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The spontaneous magnetization in the critical region of the uniaxial, dipolar-coupled fer-

romagnet LiTbF4 has been measured using sensitive optical techniques. The magnetic and opti-

cal properties of LiTbF4 and the experimental techniques are discussed in detail. These meas-

urements provide a quantitative comparison between the predicted logarithmic corrections to

mean-field theory and the experimentally observed magnetization of a ferromagnet at marginal

dimensionality. We conclude that the spontaneous magnetization in LiTbF4 is described by the

relation M, (T)/M, (T =0) = 8(r (
t/2)in]to/t

( (

t/- over the range 0.002 ~ t «0.09 with

8 =1.77+0,06 T =2.8700+0.002 K and to=0.S3+0,06.

I. INTRODUCTION

As a result of recent investigations of critical
phenomena, we have come to realize the vital role
played by spatial dimensionality in phase transitions.
Each order-disorder phase transition is characterized
by both an upper and a lower marginal dimensionali-
ty. The upper marginal dimensionality d" separates
classical (mean-field theory) critical phenomena from
nonclassical behavior; if the spatial dimensionality is
less than the lower marginal dimensionality long-
range order is not possible. Whether a system will

exhibit classical critical behavior, nonclassical critical
behavior, or no long-range order depends upon the
influence of fluctuations in the order parameter,
This influence, in turn, depends upon the phase
space available to the fluctuations, hence the impor-
tance of spatial dimensionality. The importance of
fluctuations arises straightforwardly when statistical-
mechanical calculations are carried out by the
renormalization-group method, but one can calculate
d'more simply by applying the Ginzburg criterion. '

This has been shown very elegantly in a recent article
by Als-Nielsen and Birgeneau.

In this paper we present the results and analysis of
an experimental study of the spontaneous magnetiza-
tion of the dipolar Ising ferromagnet LiTbF4, whose
upper marginal dimensionality is d' =3. The results
presented here were obtained by measurements of
the temperature and magnetic-field dependence of
the intensity of light scattered by uniaxial ferromag-
netic domains in the ordered phase. The data are

quantitatively compared to the logarithmic corrections
to classical critical behavior that are predicted to oc-
cur at d = d', and to a simple asymptotic power-law
dependence of the spontaneous magnetization. Our
analysis indicates that the data experimentally con-
firm the occurrence of logarithmic corrections.

This paper is organized as follows. Section II
discusses critical phenomena at d = d', following
which we discuss the experimental technique in Sec.
III. The crystal and magnetic properties of LiTbF4
are reviewed in Sec. IV. The optical and magneto-
optical properties are discussed in Sec. V, where we
also present the experimental results. These are
analyzed in Sec. VI, and we compare them with the
results of other experiments and present our conclu-
sions in Sec. VII.

II. THEORY

Our understanding of phase transitions and critical
phenomena has been placed on a much sounder
theoretical basis by the application of the renor-
malization-group technique to statistical mechanics.
As a result, we have quantitative predictions for
nonclassical critical behavior of systems when the
spatial dimensionality d is lower than the marginal
dimensionality d'. The critical-point exponents are
expressed in a perturbation expansion in the parame-
ter ~ = d' —d, and the expansion coefficients depend
upon the order parameter dimensionality n. Thus,
for example, in the n-vector model one obtains, 4 for
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the susceptibility exponent,

+ n+2
2( +8)

+ (n+2)(n +22n +52) 2+
4(n +S)'

where yM~ =1. It is not always known how well
these expansions converge, and so for most isotropic
systems with d" =4, the renormalization-group pred-
ictions are necessarily approximate. For n =1 and
e = 1 (three-dimensional Ising model), the results are
y = 1.17 to O(e), 1.24 to O(e'), and 1.19 to O(e');
in lower-dimensional systems the ~-expansion results
will be even less certain.

A central result of the renormalization-group ap-
proach is that the equations can be solved "exactly, "

without e or I/n expansions, when d = d". The pred-
iction then is for logarithmic corrections to the
mean-field results", thus experiments at the upper
marginal dimensionality can provide a stringent test
of the renormalization-group calculations.

The marginal dimensionality d'depends on the
type of critical point. In magnetic materials there are
only four known values of d". In short-range
exchanged-coupled magnetic systems, d" =4. In the
percolation transition, which is geometrically driven
rather than thermally driven, d' =6. In tricritical
phenomena, d' =3, and in three-dimensional
dipolar-coupled Ising ferromagnets, d' =3. As a
result of these values of d', it is only possible to ex-
pect to experimentally observe marginal dimensional-
ity in magnetic cooperative phenomena in the last
two cases. Marginal'dimensionality at d -3 occurs at
tricritical points due to the interplay of two types of
order parameters, whereas in the last example it oc-
curs as a special property of the dipolar interaction in
Ising systems.

