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Dynamics of domain walls in ferrodistortive materials. I. Theory
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A theoretical study of domain walls in uniaxial displacive ferrodistortive systems is presented.
We start from a generalized Langevin equation of motion for the movements of the ions, which

includes dissipative terms and external fields, in addition to anharmonic and strain-force terms.
We obtain large- and small-amplitude solutions corresponding to domain walls and the usual
soft-mode phonons, respectively. We show that apart from translation the domain walls are ab-

solutely stable solutions of our equation and that in external fields they reach a unique terminal

velocity. The linear dependence of the velocity on the field allows us to define a temperature-

dependent mobility which is related to the diffusion coefficient for the wall. Furthermore, we

calculate analytically the dynamic structure factor due to domain walls and soft-mode phonons.
We find that the Brownian motion of the domain walls leads to a very narrow Rayleigh peak.
As we show in the second paper of this series, our model is useful in correlating and interpret-

ing experiments in this field.

I. INTRODUCTION

In this article we investigate the dynamics of
domain walls in certain systems that exhibit structural
phase transitions. Such a phase transformation is as-
sociated with an instability in the lattice displacement
pattern when a crystal is cooled below its critical tem-
perature T, . From the many materials found to un-

dergo such transitions, several classes have been
identified. ' We restrict our study to displaci ve cry-
stals whose lattice displacements change only gradual-

ly between neighboring unit cells.
Our theory describes domain-wall motion and its

effect on scattering below T, . This contrasts with the
many studies of these materials near their critical
point. ' ' In the ferrodistortive regime the systems
display two (or more) degenerate ordered states
corresponding to different displacement patterns,
Depending on preparation, the crystal may be entirely
in a state of uniform structure, or in a state with

coexisting domains, separated by walls.
Experimentally, domain walls may be observed in a

number of ways: although they may be very narrow,
their position in a crystal can be seen optically, either
directly'0 if the medium is optically active, or general-
ly by the use of an etching agent. " The effects of
domain-wall motion can be seen in scattering' "and
polarization' "experiments. Due to the intrinsic in-
terest of multidomain crystals and their use in elec-
tronic applications, '6 "many such experiments have
been carried out in recent years.

Here, we develop a model which allows us to
correlate and interpret many of the observations. A

complete theoretical description of domain walls is
quite difficult since the walls are large-amplitude dis-
tortions of high energy. Perturbation and mode-
mode coupling techniques, ' while quite successful in
describing low-amplitude fluctuations, are inadequate
in treating domain walls. ' We choose therefore a
simple model which allows a clear conceptual under-
standing of both the large- and small-amplitude
dynamics involved. The second article in this series
demonstrates in detail how our model can be inter-
preted and successfully applied to ferroelectric cry-
stals.

The essential features of our model are as follows:
We employ a single degree of freedom to describe
the collective ferrodistortive displacement
corresponding to the soft mode. '2' 2~ The overall
crystalline anharmonicity produces the soft mode and
also couples this vibrational degree of freedom to
many other lattice modes. For this reason we
dispense with a Hamiltonian formulation appropriate
to conservative systems' ' and begin with an equa-
tion of motion, incorporating the essential
phenomenological behavior. Our equation of motion
may be viewed as the projection from the set of all
lattice vibrational modes onto one component u of
the soft mode. The interaction between this degree
of freedom and the rest of the lattice is introduced
through a force derived from an anharmonic
crystalline-field potential, a random fluctuating force,
and a damping term; The anharmonic potential is
characteristic of the average coupling when all other
lattice ions assume their equilibrium positions. In the
soft-mode model this effective potential is tempera-
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ture dependent. '" The fluctuating force and damp-
ing are related to the thermal motion of the lattice,
and account for the nonconservative, dissipative na-
ture of the mode. The lattice modes are thus as-
sumed to constitute a bath in the usual Langevin
sense. "We allow also for coupling to an external
(eiectric) field.

So as to perform all of our calculations analytically,
we specialize the model to one spatial dimension. As
we shall see in the second paper of this series, (see

'following paper) one can account for a variety of phy-

sical phenomena in ferrodistortive systems despite
this restriction. Thus when we consider a point x on
the spatial axis x, we are in fact referring to an entire
plane of atoms through x, normal to x. For ease of
discussion in the following sections we sometimes
refer to a mass m in a unit cell centered at point x.
However, for physical applications one must keep in

mind that the displacements are due to the collective
motion of atoms in planes, which can be described as
the movement of effective particles of mass m.

Moreover, domain w'alls are not merely segments of
a line as the simple one-dimensional formalism sug-

gest at first glance, but rather volumes whose surfaces
have such small curvature as to be treated as planes.

Other one-dimensional equations of motion have
been proposed by Aubry, '0 and Krumhansl and
Schrieffer" for crystals undergoing structural phase
transitions. Our model differs substantially from
these in three ways. First, our dissipative model
leads to a damped domain-wall motion, For a fixed
applied field the walls have a unique terminal veloci-
ty. ' '

In contrast, the walls in conservative models ac-
celerate to acoustic velocities for any applied field.
Second, our model is designed for three-dimensional,
uniaxial ferrodistortive materials. Our spatial coordi-
nate is normal to the ordering axis, domain walls are
parallel to this axis "and the displacement refers to
the positions of planes of atoms. Other models have
been generally restricted to quasi-one-dimensional
systems and have assumed that the spatial coordinate
lies along the ordering axis and that the domain walls
are normal to the axis. . Third, we assume that
domain walls are not equilibrium excitations, but
long-lived metastable states. The number of walls is
taken to be constant and depends on the history of
the sample. The domain walls of our theory are
high-energy features which are not readily created or
destroyed thermally except very near T, .

