ and Te~~
to O~~~, respectively. This internal displacement
might take place in order to avoid the hard bond
bending or the hard bond stretching due to the spon-
taneous homogeneous strain e~ —

eyy With the
Keating's method for calculating the elastic constant
of the covalent-bond crystal, it is easy to see the rela-
tion between 'the homogeneous strain and the inter-'
nal displacement. The real Te02 lattice is too com-
plex to apply the method straightforwardly. So we
take a simple two-dimensional model lattice (Fig. 4),
in which the 0 atoms link the Te atoms to the other
Te atoms collinearly with different bond lengths
a and b whereas the bond angles around the Te
atoms are taken as 90'. Here, we assume that the
Te atoms do not have internal diaplacements, since
the Te atom is heavy compared to the 0 atom. By
taking up to the nearest-neighbor bond-to-bond in-
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teractions, the strain energy U is

U= '
[(xll —a ) +(xl3 —a ) +(xlll3 —a )'+(xv4 —a') ]

a

+—[(xl3 —b')'+ (xl4 —b')'+ (xlll —b )'+ (xlv3 —b )']
b2

+ [(xll xll, +ab) +(x4 xv4+ab)'+(xl3 xlv3+ab) +(xl3 x lll3+ab) ]
ab

+ [(XII XI3) +(XI3 XI3) +(XI3 XI4) +(XI4 XI'I)
ab

+ ( Xlll ' XIIS) + ( XIIS
' XII6) + ( XI16

' XII7) + ( XII7 ' Xlll) (6)

where al, a3, pl, and p3 correspond to the force constants. The x s are the bond vectors which link Te to 0, and

they can be expressed by the homogeneous strains e, e», e ~, and the internal displacements of the 0 atoms,
u

(XI3)g Ig (1 +e +
3 e~) +u3z 2]/2

(xI3)» =,
&3

(1+e +
3 e„~) + v3, etc. .

2i/2

The internal displacements can also be expressed by the following normal coordinates QII, Q3, . . . , Q8. We have

1 1 1 1

Qz 1 1 —1 1 —1

Q, 2 1 1 —1 —1

Q4 1 —1 —1 1

1

u&+ v&

u2 —
V2

—u3 —
V3

—u4+ v4

Q6 1 1 —1 1 —1

Q7 2 1 1 —1 —1

Q8 1 —1 —1 1

u~ v]

u2 —
V2

u3+ V3

u4+ v4

(8)

From Eqs. (6), (7), and (8), we get

U=C[(e +e») +e„~] +Kl[LI(e —e») +Q6] +K3[[QI —L3(e +e»)l +(Q2 —L3e„~) +Q3 +Q4 ]

+KSQS +K4(Q7+Q8),

where

[aI u3(a+b)'+ P ( Iaa'l+ a3b')/ab)

[ ual' +a3b' +PI(a b)'/ab]—

p3(a —b)3 [ al+ a3+ pl(a b)—
K2 =2

ab ab

Substitution of these Q; values into Eq. (9) yields the
elastic energy $,

y = C [(e +e») 3 + e„3y]

Therefore, according to the definition of elastic con-
stant,

(12)C)) —C)2=0, C)) =C66=2C .

The experimental values for the elastic constants
are C~~=5.6, C~2=5.1, and C66=6.6 in 10" dyn /

.cm3 at room temperature'4; thus Eqs. (12) are well
satisfied. We find, in Eq. (9), that the strain energy
due to e cyy vanishes. owing to the internal dis-
placement Q6', this leads to the result CII —CI3=0.
The displacement Q6 shown by arrows in Fig. 4 is
found to correspond well to the internal displacement
in tlte real Te03 [Fig. 3(b)], which follows as a result
of the development of the spontaneous strain. Thus,
the model lattice might well represent the elastic pro-
perties of Te02 in the c plane.