Magnetic dipole-dipole interactions are present in
all real magnetic materials. In most magnetic materi-
als this long-range interaction is much weaker than
the short-range exchange forces, and in the initial
renormalization-group calculations, such dipolar
forces were ignored. Aharony considered the effect
of dipolar forces on the critical behavior of various
magnetic systems. In the case of systems with n =2
and n =3, Aharony found that the dipolar interac-
tions drive the critical point to a new renor-
malization-group fixed point with new critical-point
exponents, but the numerical difference in these two
sets of exponents amounts only to approximately
10%. Moreover, the temperature at which crossover
to the new fixed point is expected to occur is quite
close to the phase transition. Thus the effect of dipo-
lar interactions on these systems is not spectacular
and is difficult to measure quantitatively. But when
n = 1, the dipolar interaction dramatically influences
the critical behavior and reduces the marginal dimen-

where g and b are functions of the dipolar coupling
and the exchange coupling. The correlation function
for fluctuations SM is the Fourier transform of
X(T, q); thus the correlation volume grows as g'
along the z axis and g in other directions. According-
ly, we have

(SM') /(M)'-IT -Tl" "" (3b)

and the marginal dimensionality is d" =3.
Aharony and Halperin calculated' the critical .

behavior predicted in the n =1,d =3 dipolar-coupled
Ising ferromagnet. The behavior is identical to that
of a uniaxial ferroelectric. The normalized spon-
taneous magnetization M, (T)/M, (0) is described by
the equation

M, (T) =8jt[' 'ilnl [' '(1+ )
M, (0)

where the mean-field result

M, (T)/M, (0) =Bt' '

(4)

is corrected by the logarithmic factors. Here
(1+ .) represents higher-order logarithmic correc-
tions, M, (0) is the zero-temperature saturation mag-
netization, t = (T, —T)/T, is the reduced tempera-
ture, and 8 is an amplitude coefficient. The nonclas-
sical power law normally found to describe magnetic-
phase transitions is

M, (T)/M, (T =0) =Btp, (6)

sionality to d' =3.
The reason for this can be seen by means of the

Ginzburg criterion for the importance of fluctuations.
One simply compares the relative magnitude of the
order parameter (M) with the root-mean-squared
fluctuations (SM2)~tt2 at a point in the magnet. If
(SM'), exceeds (M)2 near T„ the mean-field ap-
proximation will fail. The mean-field result predicts
(M) —T, —T. The magnetization is an intensive
variable, thus the fluctuations in a volume Vare
(SM') y

—kT X/ V, where the susceptibility X varies as
(T, —T) '. To calculate the fluctuations at a point,
one replaces V by ("in a d-dimensional isotropic
magnet. Since the correlation length diverges as
(T, —T) ' ', we expect to find the following:

(SM )p/(M) —
i T, —T[ "

This shows that the mean-field approximation holds
for d )4 and thus d' 4.

In the Ising system where dipolar interactions dom-
inate, the wave-vector dependent susceptibility at
long wavelengths has the rather unusual forms shown
here:

x( T, q ) = x( T, 0) (I + 42qz+ g 0'(q) /q') —b ('qP ),
(3a)
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where (3(n =1,d = 3) =0.33 if dipolar forces are not
present. Other quantities calculated by Aharony and
Halperin are

(8)

and the relation

f'g~tCHt'(I lnI t I I =3ktt/32m, (9)

where g~~ =gg' is an effective longitudinal correlation
length, and k~ is Boltzmann's constant. To first ord-
er in (1+ ), the higher-order correction is the
same in the expressions for X and C&. It is the pur-

pose of the experiment described in this paper to ex-
perimentally test the prediction of Eq. (4).

III. EXPERIMENTAL

A. Optical technique

The measurements presented here consist of a

determination of the external magnetic field and tem-

The experimental objective in this work is to deter-
mine the temperature dependence of the spontaneous
magnetization in LiTbF4 near T, . Moreover, the
measurements are intended to detect the presence or
absence of logarithmic factors in the power-law
behavior of the magnetization. Due to the small nu-
merical difference between the two possible theoreti-
cal descriptions, the magnetization must be deter-
mined with considerable accuracy over a large range
in reduced temperature. The difficulty in such rneas-
urements is not in the measurement of the magneti-
zation, but is in the location, in the M, 0,„&, T space,
of the ferromagnetic-paramagnetic coexistence curve.
In order to accurately determine the position of the
ferromagnetic-paramagnetic phase boundary, light
scattering from ferromagnetic domains was used.

perature dependence of the onset of domain diffrac-
tion. This onset of diffraction is used as an optical
indicator of the location of the paramagnetic-
ferromagnetic coexistence curve. In order to make
measurements of this phase boundary with sufficient
resolution, a two-beam optical-bridge system was
constructed using polarization modulation techniques.
In this manner, the transmitted intensity in the
paramagnetic phase, which is quite large as a result of
the transparency of the crystal of X =6328 A, can be
nulled, and small changes in scattering that occur at
the paramagnetic-ferromagnetic boundary can then
be detected with higher resolution. The details of
this optical bridge are described in the Appendix, and
Fig. 1 illustrates the bridge schematically.