This work addresses questions related to other
fields. There is a formal analogy between domain
walls in ferroelectrics and the ferromagnetic Bloch
domain walls, which were studied extensivoly27; also
the description of one-dimensional dislocations is
similar. However, as pointed out in Ref. 29, there
are considerable differences in the behavior of fer-
roeleetric and of 81och domain walls, understandably
so, since the microscopic interactions responsible for

them are physically very different. From the theoret-
ical side our work is akin to a number of recent treat-
ments of the damped-soliton problem; however, the
approaches are in each case different from ours (see
reference citation for further comments).

The paper is structured as follows: In Sec. II we
discuss the motion of domain walls in uniaxial,
displacive ferrodistortive materials and introduce our
equation of motion. We indicate the physical origin
of each of the terms in the equation and remark that
in structure it corresponds to a generalized Langevin
equation. In the following Secs. III-V, we derive the
dynamicaI properties of domain walls in the model
and obtain expressions for a number of experimental-
ly accessible quantities.

Section III considers the macroscopic motion of a
domain wall in the presence of ari external field. We
show that a wall initially accelerated by an external
field attains a terminal velocity of propagation. At
low external field this velocity is linearly proportional
to the field and vanishes at zero field. This allows us
to define a mobility. We also examine the stability of
the planar domain walls to small perturbations in the
displacement coordinate. We find that due to the ex-
plicit inclusion of damping (providing an energy-
dissipating mechanism), the domain wall is absolutely

stable to all perturbations apart from a shift in posi-
tion. This marginal stability is a consequence of the
translational invariance of our equation of motion.
From the stability analysis we explore the interaction
between the quasiharmonic excitations and the
domain walls. With each domain wall the density of
phonon states changes since two-photon modes be-
come bound to it. The first mode corresponds to the
translational mode of the wall while the second one is
an oscillating perturbation of the domain-wall profile.

In Sec. IV we consider in detail the effect of ther-.
mal fluctuations on the domain wall in the absence of
an external field. We show that the mean position of
the wall undergoes Brownian motion. We derive the
form of the diffusion coefficient for the domain wall

and demonstrate its simple relation to the wall mobili-

ty. The wall, which is the Brownian particle of a gen-
eralized Langevin equation, is a large-amplitude,
coherent, nonlinear modulation of the individual os-
cillator displacernents.

In Sec. V we derive the form of the dynamic struc-
ture factor S(k, &o) for ferrodistortive systems both in
the absence and presence of domain walls. $(k, au)

decomposes into contributions from the Brownian
motion of the domain ~alls, from the bound-state os-
ci11ation of the wall, and from the soft-phonon mode.
We derive the temperature dependence of the central
peak, which is the dominant elastic-scattering feature
belo T, . %'e prove that Brownian motion of
domain walls does not contribute significantly to the
critical scattering. %'e also deduce the temperature
dependence of the domairi-wail transport coefficients.
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In Sec. VI we summarize our results. Analytical
details are presented in two appendices. In Appendix
A we show that both short-range electrostatic interac-
tions and crystalline;elastic-strain effects lead to
equations of motion for the displacement which are
formally identical. In Appendix 8 we provide the cal-
culation of S(k, cu).

In the second article we show how the model can
be applied to two prototypic ferroelectric materials,
lead germanate, and antimony sulphoiodide. The
model parameters are determined from available ex-
perimental data and are shown to have reasonable
values. Using no adjustable parameters we calculate
for lead germanate the wave number and tempera-
ture dependence of the low-temperature central peak
in the neutron-scattering spectra. The domain-wall
width, in Pb56e30ii, derived from the central-peak
intensity data, ' is also determined. These results are
in quantitative agreement with experimental data.
The integrated intensity of this peak is shown to
depend linearly on the (temperature-independent)
domain-wall density. The calculated wall density
agrees well with the average domain size observed
directly in other samples. The temperature depen-
dences of the domain-wall diffusion coefficient and
mobility are obtained. This mobility, together with
the calculated wall density, yields a correct order-of-
magnitude estimate of the polarization switching
time. For SbSI we evaluate the temperature and
pressure dependence of the low-temperature central
peak and compare it to the available data.

II. THE MODEL

This work is concerned with uniaxial ferrodistortive

crystals below their critical temperature. We restrict

ourselves to displacive materials, iri which the lattice

deformation changes gradually from one unit ce11 to

the next. " In these substances one finds that adja-

cent domains have opposite polarization, aligned with

the ferrodistortive axis i. Such domains are separat-

ed by 180' walls, which lie parallel to i. We consid-

er, for simplicity, planar walls normal to a direction x
(xz z). Then, since the displacement pattern associ-

ated with the soft mode is the same in each plane

perpendicular to x, the overall displacement of the

whole crystal can be described by a single function

u (x, t), where x measures the distance along x.
Our basic assumption is that the soft-mode dis-

placement pattern at a position x; is given by the fol-

lowing equation of motion:

m, " + m i%.