2I7'[al a - u7b —pl(a -b) ]L2=-
[al + a3+ p, (a b)3/ab]— (10)

K~, K2 .. .,K4 denote the force constants for the inter-
nal displacements Q; in the clamped state, and thus
correspond to the optical-phonon frequencies. The
energy in Eq. (9) takes a minimum value when

QI -L3(e +e») QI = L3&.y

Q6 = —L.'e —e»), Q3 Q4 QS Q7 Q8

P3(a+b)' P3(a + b') 8»&gbK3= K4= —,L) =
ab

'
ab (a b)-
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The displacement Q6 does not change the right
0—Te—0 bond angles, but alters the collinear
Te—0—Te bond angles. The collinear bonds are easy
to bend, because, in Eq. (6), the displacement Q6
perpendicular to the collinear bond vectors such as
x~&~ and x&~ does not affect the value of the scalar pro-
duct between the bond vectors. If the equilibrium

Te—0—Te bond anglds deviate from 180', as in the
real lattice, additional bilinear coupling between
e —e» and Q6 might come in from the interaction
of the third term in Eq. (6), so that the renormalized
C(( —C)2 becomes finite.

IV. PHENOMENOLOGICAL/ DISCUSSION

In this section we will interpret the following facts
phenomenologically on the basis of Sec. III: (a) The
internal displacement in the high-pressure phase' in-
cludes the total symmetric one (Q~ ) in addition to

1

the 8, symmetric one (Qs, same symmetry as the

strain e —e»), which corresponds to Q6 in Sec. III,
and (b) the A ~- or 8t- symmetry optical phonon ex-
hibits a supralinear frequency change under [1001
uniaxial stress. '

From symmetry considerations, the Helmholtz's
free energy per unit volume, F, can be expanded with
the homogeneous strain e = e —e» and the internal
displacements or optical-phonon amplitudes Q~ and

Bi)

jiz

F = —Ce 2 + —A Qg +
3

A
'

Qg, +
2 8Qe,

+ —8'Qs4 —DeQs —Ee2Qg + . (13)4 B) 1 1

0&

By minimizing F with respect to Q;, we have

Q„=(E/A)e', Qe, ——(D/8)e . (14)

Te

FIG. 3. (a) Crystal structure of Te02. The strongly distort-
ed square pyramids Te04 are linked with the common oxy-
gen atoms. (b) Internal displacement of the oxygen atoms
projected on the c plane, which follows the spontaneous
strain e~ —e» in the high-pressure phase.

O 0 OTe

FIG. 4. Two-dimensional model lattice for estimating the
elastic constants. The internal displacernent 06 is sho~n bp
the arrows.



19 PRESSURE-INDUCED FERROELASTIC TRANSITION AND. . . 3705

TABLE 1. Parameters of the free energy [Eq. (&.') in the text] in cgs units.

E

9,43 x 10 (1.78+p.44) x 10 4 1.61 x10 {2,06+0.24) x 10 2 (5.51+0.31) x 10'& (1.79+0.44) x 10 (2.12+0.21) x 10» 1,21

Substitution of Eq. (14) into Eq. (13) yields the elas-
tic Gibbs energy, from which the elastic constant is

deduced,

the optical-phonon instability. Let us evaluate the

Q~ and Qs from data of Ref. 3 by the following ex-
1 1

pressions':

2 (Cit —C&z) = C —D /8 . (IS) Q', = [[—,'( ——,'+z ) —y]'

0.2—
0

Z:

CL
K P. $

O

This value is anomalously small, as was discussed in
Sec. III by using the model lattice.

In going through the pressure-induced ferroelastic
phase transition, the development of the spontaneous
strain e = e, yields the internal displacements accord-
ing to Eq. (14). It is noted here that these internal
displacements are not accompanied by precursors, as
in the case of Nb3Sn, ' since they take place owing to
the improper effect; thus, in the Raman experiment, 2

the unstable optical phonon was not observed. The
increase of the Debye-%aller factor' for oxygen
atoms near p, (the maximum value is at —4 kbar
above p, ) should be attributed to effects other than

+[—(y3+ —+x,) —x ——] ]a1 1 2

2 4 4

+[—( —z3+ —+z2) —z ——) c1 1 1 2 2
2 4 &

Qs, =[—„(x3 4 32) +g(y3+4

+ —, (z3 ——+z2) c1 1 2 2

where x2,y2, z2, x3,y3, and z3 are the fractional-
atomic-position coordinates of, the oxygen atoms in

the high-pressure D24 phase defined in Ref. 3, and

x,y, z are the ones from the low-pressure D44 phase,
and a =4.80 A and c =7.6 A are the lattice parame-
ters. Here we neglect the small displacement of the
Te atoms. Figure 5 shows the pressure dependence of
Q~ and Qs . We can find the proportionality