B. Cryogenics and sample holders

The optical cryostat used in this experiment was a
Janis Cryogenics varitemp 6DT cryostat with optical
access. The sample holder was positioned in an
exchange-gas tube surrounded on the outside by

pumped liquid helium, apart from the optical path,
and filled in the inside with approximately 25 p, of
4He exchange gas. The crystal was mounted on an
oxygen-free high-conductivity copper (OFHC) sample
holder with small amounts of vacuum grease to in-

sure thermal conductivity between the sample and
the sample holder. The sample holder was thermally
anchored to the 1.2-K helium bath via the exchange
gas, and it was equipped with an electrical heater to
raise the temperature above the helium bath. The
laser-beam size was approximately 0.3 cm in diame-
ter, and the incident intensity was approximately 10
p,W. Windows at 1.2 K shielded the central part of
the crystal through which the laser passed from thd
7'7-K and 300-K radiation.

The thermometry used in this experiment consisted
of a calibrated Ge resistance thermometer and an un-
calibrated capacitance thermometer for temperature

M, p~(eo. )

VARIABLE
REFERENCE

CPp ATTENUATOR M p

LASER ND P& (0) BS P2 (04) CPI PMT

MAGNET (OPTICAL
ACCESS) AND SAMPLE

FIG. 1. Schematic diagram of the double-beam optical bridge used to detect the ferromagnetic domain scattering. 'The opera-

tion of this bridge is described in the Appendix.
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control. In order to avoid the problems of calibration
repeatability in the Ge thermometer that occur upon
room-temperature cycling, the liquid-4He level in the
cryostat was maintained throughout the duration of
the experiment, thereby not allowing the sample
holder to exceed 4.2 K. The temperature control was
obtained by use of the magnetic-field independent
strontium titanate capacitance thermometer and an ac
bridge capacitance controller. The stability of the
temperature was measured by an independent ac
resistance bridge using the Ge thermometer. The
temperature stabilities listed in Table I were obtained
by recording the Ge thermometer temperature in
zero magnetic field before and after each field scan.
These drifts are probably due to the drift on the capa-
citance sensor, which in the pumped helium tempera-
ture range is quite small. In the temperature range
between 2.85 K ~ T ~ T„ the temperature scans at
constant magnetic field were obtained by using the
capacitance thermometer controller to calibrate the
germanium thermometer in a magentic field. The
calibration was accomplished by measuring the tem-
perature using the Ge thermometer in zero magnetic
field with the capacitance sensor controlling the tem-
perature. After ascertaining that the temperature had
stabilized, the desired magnetic field was applied,
thereby causing the Ge thermometer -to indicate a
new value (due to magnetoresistance) at the same
temperature. This type of calibration was repeated
several times for each data point in the range 2.85
K ~ T ~ T, . The accuracy of this calibration was
verified by the overlap-of data points obtained by
temperature scans at constant magnetic field with
other data points obtained by field scans at constant
temperature.

C. Magnet

The magnet used in these measurements was a
Magnion L-128 with an FFC-4 power supply. The
twelve-inch diameter pole faces had a four-inch gap
between them and had 4-in. holes drilled in them to

provide optical access parallel to the magnetic field;
these holes served to define a narrow forward-
direction acceptance angle for the diffraction effects.
The uncertainty in the external magnetic field, meas-
ured by a rotating coil Gaussmeter, was about +1 G.

D. Crystal growth

The crystal used in these measurements was
1 x 1 x 0.4 cm, with the c axis parallel to the 0.4-cm
thickness. This crystal was grown by Gabbe, and the
details of the technique appear in a separate publica-
tion. 9

e, (kG)

1.250 + 0.140

1.500 + 0.123

1.569 + 0,121

1.580 + 0.178

1.660 + 0.127

1.750 + 0.131

1,830 + 0.120

1.910+0.090

2.000+ 0.203

2.250+ 0.064

2.375 + 0.036

2.500 + 0.037

2.750 + 0.033

2,775 + 0.120

3.000 + 0.025

3.016 + 0.120

3,250 + 0.030

2.500 + 0.014

3.525 + 0.048

3.692 + 0.024

3.750+ 0.02

3.829 + 0.019
3.977+ 0,025

4.000+ 0.017

4.072 + 0.024

4.250 + 0.024

4.455 + 0.024

4.500 + 0,012

4.741+0.025

4.750 + 0.011

4.979 + 0.024

5.000 + 0.012

5.687 + 0.023

6.195 + 0,023

6.491 + 0.011

6.641 + 0.025

2.8643 + 0.0016
2,8642 + 0.0016

2.8649 + 0.0003

2.8622 + 0.0022

2.8616 + 0.0016

2 ~ 8620 + 0.0015

2.8602 + 0.0016

2.8589 + 0.0013

. 2.8574+0.0032

2.8530 + 0.0012

2.8502 + 0.0007

2.8488 + 0.0008

2.8435 + 0.0008

2.8408 + 0.0003

2.8371 + 0.0007

2.8358 + 0.0006

2.&306 + 0.0009

2.8213 + 0.0005

2.8222 + 0.0006

2.8155 + 0.0003

2.8131 + 0.0008

2.8101 + 0.0003

2.8050 + 0.0003

2.8032 + 0.0007

2.8002 + 0.0003

2.7911 + 0.0005

2.7829 + 0,0006

2.77S9 + 0.0011

2.7655 + 0.0003

2.7650 + 0.0006

2.7499 + 0.0003

2.7493 + 0.0007

2.6988 + 0.0003

2.6504 + 0.0003

2.6152 + 0.0003

2,6009 + 0.0003

IV. STRUCTURAL AND MAGNETIC PROPERTIES
OF LiTbFg

LiTbF4 is colorless and optically uniaxial. It has
the same crystal structure as mineral scheelite
Ca%04. The space group is C4~q 14~/a, with a body--

centered tetragonal unit cell with a& = 5.20 A and

c@=10.90 A. There are four T13+ ions per unit cell,
each having site symmetry Sq with the local 4 axes

TABLE I. Phase-boundary field (proportional to the sa-

turation magnetization} as a function of temperature for

LiTbF4.
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parallel to [001j. Figure 2 is an illustration of this
structure.

