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We present a simple conceptual discussion of the competition between hybridization and ex-

change in the problem of magnetic-nonmagnetic transitions in intermediate-valence systems.

Two atomic-like calculations are presented: a singlet-doublet and a doublet-doublet level sys-

tems. A phenornenological ferromagnetic coupling is introduced. In the singlet-doublet case,
three distinct phases are possible: paramagnetic, induced ferromagnetic, and ferromagnetic,

depending on the values of the parameters. Results for the enhanced susceptibility are also

presented, In the doublet-doublet case, two phases occur, para- and ferromagnetic. The

valence change upon ordering is discussed. We argue that not only the "magnetic" character of
the configuration, but also the relative strength of the local-moment quenching component of
the hybridization potential and of the exchange interaction, are important in determining the ex-

istence of a spontaneously polarized phase.

I. INTRODUCTION

Intermediate-valence compounds have been exten-
sively studied experimentally in the past few years. '

Unfortunately, the theoretical problems posed by the
experimental results are still not solved. %e possess
a qualitative understanding of the properties of the
ground state and (less so) of the elementary excita-
tions, but no quantitative theory based on this under-
standing has as yet evolved. This is not surprising,
given the intrinsic difficulty of the subject: highly
correlated, atomic-like electrons interacting and mix-

ing strongly with less correlated, Bloch-like electrons.
But, until a quantitative theory is put forward which
allows us to calculate specific heats, magnetic suscep-
tibilities, spectroscopic properties, and other physical
parameters for these systems, intermediate-valence
compounds will remain quite puzzling. Some wide

open problems which are beginning to attract the at-
tention of theorists concern the question of magnetic
ordering (why does TmSe order, but not SmS7),
coherence lengths (is intermediate valence a purely
local phenomenon or is there a coherence length as-
sociated with it. ), crystal fields, stoichiometry, and
defects, thermodynamical properties (cohesive ener-
gies, for instance), and others. In all these questions
there is still room for heuristic and conceptual
developments, as much as for quantitative theories.

The purpose of this paper is to discuss a simple
model, which may shed some light on the magnetic
properties of intermediate-valence compounds. %e
show that the competition between hybridization and
exchange interaction is an important parameter in

determining the presence or absence of magnetic ord-
er in a given intermediate-valence compound. ' The
magnetic character of the "fluctuating" configurations
also plays a role, but this is not as important as it
may seem. The problem is somewhat reminiscent of
the competition between crystalline electric fields and
exchange. Hybridization may favor a singlet state or
a reduced local moment, but exchange opposes this
effect. In our view, the spatial coexistence of mag-
netic order and intermediate valence indicates an ef-
fect of the hybridization on the local moment com-
parable to that of exchange interactions and hence a
mixing width of the order of typical exchange con-
stants (&10 K). Experimental evidence supporting
this view comes from measurements of the width of
the quasielastic peak in neutron scattering. For
Cepd3, a paramagnet, this width .is 19 meV and tem-
perature independent at low temperatures, ' whereas
for TmSe it is considerably smaller, 5 meV and de-
creases with temperature below T&.4 It would be in-,

teresting to determine the width of this peak in the
collapsed phase of SmS. If our view is correct it
should have a temperature dependence and a value
more like CePd3 than TmSe.

In order to investigate the competition between hy-
bridization and exchange we study in. this paper a
purely "atomic" problem. Because of its "atomic"
character we cannot expect that the model will repro-
duce excited states that bear any resemblance to
those of an intermediate-valence system. Its value is
mainly heuristic and conceptual in pointing out some
interesting possibilities resulting from the--balance of
two opposing physical mechanisms. In Sec. II we

3656 1979 The American Physical Society



HEURISTIC MODEL FOR MAGNETIC-NONMAGNETIC. . . 3657

present the singlet-doublet version of the model.
This may be considered an extension of the work of
de Chatel et aI. ' on the susceptibility of an isolated
system. In Sec. III we discuss the doublet-doublet
case. Finally, in Sec. IV we present our conclusions.

II. SINGLET-DOUBLET MODEL

In this model we place, at each site of a lattice,
three atomic-like states: one singlet and one doublet.
The singlet has no magnetic moment and is unaffect-
ed by an external magnetic field. These states are

separated by an energy 35 and hybridized (mixed)
with a mixing element V, connecting only each
member of the doublet to the singlet. In addition,
the members of the doublet situated in the different
sites are exchange coupled. This coupling J is taken
as "ferromagnetic" and of nearest-neighbor only type.
Although this model bears some resemblance to
models of singlet ground-state magnetic systems, it
is important to note that in the present case, the mix-
ing opposes magnetism. Moreover, we want to place
an altogether different physical interpretation on the
model.