"
+Au (x;, t) + Bu'(x(, t)

8'u (x;,t) l)u (x;,t)
Bt at

—C [u (x,i, , t) + u (x, , t) —2 u (x;, t) ]

=R(x, , t)+F(x;,t) . (2.1)

9 u 92u
m +Au +Bu —meo =0

9t2 9x2
(2.4)

Since Eq. (2.4) is derived for a conservative system,
it does not contain the dissipative term mk(8u/(3t)
and the fluctuating force R (x, t) These terms take.
account of the nonconservative nature of the soft-
mode degree of freedom and its coupling to the other
lattice vibrations. We show below that these terms
produce significant changes in the allowed solutions
of Eq. (2.3) as compared with Eq. (2.4), and are
essential for the treatment of domain-wall motion in
external fields. However, the common terms in Eqs.
(2.3) and (2.4) have similar meaning. The anhar-
monic force Au +Bu' originates from an interaction
between the relevant degree of freedom and the cry-
stal lattice and has a form. Eq. (2.2) appropriate to
crystals undergoing a structural phase transition. The
coupling term, mc02 (0'u/Bx'), accounts for elastic
strain effects between neighboring unit cells, so that
cp corresponds to a velocity.

Since the structures of Eqs. (2.3) and (2.4) are
similar, it is useful to state briefly some of the results
obtained by Krumhansl and Schrieffer, ' and Au-
bry 2o

The interaction potential V(u) has below T, two
degenerate minima at u = +up, where
uo= ([A i/8)'t2. In a homogeneous domain
(8 u/iix =0), u(x, t) =+uo are steady-state solutions
of Eq. (2.4) and correspond to the two degenerate or-
dered states of the crystal. Moreover, Eq. (2.4) has

In Eq. (2.1) m represents an effectiue mass, Au + Bu3
is the force due to the anharmonic crystalline poten-
tial V(u),

V(u) = —Au2+ Bu4,—(A (0, 8 )0) . (2.2)

C[u(x+t. t) +u(x;, , t) —2u(x;, t)]

is the electrostatic (see Appendix A) and strain force
due to the neighboring particles, m). (8u/(it)
represents the damping, R (x;,t) denotes a random
fluctuating force due to the remaining lattice degrees
of freedom, and F(x; t) represents an external force.
Since we restrict ourselves to displacive ferrodistor-
tive systems, we can use the continuum representa-
tion of the lattice, to obtain an equation of motion
for u(x, t),

g u ()u
m

2
+mA +Au+au'-mco

2Qx

= R (x, t) + F(x,t), (2.3)

where mco = Ci', and i is the unit-cell length (see
Ref. 31).

Equation (2.3) extends the equation of motion
derived by Aubry, and Krumhansl and Schrieffer'
from a Hamiltonian model for one degree of freedom
in a one-dimensional lattice,
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many interesting solutions in terms of the moving
coordinate g,

(= (x —vt) (1 —v2/co2) ' 2 (2.5)

Of these, the most relevant are the domain-wall solu-
tions

where k~ is the Boltzmann constant, m X is the. fric-
tion coefficient of Eq. (2.3), and I is the lattice con-
stant.

In the following sections we derive some conse-.
quences of the nonlinear Langevin equation (2.3)
with particular reference to the dynamics of the
domain walls.

u„= up tanh(ag),

where

~ =—( I
~

I /2 m ) 't'/co =—tp, /co

(2.6)

(2.7)
III. MOTION IN A FIELD

Single domain walls, joining domains where w = uo or
u = —uo, are free to move with any speed between zero
and co. In the low-amplitude limit the usual phonon
modes are also solutions of Eq. (2.4),
u (g) = +up+ su ((), with

I

su(() =A sin(2ng+y) . (2.8)

where

g=(x —vt)(vt/cp2 —1) 't2, v ) cp

The energy of the traveling wave solutions is velo-
city dependent and is found by substituting Eq. (2.8)
in the Hamiltonian of Ref. 19. Krumhansl and
Schrieffer, ' and Currie et al, have calculated the
equilibrium statistical mechanics both exactly and
phenomenologically (both methods give the same
result) and interpreted and exact thermodynamic
functions in terms of linear (phonon) and highly
nonlinear (domain-wall) contributions.