The crystal field in LiTbF4 has been studied by

Holmes et al. ' and Hansen et al. " The atomic con-
figuration of Tb3+ is 4f', which has a Hund's-rule

ground term of 'F. . This is then subject to perturba-
tions from the spin-orbit coupling and crystal field.
The stronger spin-orbit coupling splits the 'F term
into 'F6, 'F5, . . . , 'Fo, with 'F6 having the lowest en-

ergy. The S4 symmetry crystal field then further

.splits each of these levels. S4 splits the F6 into ten
levels, three E doublets comprising J, =+5, +1, +3,
three A singlets comprising J, =0, +4, and four 8
singlets comprising J, =+6, +2. Inelastic-neutron-
scattering and magnetic-susceptibility measurements
have been made on LiTbF4, and the resultant
crystal-field splitting of the F6 level is illustrated in

Fig. 3. The Ising behavior of LiTbF4 results from the
two nearly degenerate 8 levels separated from the
next levels by -125 K. This isolated doublet pro-

duces an effective S = —,, whose easy axis is the

tetragonal c axis. The two 8 levels are each primarily

~
J,.=+6) levels, but a small admixture of

~ J, = —,) oc-1

curs. This admixture produces a zero-field splitting
between the two 8 levels. Assuming only

~ J, =+6)
levels, the calculated magnetic moment p, ~ is 8.87 p, q,
compared to the experimental value' of 8.90+0.03.
The g factors are' gII =17.8 and g~ =0.0;

The magnetic structure of LiTbF4 has also been
studied by Hansen et al. " and Holmes et al. ' This
material orders in a three-dimensional ferromagnetic
array at T, =2.87 K, with an Ising anisotropy parallel

to the tetragonal c axis of the crystal field. This an-

isotropy produces, in the ordered phase, an array of

cylindrical-like ferromagnetic domains aligned parallel

and antiparallel to the tetragonal c axis. The dom-

inant magnetic coupling responsible for this ordering

is dipole-dipole coupling between Tb + ions, rather

than the usual short-range exchange coupling. The
neutron scattering work of Als-Nielsen et al. ' has

shown the following:

J) J2=—0.24 + 0.10, =—0.07 + 0.15,
D)

'
B2

(10)

OPTICAL PROPERTIES OF LiTbFg

One of the most interesting features of LiTbF4 is

its optical and magneto-optical behavior. These to-
pics have been discussed by Griffin et al. ' Figure 4
illustrates the absorption and Faraday rotation spec-

0
trum between 1.8 p, and 2000 A. In this material
there is a "window" of high transparency that extends

0
from 1.6 p, to 4000 A, and on both sides of this win-

dow strong absorption bands occur. The optical tran-

sitions present in Fig. 4 occur in the Tb'+ ions. In
the infrared the transitions starting at 1.6 p, are
between the 'F6 ground term and the other
'Fo, 'F~, . . . levels. In the visible region there is only

0
a single, narrow transition at 4900 A that occurs
between the 'F and 'D levels of the 4f' ground term.
In the ultraviolet, transitions are numerous, and

I

where J„and D„are the exchange and dipolar cou-

pling between the nth nearest neighbors, respectively.
The relatively small exchange coupling could result

from either small exchange interaction or a cancella-

tion of exchange forces, and it is not known which, if
either, is the case in LiTbF~.

600—

TI3 ( FBj

A B E
(+4,0;0) (6,2,-2;6) (+-5,+-1,+ 3 )

500—

400—
CL
UJ

500—
LLI

200—

ioo—

FIG. 2. Tb + positions in the body-centered tetragonal

and cell of LiTbF4 {from Ref. 7). FIG. 3. Crystal-field levels of Tb + {F6) in LiTbF&.
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FIG. 4. Absorption and Verdet-constant spectra in LiTbF4 at T =295 K (from Ref. 12).

these transitions occur between the 4f' and 4f'Sd
terms.