The Hamiltonian is given by

'
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~here

E1=0, E2=35 —Jm, and E3=35+Jm (2.3)

In Eq. (2.1) we have Et =0 and Eq =35, z is the
coordination number of the lattice, 0- is the Pauli
spin-matrix vector; the summation over (ij) is res-
tricted to nearest-neighbor pairs and that over
p, , p, ', v, v' to values 2 and 3 of these variables. The
model has some of the features of intermediate-
valence systems like SmS and Ce compounds for
which one of the configurations is nonmagnetic. A
complete identification is, clearly, not possible be-
cause the dynamics of the conduction electrons is ig-
nored and the real level structure of the magnetic
configuration is usually more complex than a doublet.
In the case of SmS based compounds, the state Il)
corresponds to the ground state of the ionic confi-
guration 4f and the states I2) and I3) to that of the
ionic configuration 4f'Sd'. The basic assumption
made throughout this work is that the magnetic mo-
ment is determined by the 4f electrons and that the d
electrons are magnetically "dead". The d-electron
spin is "killed" by pairing up with another d-electron
spin when they form a band. The resulting Pauli sus-
ceptibility is not taken into account in the present
model. Strictly speaking the states I2) and I3) can-
not be taken as members of a spin- —, doublet. But,

1

since they are polarizable in the presence of a mag-
netic field, whereas the state I I) is not, we continue
to employ the terminology of magnetism, which is
quite convenient.

In the mean-field approximation we reduce 0 to a
sum of Hamiltonians of the form

The "magnetization" is defined by

m= &a,) (2.4)

+2(., —35)] =0, (2.S)

where we have set J = I, and e1 is the ground-state
energy of Eq. (2.2) . . For a given value of V, there
exists a value h„above which this equation has no
solution. For V =0, 5, reaches its maximum value
of 3 For small values of V, 5, & 0 and in the inter-

1

val 0 & 5 & h„we have a situation of induced "fer-
romagnetism", because the doublet lies higher than
the singlet in the absence of exchange coupling. The
transition from paramagnetism to induced fer-
romagnetism at T =0, as a function of 5, is abrupt
for t =0, but smooth for V &0. These results are
shown in Fig. 1(a) and (b), which present 5, ( V) and
m(5, V), respectively. Note that, as V increases, for
a given 5 or 5 decreases towards zero for a given V,

even if the doublet lies below the singlet (in the ab-
sence of mixing), the ground state becomes paramag-
netic. This is a "strong" mixing situation and it can
be understood if we consider the eigenvectors of Eq.
(2.2) in the case J =0 (or m =0). The expectation

where the angular brackets denote thermal averaging
and must be calculated self-consistently.

The eigenvectors and eigenvalues of Eq. (2.2) may
be computed exactly. The latter, in particular, are
given by the roots of a third degree polynomial. '

We now analyze the self-consistency equation (2.4)
at T =0. We can show, after some algebra, that it
has always the trivial solution m =0 and that non-
trivial solutions obey

[(e) —35) —m ] +2V [(e —35) +m
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value of o-, is strictly zero for any one of these eigen-
vectors, and in particular for the ground state. This
arises from the fact that both "spin-up" and "spiri-
down" components of the doublet are present with

the same weight in these states. In the strong mixing
limit 'the exchange coupling cannot sustain eigenvec-
tors with unequal weights for the two members of
the doublet, i.e., it cannot "free" the doublet from the
singlet and the system rerhains paramagnetic. But, as
the levels move further apart, with the doublet below
the singlet, we reach a situation in which the ex-
change coupling takes over and the system becomes
magnetic, even though one of the "configurations" is

nonmagnetic. It is our view that this is the correct
manner of visualizing the lack of magnetism in many
intermediate-valence compounds.