As outlined in the Introduction, in applications to
ferrodistortive materials one has to consider the cry-
stal to be in a long-lived metastable state rather than
in true equilibrium. This assumes that the time scale
on which the domain-wall number changes is much
longer than the period of the individual oscillators.
Thus, the thermal motion of the individual particles

'

is in equilibrium with the lattice. Equation (2.3) can
be viewed as a generalized Langevin equation in
space and time. In Eq. (2.3), the motion of the dis-
placement u(x, t) results in energy dissipation into
the remaining lattice modes. The presence of these
modes in turn produces a fluctuating force on u(x, t).
In the usual manner, "we assume that this force,
R (x, t), is random in time and position along the
one-dimensional lattice, and is Markovian. Denoting
the equilibrium average by ( ), we have

In this section we investigate some of the macro-
scopic properties described by our Langevin equation
(2.3); by macroscopic properties we mean those
characteristics which are described by an equilibrium
ensemble average or time average of this equation.
Taking the equilibrium average of Eq. (2.3), we ob-
tain

V, = —ue'E (3.2)

This assumes a linear coupling to the displacement.
The coefficient e' describes the strength of the cou-
pling between the field and displacement. Our equa-
tion of motion (3.1) becomes

—e E —mcp =0 . (3.3)2 iI'(u)
/+2

To find solutions of constant velocity we transform to
the moving coordinate s,

1/2

m (cp' —v')
t

(x —vt)

m +mX ( } +A (u)+8(u)3
Bt2 Bt

F(x,t) ——mcp' =0, (3.1)2 8'(u}
Qx

where (R (x, t))0 from Eq. (2.9), and we have set
(u') = (u)'. This last approximation assumes that
fluctuations, u —(u), are small and thus Eq. (3.1) is
restricted to temperatures well below T, .

For some constant applied field E, and coupling
constant (or effective "charge") e", each oscillator has
an additional potential energy, V„

(R (x, t)) =0 (2.9) Letting rt = (u)/up, we obtain from Eq. (3.3)

C =2k&Tmkl (2.11)

(R (x, t) R (x', t')) = CS(x —x') 5(t —t') . (2.10)

Whenever the fluctuating force R (x, t) appears in a
linear equation of motion, we assume that the
fluctuation-dissipation theorern25 holds, so that the
coefficient C of Eq. (2.10) is given by

d 'g t d'g+ v' +q —q3+E'=0
dS2 - dS.

where

v' = xv[m/(cp2 —v ) IA I]'t

E'=e Ea»'I~ I-'t&, and—

0.4)
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Equation (3.4) has the form

d " + v' " +F(q) =0,
ds2 ds

~here

F (2i) = —(2i —a) (21 —b) (2/ —c), a & c & b

Equation (3.4) has the unique bounded solution22

(3.5)

For a steady state we have

0 ui
A (u) +8 (u)' —mcp ~ =0

Bx

This has the steady-state solutions of interest
' 1/2

(u) =—+up=+ 8

22(s) =a +(b —a) [1+exp(+Ps)] '

where

P = (b —a)r/2'/2,

and v' must have the value

v'=+2 ' (a+b —2c)
= +2-»2(-3c) .

(3.6)

(3.7)

m iv [m (c —v ) [A ~]
" = 3E'

21/2
(3.9)

The field and hence the velocity have been assumed
to be small (v « cp), so that Eq. (3.9) gives

r r]/2
3cp

2m

The last relation follows from a + b + c =0 since
from Eq. (3.4) there is no term in 2/2 in F(21).

Equation (3.5) is well known in the contexts of po-
pulation genetics and nonequilibrium chemical sys-
tems. ss More generally, when F(2i) is not a third-
order polynomial in q, but there are still three dis-
tinct values of g for which F(2t) =0, Aronson and
Weinberger26 have shown that Eq. (3.5) has exactly
one solution at a unique value of v'.

The profile 2i(s) of Eq. (3.6) is a traveling domain
wall with velocity given by

m l v[m (c2 v2) (A []
—1/2 (2)

—1/2( 3c) (3 g)

For small external field E (E' « 1), it is simple to
show that c = —E', and therefore

and

(u) =—+u„(x —xp)

u, (x) = u p tanb(r2x)

(3.13)

(3.14)

These stationary solutions are clearly the same as
those obtained if damping is absent. The domain-
wall solution u, (x) is but one of the class obtained
without damping factor in Ref. 19. There it was
shown that domain walls moving with any constant
velocity between zero and cp satisfy the equations of
motion. %e find, however, that when the damping
coefficient does not vanish all solutions of Ref. 19,
except that stationary ones, are transient and disap-
pear.

Equation (3.10) shows a linear response of the wall
velocity to the field. %e envisage a wall, initially at
rest, accelerating in the field to some terminal veloci-
ty. The shape of the wall gradually distorts into its fi-
nal form, with faster walls having a steeper slope [see
Eq. (3.6) and Fig. 1].

In order to prove the last remarks, we now show
that the wall [Eq. (3.6)] is a stable solution2' of Eq.
(3.3), that is, any small perturbation of the wall will
eventually vaoish, rather than grow or persist. Until
now we have only shown that the wall is a solution of
the ordinary differential Eq. (3.5). We now verify
that, for reasonable initial conditions, the system

=—p, e'E (3.10)

where we have defined the domain-wall mobility p, as
r r ]/2

3cp B (3.11)
q 0

For an applied field the domain wall moves with a

unique constant velocity determined by the field. In
the absence of a field, the domain wall is stationary;
this is the only possible solution. For no external
field, Eq. (3.1) is

'("&+
l

(") +A( &

+8(u)2 —mc$ 0 . (3.12)
82 (u)

8x2

I

-2 0
tI X

FIG. 1. Domain profile vj, Eq. (3.6), at rest ( -) and

moving at a terminal velocity of v/cp = +0.7x in an applied

field (--), vs O,x, Eq. (2.'7). Note that the moving ~all is

steeper at its center and that the asymptotic values are shift-
ed by the field.
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given by Eq. (3.3) will approach its terminal form.
The case of zero field is first discussed in detail and a
qualitative discussion of the stability of the domain-
wall solution in an external field is presented. In the
absence of an external field, we can write the dis-
placement u (x, t),

u (x, t) = u„(x) + su (x, t) (3.15)

where we assume that at time t =0 the wall is local-
ized at x =0.