In spite of the high transparency in the visible-
~avelength region, LiTbF4 exhibits a large Faraday
rotation. ' The source of this large rotation is pri-
marily the strong absorption bands that occur in the
uv. Figure 5 illustrates the magnetic-field depen-

0
dence of this rotation of ~ =63)8 A for four tempera-
tures. ' At high temyeratures, the high transparency
and simultaneous large Verdet constant (1.28 && 10 '
rad cm ' Oe ' at 300 K) makes LiTbF4 particularly
suitable as an optical modulator or optical isolator.
At low temperatures Fig. 5 illustrates the propor-
tionality between the Faraday rotation and the
ground-state magnetization. At temperatures
T (( T„ the ferromagnetic-paramagnetic phase
boundary is located by the "kink" in the Faraday rota-
tion, but near T, such a "kink" becomes sufficiently
smooth that precise determination of the phase boun-
dary is not possible. For this reason the Faraday ro-
tation was not used to determine the spontaneous
magnetization

Another striking optical property of LiTbF4 is the
domain diffraction produced in the ferromagnetic
phase. As was discussed in Sec. IV, the ordered
phase in LiTbF4 consists of alternate Ising ferromag-
netic domains aligned antiparallel. In each domain
the population difference in the ground state pro-
duces a large zero external-magnetic-field circular
birefringence. In the down domains ngcp && nLcp,
but in the up domains nLcp && nRcp, and in zero
external magnetic field (nlcp nacp)d =(nacp-
NLcp)„p, where n„cp and nLcp are the indices of re-
fraction for right and left circularly polarized light,
respectively. The result of this is that the ferromag-

Li Tb F„

8000- X = 655nrn

E0
CD
CD

6000—
Cl

T = 1.80K
W-WO —0

~~ ' ~o

oi . o
' T=50K

0/
/

/

/.~
I

/
' /

/, o'

/ /

/ ~
~ /

/ r~ ~
/ /

0/
/y I

T =77K

~~ oeo
~ ~ —O~

0 5 tO 15 20 - 25

O
I—

4000—
. O

CL

2000—a

EXTERNAL MAGNETIC FIELD (kG)

FIG. 5. Faraday rotation vs external magnetic field in

LiTbF4 at T =295, 77, 4.2, 1.8 K.

netic domains produce a phase grating, the periodicity
of which is determined by the regularity in the size,
spacing, and shape of the domains, and the depth of
which is determined by the magnitude of
inacp tl tci.pThis is illustrated schematically in Fig. 6.

In the paramagnetic phase in zero external magnet-
ic field, circularly polarized light propagating parallel
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(a)

RCP 50,000cm '

LC P LCP
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IB&
I B+&

UP DOMAI N DOWN DOMAIN

FIG. 6. Part (a) illustrates the uniaxial "cylindrical" fer-
romagnetic domains in LiTbF4. Part (b) illustrates the opti-
cal transition in the two types of domains that are responsi-
ble for the phase-grating effect observed in the ordered
phase.

to the c axis passes through the crystal essentially
unaffected. In the ferromagnetic phase in zero exter-
nal magnetic field, this beam encounters a phase
grating and part of the transmitted intensity is dif-
fracted into outer lobes. ' In the presence of an
external magnetic field, the phase grating changes.
At constant temperature T &( T„ the application of
an external magnetic field parallel to the c axis modi-
fies the fraction of domains that are parallel and an-

tiparallel to the field direction. In a ferromagnet
below T„ the fractions fp of parallel domains and f„
of antiparallel domains in a field H,„,are given by

fp
——(I —f,p)

= [I + H, „(/NM, (T) ]j2,
where W is the demagnetization factor. In the pres-
ence of the field, the parallel domains grow in

number at the expense of the antiparallel domains,
but in each domain the magnetization, and therefore
(nacp nLcp), remains constant. In this case, the
phase-grating depth remains constant, but the growth
of the parallel domains increases the spacing until the
crystal ceases to be a periodic domain structure,
which occurs at the paramagnetic phase boundary.
As Tis increased, the birefringence (nacp nLcp) for
a domain decreases, as a result of the thermal disord-

er, and at zero magnetic field the depth of the grating,
is smaller.

This description of LiTbF4 is obviously oversimpli-
fied. According to the above description, a periodic
diffraction pattern should be observed at T & T„yet

attempts to observe this pattern were unsuccessful.
The domains are unlikely to consist of uniformly
spaced cylinders as illustrated in Fig. 6. As a result
of these simplifications, this model is not quantita-
tively useful, yet the essential underlying features are
borne out by experiment. At T =1.5 K and H,„,=0,
the forward-direction beam is attenuated by 70% ln a

0
crystal 0.4-cm thick at A. =6328 A, where no absorp-
tion occurs. This technique of locating the phase
boundary by locating the onset of domain diffraction
is used in this experiment to map the ferromagnetic-
paramagnetic phase boundary.

Figure 7 illustrates the domain diffraction that oc-
curs on LiTbF4 as the phase boundary is crossed
from the paramagnetic to the ferromagnetic phase at
T =2.6504 K. The figure illustrates the optical-
bridge output (arbitrary units) on the vertical axis as
a function of external magnetic field on the horizon-
tal axis. Apart from the spike which occurs upon
changing the field, the optical-bridge output remains
constant as the external magnetic field is decreased
stepwwise from 6.505 kG through 6.266 to 6.218 kG.
Starting at 6.172 kG, the optical bridge becomes un-
balanced, indicating the onset of scattering, and this
unbalance increases in amplitude as the field is furth-
er decreased to 6.076 kG in Fig. '7. The critical exter-
nal magnetic field H, (T =2.6504 K) is taken to be
6.195 +0,023 kG, the average of 6.218 kG at which
no scattering is present, and 6.172 kG, at which
scattering definitely is present. By observing the
signal-to-noise ratio, it is clear that the value of H,
could be established with a much smaller uncertainty.
The reduced temperature t in Fig. 7 is 0.08, and as T,
is approached more closely the scattering becomes
harder to detect. In such cases the scans were repeat-
ed many times to improve the signal to noise. In all
scans it was experimentally verified that the bridge
output returned to its balance position when the field
was returned to the starting value. The spikes that
appear in Fig. 7 are correlated with the rate at which
the external field is changed, and may be due to
eddy-current heating in the copper sample holder or
to a small movement of the sample holder, or possi-
bly to a relaxation occuring in the sample itself.