For T WO the self-consistency equation becomes

with

m) =4 V'm(3g —pj) 0, (m)

Q '(m) =[(p —35)' —m']'

+ 2 V~[(e~ —3 8) 2 y m']

(2.7)

(2.8)
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Clearly m =0 remains a solution together with a

second possible nontrivial solution. The critical tem-
perature below which this second solution exists is
determined by taking the limit m 0 of Eq. (2'.6),
after eliminating the trivial solution, Alternatively we

may compute the exchange enhanced susceptibility
and determine the temperature at which it diverges.
The (initial) nonenhanced susceptibility is given by

1
3 —p~. (m)

m~e ~ = m
Z

where Z is the partition function, e, (m) the jth
eigenvector of Eq. (2.2), and

(2.6) —pe —pa+
e e

, (p —3&)' (p, —3g)'

where Zo is the zero-field partition function and
IEp =35,

(2.9)

p+ = —[3g + (952+ g V~)]t~2 (2.10)

-6,IJ
1.0

The exchange enhanced susceptibility is then
shown to be

X = Xp(1 —JXp) (2.11)

0.0

The critical temperature is determined by the equa-
tion

1 —JXp(T, ) =0 (2.12)

I

0.5 1.0 1.5 2.0 Y/J

rn(0) Y 02
J

0.0
l

. l.O
I

2.0 - 5/ J

FIG. 1. {a) Phase diagram in the h/J- V/J plane. The

solid line determines the critical value of 5 for which there is

a magnetic-nonmagnetic transition. The dashed line

separates the region of induced (5 & 0) and normal (5 (0)
ferromagnetism. (b) The reduced moment m(0) at T =0
for different values of V/J. Note that in both (a) and (b)

5/J decreases along the conventional positive axes.

The solution of this equation yields the following
results for T,: It approaches the limit T, = I as we
move into the weak mixing limit with the doublet
below the singlet, i.e., 8 &0 and ~8~ & V. As we
move into the strong mixing limit T, 0. For a given
V, we have T, =0 at 5 = 5„as expected. . In Fig.
2(a) we present these results graphically. They are
entirely in accord with those shown in Fig. 1 in that
the highest critical temperatures correspond to the
highest saturation magnetization. In Fig. 2(b) we

present some results for m(T). They are characteris-
tic of mean-field theories and we do not discuss them
further, except to point out that m(T)/m (0) is not a
function of T/T, . We also show the average occu-
pancy of the singlet state for 5=0.05J and V =0.5J,
both for m =0 and m AO in the ordered phase. The
curve for m =0 below T, has no physical significance.
It just illustrates the decrease in occupancy of the
singlet which occurs as a result of the ordering, which

partly "quenches" the valence fluctuations.
The enhanced susceptibility (2.11), in the pararnag-

netic region of the phase diagram shown in Fig. I
behaves qualitatively in the same way as that present-
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ed by de Chatel et al. ' In Fig. 3, we show X for
8=0.1 and V=0.50, i.e., a strong mixing case, but in

the neighborhood of a phase transition. The strong
enhancement at low temperature is clearly seen.
Such an enhancement of the susceptibility at low T is
observed in O.-Ce, ' where it has been established that
it is not an impurity effect. This phase is believed to
be formed by predominantly tetravalent Ce ions, i.e.,
the singlet state being occupied more than the mag-
netic one. Although our model cannot reproduce the
susceptibility minimum which is observed in o™Ce,it
must be kept in mind that the position of the levels
(or their occupancy) is strongly affected by electron-
electron' and electron-phonon interactions. This in-
troduces an additional temperature dependence which
is not included in our model. This susceptibility
minimum in o,-Ce may result from a faster than
Boltzmann factor occupancy rate of the magnetic con-
figuration with increasing temperature.

To summarize, the model presented above has the
following interesting features: (i) It gives paramag-
netic solutions for all temperatures, or it has a
paramagnetic-ferromagnetic second-order transition
at a critical temperature depending on the values of
the parameters 8 and V. The magnetism may be of
the induced or the normal type. (ii) The paramag-
netic solution arises when the doublet configuration
(magnetic), lies below or nearby the singlet confi-
guration (nonmagnetic), in the strong mixing limit.
There is also a "normal" paramagnetism when the
singlet lies below the doublet. (iii) In the weak mix-
ing limit, ferromagnetism may occur, but with a sa-
turation moment that is determined by the amount of
mixing and is a function of applied field. (iv) In the
nearly ferromagnetic case, the susceptibility is strong-
ly exchange enhanced at low temperatures.