For small deviations the linearized equation of mo-
tion is

9 Su 85u 2 9 5u

+2[A )(1 —
1 sech nx)8u =0, (3.16)

where we have used Eqs. (3.3) and (3.14). This
equation can be solved by recognizing that the related
equation

0
OX

FIG. 2. Plot of the potential &(nx) f ] in the effective
Schrodinger equation (3.18). Also shown are the two

bound-state eigenfunctions y] (ex) (- - -) and y2(0;x) [- - j
drawn over their corresponding energies. The drawings are
made for )A (

=1, a =2 '1, and m = l.

m +2(A ~[l ——sech'(nx)j —mca y =08 3 2 2 8
2 2 gx

l

(3.17)

yt(x, t) = e "'ft(x), «It' ——4«lg + «I,'l',
f,(x) =N, e" "[3tanh'( ) —(1+i')

+3il tanh(nx)], —~ ~ i ~ ~

(3.21)

is exactly soluble. "
Letting y(x, t) = e'"'f(x), gives

1

82—m r«+ 2 ~A ~
[1 ——sechl (nx)) —mcj f =0

Qx

(3.18)

and cu,'= ~A ~/2m. N, is a normalization factor. The
continuum functions, ft(x), correspond to plane
waves distorted in the region of the potential. Both
bound states correspond to disturbances localized on
the domain wall.

The normalization factors N; are defined by, for
the bound states,

ff dx= 1 (3.22a)

y, (x, t) = e'""f,(x),
«Il =0, fl =Nl sech'(nx)

yl(x, t) =e 'fl(x),

(3.19)

Equation (3.18) has the form of a Schrodinger equa-
tion with a potential of the form —sech'(nx). Figure
2 depicts this potential and the eigenfunctions of the
associated Schrodinger equation. There are two
bound states and an infinite set of continuum solu-
tions given by

for the continuum states,
rL

lim J ff;"dx=1 (3.22b)

+ di st(t)yt(x, t) (3.23)

Since the normalized functions f;(x) are the eigen-
vectors of an Hermitian operator, they form a com-
plete, orthonormal set for bounded functions g (x).
We use this fact to set

Su(x, t) = sl(t)yl(x, t) + s ( 1) t(yl, x)t

slnh(nx)
cosh' (nx)

(3.20) Substituting this expansion in Eq. (3.16) and using
Eq. (3.17) gives

I I

d $] ds] ds] leal] t d s2 ds2, ds2 i~2tm, +2i«ll +i«Ilhsl+k e ' fl+m 2
+2i«I1 +ir«lils2+&

d
e 'ft

,
dt' Ch dt dk'

I I

d2$(, ds] ds] los]t+ dl m 1 +2ia&t +i«It)I.st+)I. e t ft(x) 0. (3.24)
dt' dt dt
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This has the general solutions

—.y) t -y2f
st(t) =C, e ' +C,e

yt 2
= i t»t + -, [x + (z' —4 t»') ' ']1

(3.26)

= I (dg + |M, ~ 2

From Eq. (3.19) to Eq. (3.26) we see that Su(x, t) is

a linear combination of terms e "fi(x), tc =1,2.
The real parts of p, ~ and p2 are strictly positive unless
GJJ 0 and then p, 2 is zero. The first bound state has
cot =0. Therefore, the perturbation Su (x, t) —0 as
t ~ except for the component of Su(x, t) associat-
ed with the lowest bound state yt(x). So,

u (x, t) —u~(x) +C2yg(x)

Then by the orthonormality of the' {f;(x)},we have

d s) de
dt

+(X+2i t»t)
' . +i cujhst =0, j =1,2, l . (3.25)
dt

IV. DIFFUSION OF A DOMAIN %ALL

In Sec. III we have shown how the inclusion of en-
ergy dissipation from the degree of freedom u(x, t)
led to a domain wall whose average velocity vanished
in the absence of any driving field. Ho~ever, this
average velocity takes no account of the random fluc-
tuating force R (x, t), since (R (x, t)) =0. Here, we
demonstrate that the effect of this force is to move
the domain wall in random fashion, so that while

(v) =0, the velocity autocorrelation function
(v(t) v(0)) does not vanish,

Consider now Eq. (2.3) for the displacement
u (x, t). We recall that in the absence of an externai
field (u) = u, (x), Eq. (3.14) so that we set

u(x, t) =u (x) +Su(x, t) (4.1)

For small fluctuations, Eq. (2.3) can be linearized to
obtain, in similar fashion to Eq. (3.16),

m +mX —mc02 +2~3 i[1 ——sech (ux)]9 5u 65u 29 Su 3

Bt 9x 2

[see Eq. (3.26) for ~t =0]„where yt is given by

y, (x)=0, 0=(—, u02u) 'i'Qw 4

x Su =R(x, t) . (4.2)