These types of measurements were made between
1.5 K and T, and up to 10-kG external magnetic
field. Data points at temperatures T ~2.75 K were
obtained from the stepwise external-magnetic-field
scans at constant temperature, corresponding to a
downward movement across the phase boundary in
Fig. 8. In this temperature region the phase boun-
dary was determined to +0.1% of M, (T =1.5 K).
Constant temperature scans from the ferromagnetic
to the paramagnetic phase yield the same phase-
boundary points. At higher temperatures (2.85
K ~ T ~ T,), the phase boundary was obtained by
stepwise temperature scans at constant external mag-
netic field from the paramagnetic to the ferromagnet-
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ic phase. As was the case in the field scans, the
phase-boundary points obtained showed no hys-
teresis. In the intermediate temperature range
(2.75 ~ T ~ 2.85 K), scans of both types were used,
and phase-boundary points obtained by field scans
were experimentally found to coincide with those ob-
tained by temperature scans. Table I lists the set of
external-magnetic-field vs temperature-data points
that describe the ferromagnetic-paramagnetic coex-
istence curve in LiTbF4 obtained from these optical
measurements.

VI. ANALYSIS

H, (T) -NM, (T) . (12)

Using this relation, it becomes clear that a measure-
ment of the coexistence curve in the variables H, (T)
and T is equivalent, apart from the factor 1/N, to a
measurement of the temperature dependence of the
spontaneous magnetization. The factor I/N becomes
irrelevant when the magnetization is normalized by
the saturation magnetization

on the ferromagnetic-paramagnetic phase boundary is
related to the critical external magnetic field H, (T) as
shown by

Table I lists the data pairs that describe the experi-
mentally obtained ferromagnetic-paramagnetic coex-
istence curve. It is necessary first to transform this
data to the temperature dependence of the spontane-
ous magnetization. In a ferromagnet at temperatures
T ~ T„ the magnetization vs external-magnetic-field
is@therm is linear in external magnetic field until the
ferromagnetic-paramagnetic phase boundary is

reached, at which time the magnetization shows little

field dependence due to saturation effects. The
linear region of the isotherm occurs due to the align-

ment of the ferromagnetic domains by the external
magnetic field, and the slope in this linear region is

numerically equal to I/N, where N is the sample
geometry dependent demagnetization factor. As T is

increased toward T„ the slope of the linear region
remains constant, but the critical field H, (T) re-
quired to reach the paramagnetic phase is decreased.
In this manner the spontaneous magnetization M, (T)

so that we obtain

M, (T)/M, (0) =H, (T)/H, (0) . (13)

and

H, (T =1.5 K) =0.93H, (T =0)

H, (T =1.5 K) =9.301 ko .

The error bars on Fig. 8 reflect the uncertainty in lo-
cating the onset of domain scattering, and are consid-
erably smaller than those obtained by isothermal-
magnetization vs external-magnetic-field measure-
ments.

Using this relation, the data in Table I is transformed
into the temperature dependence of the reduced
spontaneous magnetization, and this data is plotted in
Fig. 8 between 1.5 K and T„using

LITbF~ DOMAI N SCATTER I NG

T = 2.6504 —0.0003 K

Hc = 6.195 -+ 0.023 kG

6.505 kG 6.266 kG 6.218 kG 6.172 kG— 6.125 k G 6.076 kG

FIG. 7. Data illustrating optical-bridge unbalance due to domain diffraction in the ferromagnetic phase.
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The data in Table I and Fig. 8 were quantitatively
compared to three relations that could be used to
describe the temperature dependence of the spon-

- taneous magnetization near T, . According to the
renormalization-group treatment this is given by

M, (T)/M, (0) = B ( t ('~'fin) to/t [
f'",

where t~ represents the effect of higher-order loga-
rithmic corrections. An alternative possibility is the
more common power law

M, (T)/M, (0) =B/t/". (15)

A final, although unlikely, possibility is the mean-
field power law without logarithmic corrections

M, (T)/M, (0) =B(tl'" . (16)