III. .DOUBLET-DOUBLET MODEL

T IJ

1.0—

The simplest possible model of two realistic fluc-
tuating magnetic configurations is that of a doublet
and a triplet (J = I) or quartet (J =0 and J = I).
However, since the qualitative results remain unal-
tered, we discuss here the simplified case of two
doublets. The important point is that the two confi-
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FIG. 2. (a) Critical temperature vs 5/J for different
values of V/J. (b) Spontaneous magnetization m (T) as a

function of temperature for different values of the parame-
ters. Full line: 5=—4J, V=O.SJ; dashed line: 6=+0.OSJ,
V =O.SJ; The occupation of the singlet state is also indicat-

ed for m =0 (dotted-dashed line) and m ~0 (dotted line) in

the ordered phase, for the second set of values of 8 and V.

FIG. 3. Full line: enhanced susceptibility (arbitrary un-

its). Dashed line: isolated impurity susceptibility (arbitrary
units). Dotted-dashed line: square of the effective moment
(TX). Note that in the limit T ~, for the present model,

TX 3. The values of 5=0.10Jand V=0.SOJ.
2
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Observe that states ~1) and ~3) have their energies
lowered and states ~2) and ~4) have their energies in-

creased in the presence of the exchange field (J )0).
The "magnetization" is defined by

gurations are now magnetic, in the sense that they
are both split by a magnetic field. The reservations
stated in Sec. II concerning the limitations of such a
model are still valid. Two important modifications
are introduced in the Hamiltonian of this model com-
pared with the singlet-doublet one. First, there is
now the possibility of a different coupling of each
magnetic configuration with the external field. We
assume that they have the same gyromagnetic ratio,
i.e., a "symmetric" case. Obviously, this assumption
is not critical. Second, there are now many more hy-

bridization parameters. In the spirit of the "sym-
metric" approximation above we reduce these to only
two. The mean-field matrix Hamiltonian may finally
be written

total magnetization, (ii) the partial magnetization of
the upper configuration, (iii) the lower configuration
occupation probability in the nonpolarized phase, and
(iv) in the polarized phase. The important point is

that the occupation probability of the lower confi-
guration is increased in the ordered phase with

respect to its value in the nonordered phase (as-
sumed rnetastable at the same temperature). Also,
the possibility that magnetic ordering results in a
"quenching" of valence fluctuations is displayed in

Fig. 5. In Fig. 6 the same quantities are displayed for
different values of the parameters ( V~ =1.0J,
Vq =0.5J). Decreasing Vq results in a more stable
polarized phase, but the increase in V~ leads to a re-
duced occupancy of the lower configuration at T =0.
Note also that the upper configuration polarization is

increased.

IV. CONCLUSIONS

The two models presented in this paper, although
highly simplified, point out the importance of the
competition between hybridization and exchange in-

teraction in determining the existence of magnetic

m = (P) —P2+P3 —P4) (3.2)
6/J

[1 —(V2/J) ]'~2 if V2 ~ J
0 otherwise (3.3)

where the angular brackets denote thermal averaging
and P,. is a projection operator onto the jth state. A
self-consistent solution of Eq. (3.2) with m NO
corresponds to a magnetically polarized state.
Although V~ and V2 both induce configuration mix-

ing, they affect the magnetic behavior of the system
in different ways. Since V~ mixes states which
behave in the same way in the presence of the ex-
change field, the magnetization is only weakly depen-
dent on it. However, V2 mixes states which behave
differently in the presence of the field, and hence V2

tends to "quench" spontaneous polarization. In the
degenerate case (8=0) at T =0, we obtain the fol-
lowing nontrivial solution for m:

3.0—

1.0—

m(0)
1.0

FERROMAGNET

1.0

AMAGNETIC

1

2.0 VIJ

(a)

(b)

Hence a spontaneously polarized ground state is pos-
sible only if the exchange exceeds a certain critical
value, even though both configurations are polariz-
able. A phase diagram for the case V~ = V2= Vis
shown in Fig. 4. Also shown in Fig. 4 is the behavior
of m at T =0 for increasing values of 5, as a function
of V. As expected, increasing 5 reduces the overall
mixing and increases m.

Another point of interest is the behavior of the
"valence", i.e., fractional occupation of the configura-
tions. This is illustrated in Figs, 5 and 6 for different
values of the parameters. In Fig. 5 we plot as a func-
tion of Tfor 5=1.0J, V~ =0.5J and Vq= 1.0J, (i) the

0.5—

0.5 1.0 1.5 VIJ

FIG. 4. (a) Phase diagram for magnetic-nonmagnetic
transitions. (b) The T =0 saturation moment for different

values of 5/J.
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