We can again expand 5u(x, t) in terms of the set of
functions {yj(x,t) } and find an equation correspond-
ing to Eq. (3.25),

Therefore, we have

u(x t) u (x+ C3), C3 ——C2Q
t ~oo

(3.27)

d $g de—+(X+2i cut) +i'm@ A.s
dt

p +oo —R (x, t)y, '(x, t) dx —= Ot(t), (4.3)

since only small perturbations are considered. We
see that the ground-state perturbation yt(x) involves

translating the domain wall uniformly. Clearly, in

our infinite one-dimensional model the position of
the waH [that value of x where u„(x) =0] is arbitrary

and u„(x) is indistinguishable from u„(x + C3).
There is no restoring force which will return the
domain wall to its original position. The translational
invariance of Eq. (3.12) leaves the position of the
domain wall indeterminate. In all other respects the
wall is stable due to the inclusion of damping.

The stability of traveling waves in the presence of a

field follows in a similar manner. Setting
u (x, t) = u„($) + Su(g, t) we arrive at an equation for
Su((, t) analogous to Eq. (3.16). This can be solved
in similar fashion to give solutions for Su(f, t) which

in moderate fields vanish as t
The macroscopic dynamics and structure of moving

domain walls described by this model can be tested
by measurement of wall mobility. The linear
response in wall velocity with applied field, Eq. (3.9),
can be used to estimate the damping coefficient A.. In
Sec. IV we investigate further dynamical properties of
the domain walls and relate these to the damping
coefficient.

d s~ ds~

dt2 dt
+) =gt(t) .

Then, as in Eq. (3.27)

dew
u(x, t) =u (x)+s, (t) f1

dx

(4.4)

=u (x+ fist(t)), 0=(-,'u u)o'i' (4.5)

since st(t) is assumed small compared to u '.
Now, we define this position of the domian wall as

that value of the coordinate x„(t) for which

u(x (t)) =0 (4.6)

This corresponds to the center of the wall. Then,
from Eq. (4.5)

where j=1,2, 1. The first member of this basis set y~

is associated with translation of the wall. Since all
other yj's are orthogonal to y~, they do not contribute
to the displacement of the wall as a whole. Concen-
trating on the yt term alone, Eq. (4.3) becomes
(cut ——0),
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dx, (t) ds, (t)vt = ' = —fl
dt dt

and, with Eq. (4.4),

dv (t) +tv(t) = —AQ)(t)
dt

From Eqs. (2.9), (2.10), and (4.3) we obtain,

(Q){t))=0,
f oo t+ oo

(Qt(t) Qt(t')) = Xi(x)yt(x')

(4.g)

(4.9)

(4.10)

x (R (x, t)R (x', t')) dx dx'

(4.11)

so that, using Eqs. (2.7), (2.11), and (3.17),

(4.12)

where we defined

(4.7)

since we chose [see Eq. (3.14)] u (0) =0. The in-
stantaneous wall velocity is v(t) such that

&[x.(~) —x.(0)l') = 2[(x.(O)x.(O) ) —(x.(.)x.(0) ) ]

fT T
f=2 Jl dr~ J dr2(v(r2) v(0))

t

=2D 7+ (4.18)

The diffusive and forced motions of the wall are
both determined by the damping of the individual os-
cillators. Unlike the usual retardation of a particle
moving in a fluid, the force is not acting directly on
the coordinate of motion x but rather on u(x, t)
through the damping proportional to the velocity of
the ion displacement. The ion displacement need not
be aligned with the coordinate axis x; still the
cooperative motion experiences the same damping
and is characterized by the effective mass m'.

While the wall motion is clearly a consequence of
the cooperative ion displacements, we consider the is-
sue in reverse. What effect does this diffusing wall
have on the fluctuating ion positions? The natural
quantity to evaluate is the fluctuation or power spec-
trum for the system since this is measured in a light
or neutron-scattering experiment. In Sec. V we con-
sider this fluctuation spectrum in a crystal at low
temperature, and low density of domain walls ran-
domly distributed throughout the system.

1

4Qp com'=—m
3cpl

(4.13) V. DYNAMIC STRUCTURE FACTOR

p oo ATD =,J (v(t) v(0))dt = (4.14)

since, from Eq. (4.9),"
ter

v(t) = —Qe "'J e"'Qt(r) dr

and thus, with Eqs. (4.10) and (4.11),

(4.15)

Equations (4.9), (4.10), and (4.12) are the
Langevin equations ' describing the Brownian motion
of the domain wall through the lattice. The diffusion
coefficient associated with this motion is given by the
Einstein relation"

This section gives the results for the dynamic
structure factor for a crystal composed of many
domains, randomly distributed. We require that each
domain be sufficiently large so that the domain walls
do not interact, corresponding to an ideal gas. This
limitation is necessary in order to employ the results
of Sec. III where it was assumed that each wall resid-
ed in an effectively infinitely long system. Since the
walls are localized to within several unit cells, the
noninteracting planar wall limit obtains when each
domain is on average some few thousands of lattice
constants across. The fact that the domain walls are
randomly distributed ensures that. all average proper-
ties are translationally invariant.