The data were fit to each of these relations using a
nonlinear least-squares program, and the results of
this analysis is quantitatively summarized in Table II.
For each of the three relations Table II illustrates the

range of reduced temperature used in the fit, the
resultant X~, and the best-fit coefficients. In Table II
the uncertainties quoted represent approximately a
doubling of X', The fit to the mean-field theory, re-
lation (16) is seen to result in coefficients B and T,
that are quite sensitive to the range in reduced tem-
perature t and also yields a value of X~ which is rela-
tively large. Equation (16) is ruled out, as would be
expected. The fit to Eq. (15) is also summarized in
Table II. This fit provides an effective exponent P.
In Table II the results of the fit of our data to Eq.
(15) indicate that 0.81 «X~ «2.3, that 2.8668 «T,
«2.8686 K, that 1.6 «B «1.7, and 0.36 «P
«0.39, depending on the range of reduced tempera-

ture t used in the fit. %e cannot definitely rule out
Eq. (15) as a possible description of the observed
behavior. Finally, the results of fitting our data to
Eq. (14) also appear in Table II. In this fit, we find
that 0.52 «X «0.54, that 2.8700 «T, «2.8702 K,
that 1.77 «8 «1.79, and that 0.52 « to «0.57,
depending on the range in reduced temperature t that

f.o l
I I

SPONTANEOUS MAGNETIZATION

Li Tb F4

I I

C3
II

O

X

0.6—

04

0.2—
e
4

2.500
I

2.600
I I I

2.700
TEMPERATURE (K)

I

2.800 2.900

FIG. 8. Phase diagram of normalized spontaneous magnetization M, (T)/M, (0) vs temperature Obtained from the data in

Table I.
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TABLE II. Parameters and equations (see text for details) used to fit saturation magnetization

data for LiTbF4.

Eq. Used

in Fit

(i4)
0.002 « t «0,04

0.002 « t «0.06

0.002 « t «0.09

1.79 + 0.02

1.78 + 0.04

1.77 +0,06

2.8700 + 0.002

2.8702 + 0.002

2.8702 + 0.002

! 0.524+0.047

to i 0.553+0.036

!
0.568+0.014

0.54

0.52

0.54

(16)
0.007 « t «0.06

0.013 « t «0.10

2.33 + 0.024

2.13 + 0.201

2.885 + 0.008

2.902 + 0.010
12.4

51.2

(15)
0.001 « t «0.04

0.001 « t «0.06

0.0009 « t «0.09

1.71 + 0.02
1'.66 + 0.01

1.55 + 0.01

2,8686 + 0.0032

2.8680 + 0.0032

2.8668 + 0.0034

I

0.385 + 0.003

P 0.377+0.002

!
0.357+0.001

I

0.81

0.92

2 ~ 26

(14) M, ( T)/M, (0) = &!t!'/2! In! to/t!! '/

(i6)

(i5)

M, (T)/M, (0) =8!t! '/

M, (T)/M, (0) a!t!-&

is selected. Equation (14) fits our data with a X' that
is not only smaller than that obtained using Eq. (15),
but which is also changing by only -4% over the
range in t which produced a change of -300% in X'

using relation (15). Our fit to Eq. (14) indicates that
the observed behavior of the spontaneous magnetiza-
tion and the predicted logarithmic corrections to a
mean-field-theory (MFT) power law are quantitative-

ly consistent, that the X of the fit obtained is insen-
.sitive to the range of t selected, and that the coeffi-

cients in the fit are also quite insensitive to the range
of t. None of these features occurred in the fit to Eq.
(15). The parameter ro obtained from (14) is

to =0.53 +0.06. Figures 9, 10, and 11 illustrate the
best fits to each of these three relations ising the
parameters listed in Table II.

ioo- I I I I I I II[ I I I I I I III I I I I I I III I I I I I I 1~ 10 — I I I I llllI I I I I IIIII I I I I IIIII I I I I llll-

10 '=

O
C3

rn )0 P

OJ

Li Tb F4
MFT POWER LAW

T =2902 K
fO0
I

O

O

10' =

Li Tb F4

POWER LAW

Tc =2866

)04 I I I I IIII I I IIII

~0 4 ~0-~ iO-~ Io' too
-4 I I I I I IIII I I I I I ll I I I I I I I III I I I L1JJJ

to-4 to-~ )0-' 10-' too

FIG. 9. Figure of best fit of MFT power law, Eq. (16), to
temperature dependence of the spontaneous magnetization.

FIG. 10. Figure of best fit of power law, Eq. (15), to the
temperature dependence of the spontaneous magnetization.
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0
0

10O

10' =

l .I I I I I II I I I I I I I lI I I I I I I l II I I I l I I I-'

Li Tb Fg
RG POWER LAW

~c = Z.870

precise to confirm Eq. (6), the results presented. in
this paper do so. Thus most of the RG predictions
for LiTbFq appear to be verified; it remains to carry
out precision measurements of the magnetic equation
of state.
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spontaneous magnetization

VII. COMPARISON WITH OTHER EXPERIMENTS,
AND CONCLUSIONS

As we pointed out in Sec. II, it is of special interest
to test the renormalization-group results at the upper
marginal dimensionality. Since d' =3 for tricritical
points and for dipolar Ising ferromagnets, these are
systems convenient for such a test. Experimental
studies of various tricritical points" confirm that a
mean-field description is valid, which is consistent
with the renormalization-group (RG) prediction.
However, the data show no sign of the expected loga-
rithmic corrections. For a dipole Ising ferromagnet,
these logarithmic corrections are quite prominent and
lead to effective exponents (when power-law
behavior is assumed) quite different from the mean-
field values. Tricritical-point experiments differ be-
cause the theoretical scaling fields and densities are
not the ones experimentally accessible, but we do not
understand why the effect of logarithmic corrections
has not been observed.