1 1

between Qs and e, in agreement with Eq. (14), since
1

e, varies as (p —p, )'~'. Because of the smallness of
Q„, the pressure dependence of Qq, is not clear in

the figure. By using the result3

e,2 =2.53 x10 p —2.30x10

(p in kbar) and Fig. 5, the values of parameters in
Eq. (14) are

D/& = 3.42 + 0.19 A, F/2 = 19.0 + 4.7 A . (17)

Next, Lemos et al. found that the A1 and 81 opti-
cal phonons exhibit supralinear frequency changes
under [100] uniaxial pressure: This result can be ob-
tained from Eq. (13) too. Under [100] uniaxial pres-
sure X, we can assume that the strain e = e —e»
dominates, since C11—C12 is anomalously small; we
have

lO

PRESSURE ( kbar)
20 Xe=

C11—C
(18)

FIG. 5. Hydrostatic-pressure dependence of the internal dis-

placements 0& and 0~ which are estimated from the data
1 1

in Ref. 3. The 'full lines are from the phenomenological

theory in the text.

The internal displacements Qq and Qs are induced
1 1

according to Eq. (14) at this time. Other displace-
ments do not appear, since they do not couple with
the strain. The optical-phonon frequencies cv& and

1
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are given by the following equations:
1

9F 2 QF
M() A =, M0CVg =—

0Q~', q
' t) Qa,

(19)

we get

g =9.43xlo, P = ~.6$ x/026,

A
' = (1.78 + 0.44) x10'4, 8' = (2.06 + 0.24) x10"

where the derivatives should be taken at the equili-
brium state, and Mo=-gmo/v is the mass density of
the oxygen atoms (v is the unit-cell volume). Due to
the presence of the higher-order terms in the free en-

ergy of Eq. (13), one obtains the uniaxial-pressure
change of co;;.we get, from Fqs. (13), (14), (18), and
(19),

in cgs units, where we used Mo =. 1.210 g/cm3 and the
results of Eq. (17). Combining these with the results
of Fqs. (15) and (17), all of the parameters in the
free energy of Eq. (13) are yielded as listed in Table l.

0)
8

0)~0A
1 ~ ~ .081

0 0

A 00A +2 = 2 2A 'E
X

MpA (Cti —C„)~

GO = QJ + 38D
MOB (Cti —Cig)

Thus, we have

ho)g /hX =A'E/Mo (Ct]—C&p) cuog

Ao)s, /hX~ = 3B'D~/2MO (Ct t
—C&p) o)os

(21)

For the TeO2 single crystal, the pressure depen-
dence of the soft effective elastic constant

C, = —(C» —C~q) has been analyzed by the higher-

order elasticity theory, and some of the third-order
elastic constants were determined. It was found that,
because C, is anomalously small initially at 1 bar and
the pressure coefficient of C, is negative, a pressure-
induced ferroelastic phase transition takes place: The
pressure coefficient of the elastic constant is not
large. ' By using a model crystal of Te02, the reason
for the small elastic constant is explained: It was

found that an internal displacement follows con-
currently the homogeneous strain e —e» to cancel
the strain energy, so that C11—C12 =0. This internal
d1spiacement corresponds to the rotational oxygen-
atom displacement in the high-pressure phase which

was found by Worlton and Beyerlein. By using the
Landau theory of the phase transition, we could in-

terpret the pressure dependence of the internal dis-

placement and the supralinear change of the optical-
phonon frequency under [100] uniaxial pressure. '

These quadratic stress changes of co should be added
to the result of the linear-deformation-potential
theory. ' From the ~0; dependence, these coefficients
are found to be large only for the lowest-frequency
opticai phonons, in agreement with observation. '
%hen comparing the above results with the experi-
mental oness

=148.1cm ', 5~„ /AX =0.24cm 'kbar
1

QJos ——61.1 cm ', Acta /hX =0.66 cm ' kbar
1 1
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