We start by considering the displacement correla-
tion function

(v(t) v(0)) = e "'AT
m' (4.16) S(x,x', t, t') =—(u(x, t)u(x', t')) (5.1)

D i I—= —kgT—
P, Qp

2 (4.17)

The wall-position autocorrelation function follows
directly from Eq. (4.16):

The diffusion coefficient D and the mobility of the
waH in a field, Eq. (3.11), are therefore related by

This quantity is related to the density correlation
function which is measured in neutron-scattering ex-
periments. The displacement correlation function can
also be observed in light scattering experiments
which probe the time- and space-dependent polariza-
tion correlation function, provided that u is a devia-
tion from a nonsymmetrical state or that the refrac-
tive index is not an even function of u.

Since Eq. (5.1) is time and translationally invariant
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S = S(x x',—r —r') (5.2)
kg Tl

li(k) =
J S(k, «i) d«) =

2m — '
m «i«2(k)

(5.9)

To evaluate th'e contribution of u(x;t) to the scatter-
ing intensity, we calculate S(k, «i),

I

oo

S(k, «i) =lim2 Re e" ' ' S(k, t —t') d(t —t')
t' 0 0

and

kg Tf
Ji(k) = ' o)'S(k, «i) di0=

2~ "-- '
m

(5.10)

Z = CiO + I g (5.3a)
where only the first term in Eq. (5.7) was considered.
The phonon dispersion relation is given by

where
«i«2(k) = J)(k)/1)(k) (5.11)

S(k r r~) I e ik(x —x')—

u (x, t) = +u«+ Su (x,r),

we have

(u(x, t) u(x', t')) = u«2 + (5u(x, r) gu(x', t'))

(5.4)

(5.5)

The fluctuation Su(x, t) obeys the linearized equation
of motion

m- +mh. —mc«~ +2~3 ~gu =R(x, t)9 5u 85u 28 8&

Bt 0t 8x

&& (u(x, t) u(x', t')) d(x —x'), (5.3b)

and k and co are the changes in the wave number and
frequency of the scattered particles, respectively; k is
related to the scattering angle. The total observed
scattering intensity contains contributions proportion-
al to S(k, «i). For comparison, we first consider the
case ~here there are no domain walls. Such a situa-
tion would be realized if the crystal were first subject-
ed to a high static field. Setting

Now we return to the problem posed by the pres-
ence of domain walls. In the limit of low-wall density
we can assume that their form is that derived in Sec.
III, where each wall resided in a system of infinite

extent. Around a wall centered at x =xo we set

u(x, r) =u (x —x«) +su(x, r) (5.12)

To find Su(x, t) we expand it in terms of the set

[y&(x —x«)} [see Eq. (3.19) to Eq. (3.23)], and solve
the Eq. (4.3) for the time-dependent coefficients
sj(t)

As shown in Sec. III the set [yj) contains two

bound states and an infinite number of continuum
states. In Appendix B we calculate S(k, «i). The
continuum states obey the same dispersion relation as

Eq. (5.8) and, in the limit of low-wall density, reduce
to the usual phonon modes [see Eq. (5.7)]. The con-

tribution from the second bound state y2 and for the

part of S(k, r«) due to the first bound state are

presented. The dynamic structure factor is

S(k, i«) = S((k, «i) + St(k, «i) + Ss(k, «i), (5.13)

(5.6)

where u«2 = JA J/8 was used. Equation (5.6) leads to
the dynamic structure factor for phonons

S(k )
C/m'

[i«' —«i(~) (k)]'+ Z'r«'
(5.7)

tll

C

D

+ (2~)'u«2 8(k) 8(~},
I

where we have C =2ka Tmll, Eq. (2.11), and.(k)='i'i+c k
m

(5.8)

In Eq. (5.7) the second term simply represents the
single Bragg scattering peak in the forward direction
associated with the homogeneous crystal. The first
term represents the scattering from the phonon
modes with frequencies «i«(k) of the one-
dimensional chain of oscillators. The phonon contri-
bution S~(k, i«) is sketched in Fig. 3. Depending on
h. the phonon spectrum is overdamped (maximum at
cu =0 for large X) or underdamped (with two distinct
maxima). Eq, (5.7) fulfills the two sum rules

O

2

O

/
I
I

/
/

[ I
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rz

l
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(cm ')

FIG. 3. Sketches of the two contributions S&(k, ~) [- - - -j

Eq. (5.14) and S3(k, cv) [ ] Eq. (5.16) for a fixed. k

value chosen so that the Rayleigh peak has a width 2Dk2 = 2

cm . The phonon frequency and damping have been set to

~0(k) =30 cm ' and A, =10 cm ', respectively. The relative
intensities of S~ and S3 are arbitrary in this plot.
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where

(k ) C/m
[~z —~pz(k)]z+ Zz~z

(5.14)
Q p7T

13(k' =
I Sz(k ) d =n- csch

22s' A 2 Ot'

Sz(k, co) = n sech3 mk mk
Qp

2

=4m 2, for small k
k2

(5.18a)

C/mz

(Cd 3tp ) +X CU

(5.15)

(t)p(k) cp

XDk
(5.18b)

t'2
~0~ ~k

Sz(k, cu) = n„ csch
G 2A

2ak2
cpz + (Dk')'

(5.16)

Q oo

1z(k) = Sz(k, o)) do)

''2
1 mk mk kg Tl= n — — sech

2A cx 2cl', ~g m

and n is the number density of domain walls (the
inverse of the average domain length).