The validity of theoretical predictions is more firm-
ly established for dipolar Ising ferromagnets. The
critical equation of state for dysprosium ethyl sul-
phate has been measured' and found to agree with
theoretical predictions. Although simple power
laws were found to represent the data as well as clas-
sical results with logarithmic corrections, the relation
among critical amplitudes that was predicted for the
latter representation was experimentally confirmed;
this provides a confirmation of RG calculations.
There have been several tests of RG theory for
LiTbF4. The specific-heat I IitnI

I't3 prediction has
been observed, "and the relation of Eq. (9) has also
been verified. ' While neutron-scattering measure-
ments of the magnetization' were not sufficiently

As explained above, the measurements presented
here consist of a determination of the external mag-
netic field and temperature dependence of the onset
of domain diffraction. This onset of diffraction is
used as an optical indication of the location of the
paramagnetic-ferromagnetic coexistence curve. In
order to make precision measurements of this phase
boundary, a two-beam optical-bridge system was util-
ized.

Figure 1 illustrates, schematically, the optical sys-
tem. The 1-mW beam from a He-Ne alignment laser

0
with A. =6328 A is first attenuated by a factor 10 by
the neutral density filter ND; next, it passes through
a linear polarizer Pt(0') oriented at 0', next through
a Morvue photoelastic modulator MB(45') oriented
at 45', and next through a beam splitter BS. The
lower beam, the sample beam in Fig. 1, passes next
through another linear polarizer P2 (0'), a circular
polarizer CP~, the LiTbF4 crystal which is mounted in
a cryostat between the pole faces of an electromag-
net, and finally into a RCA7265 photomultiplier tube.
The upper beam, the reference beam, passes from
the beam splitter to mirror M~, through a linear po-
larizer P3(90'), a circular polarizer CPq a reference
attenuator, another pair of mirrors M2 and M3, and
finally into the same photomultiplier tube.

The operation of this optical bridge is based on the
photoelastic modulator. The photoelastic modulator
consists of a fused-quartz block oscillating at a fre-
quency of ru/2rr =50 kHz. The oscillations produce a
strain at this frequency that, in turn, produces a
modulation of the index of refraction parallel to the
oscillation axis. The resultant birefringence 5(t) is

given by

5(t) =A cosset,

where A is the amplitude of the birefringence oscilla-
tign. If light is passed first through a linear polarizer
Pt(0') oriented at 0', next through the photoelastic
modulator MB(5, 45'), next through another linear
polarizer P2(p) oriented at an angle p, and finally
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into the photomultiplier tube, then the intensity at
the photomultiplier tube is given by

I (p) = lp[1+cos(2P) cos6],

where lp is the incident laser intensity, P is the angle
of the second polarizer P2(P) with respect to the first
polarizer Pt(0'), and 8 is the birefringence modula-
tion produced by the photoelastic modulator bar. Us-
ing

cos(A costt&r) = Jp(A ) + 2 J2(A ) cos2tttr + ' ' ',

where JO, J2 are Bessel functions of even order,
the intensity component at frequencies 2' and at dc
(pt =0) are

12„(t8) = lp[2J2(A) cos(2P)],

1„(P)= 1,[1+J (A) cos(2P)] .

If 2P =0, then 12 =2J2(A) Ip', but if 2P.= n, then
l2„=—2J2(A) Ip, and this feature is responsible for
the operation of the optical bridge. In the sample
beam P2(2P) = P2(2P =0'), and in the reference
beam P3(2t8) = P3(2P = m). In this configuration, the
total intensity at the photomultiplier tube is

I t'~t Ip( Ts Ts) 2J&(A

l total I (Ts+ TR)

where the depolarization effects of the mirrors
M~, M2, M3, and of the BS have been neglected,
where (T )'~' and (Ta)'I' are the transmission of the
sample and the reference attenuator, and where the
modulation amplitude has been adjusted to 30 =108'

so that Jp(Ap) =0. In this method the 2pt component
of the intensity striking the photomultiplier tube is
proportional to the difference in transmission
between the crystal and the reference-beam attenua-
tor, and the incident-laser intensity lo. A dc pho-
tomultiplier feedback circuit is used to maintain the
dc phototube anode current constant by varying the
gain of the phototube. Using this technique, the dc
signal from the phototube Sd, is held constant so that
we have

Sd, =glp(T +T ) =constant=Sp,

S2 =glp(T T)2J—2(A),

where g is the phototube gain. In this manner the 2~
signal from the phototube is given by

Ts TR
S2„=Sp „2J2(Ap),TS+ TR

and this provides an electrical signal proportional only
to the difference in transmissions of the two beams.
The depolarization produced by, the beam splitter and
the mirrors produces a reduction in overall sensitivi-
ty, bui at constant wavelength this reduction remains
constant and does not affect the determination of the
phase boundary. The circular polarizers are inserted
to eliminate Faraday rotation by the sample. The
variable attenuator was constructed by placing a
linear polarizer after P3(90') on a precision rotary
stage. All polarizers were Polaroid HN-22. The pri-
mary limitation to this technique is the time stability
of the null. In a typical twenty-minute interval, the
stability obtained was equivalent to a 0.1% change in Ts.
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