We discuss now the contributions to the scattering
intensity due to the bound states. Sz(k, co) arises
from the mode of frequency (3)'t'&u, [Eq. (3;20)],
which is an asymmetric modulation of the domain
wall (see Fig. 2). Since this is a local mode, its fre-

quency is independent of k. The line shape of this
mode is determined by the same damping as the pho-
non modes [see Eq. (5.14)]. The integrated intensity
of this peak is low in comparison with that of the soft
mode. We have

pppz(T)/tupz(0) = (T, —T)/T, (5.19)

Also, in first-order phase transformations below T„
the frequency of a particular phonon mode obeys

~o(T)/~o(0) =(~~ —T)/&~ =—t~ (5.20)

with Tq ) T, . At T, the quantity tpo{T) drops
discontinuously. Equation (5.20) includes Eq. (5.19)
for TA=T, .

The static lattice displacement pattern is also tem-
perature dependent,

upz (T) /up' (0) = t„ (5.21)

Thus, when Dk is very small and the wall density n

is not too low, the central peak may be intense in
comparison with the phonon mode. Contributions to
the dynamic structure factor are illustrated in Fig. 3
for particular values of the model parameters that
yield a clearly distinguishable central peak and an un-
derdamped phonon mode.

The second-order phase transformation for ferro-
distortive materials occurs in association with a soft-
phonon mode whose frequency for k =0 vanishes at
T, as'

n„ ~2k2 kgTl kfor small-
n co, Nl CX

jg

, r, (o) .
A

(5.17)

Here a is the reciprocal-wall length, so that k is at
most of the order of u(k —10 ' A ' for light and
k & 0.1 A ' for neutron scattering). However we
have n, « n, so that Iz « It(0).

The term Sz(k, co), arising from the Brownian mo-
tion of the wall, is a quasielastic Lorentzian peak
(with a maximum at cp =0) similar to the usual Ray-
leigh peak encountered in scattering from fluids.
This feature has a line shape of width 2Dk'. For
light scattering, where k is very small, this central
peak is extremely narrow in comparison with the
phonon peak. In neutron scattering, k ii of the order
of u', still if D is sufficiently small the linewidth 2Dk'
remains below experimental resolution. When the
linewidth is very narro~ the peak height is large,
since ihe inteiraied intensity is

The empirical behavior [Eqs. (5.20) and (5.21)] is
incorporated in our phenomenological model by set-
ting

W(T)/W(0) =t„. (5.22)

This yields a temperature-dependent barrier in the
double minimum crystalline potential V(u) [see Eq.
(2.2)]. The barrier shrinks as T T„ from below
and vanishes at T&.

It is easily seen from Eq. (4.13) that the effective
mass of the domain wall is

m'(T)/m" (0) = t„"' (5.23)

and the domain-wall width d (=n ) is given by

d(T) ttz

d (0)
(5.24)

as T Tz from below.
Using Eqs. (5.22) and (5.23) we can determine the

temperature dependence of the transport coefficients
D and p, , and Nonce of the total dynamic structure
factor, assuming h. (T) to be known. e obtain



3640 M. A, COLLINS, A. BLUMEN, J. F. CURRIE, AND JOHN ROSS 19

D(T) = Tt„" (5.25)

and

2 up(0)
"

im (0)) ( T)
(5.26)

The temperature dependence of the important
features of S(k, p&) can now be deduced. The in-

tegrated intensity of the phonon peaks I~ increases as
Tt& while the integrated intensity of the central peak
13 decreases as t„[see Eq. (5.18a) j; here, we assume
that the wall density does not change. The central
Rayleigh peak derived here will be the dominant
feature in the scattering spectrum at low tempera-
tures, where it appears as a very narrow, very intense
mode. In the framework of the linear analysis this
Brownian wall motion does not contribute to the criti-
cal scattering (T = T,). The central peak obtained
herein appears to correlate very well with the low-

temperature spectrum of ferrodisplacive crystals. "

V. CONCLUSION

We have studied the dynamics of domain walls in
uniaxiai displacive ferrodistortive materials. We in-
troduced a phenomenological Langevin equation of
motion for the displacernent field. This equation has
terms-deriving from an anharmonic double well po-
tential, a damping and random fluctuating force
through which energy is dissipated, a spatial coupling
arising from elastic strain or electromagnetic interac-
tions, and an external field. The coefficient of the
harmonic part of the potential term and the damping
coefficient depend parametricaiiy on temperature and
pressure. The low-amplitude solutions to the equa-
tion of motion reproduce all of the characteristics of
the soft-mode optical phonons. The large amplitude
solutions correspond to walls between differently or-
dered domains. The domain boundaries are coherent
features which are absolutely stable with respect to
small fluctuations and whose average shape depends
on the mean velocity at which they propagate through
the crystal. The wali solutions are obtained by treat-
ing the nonlinearity exactly and not as a perturbation
of a harmonic crystal. The nonlinearity also gives
rise to an interaction between the soft-mode phonons
and the walls resulting in two-phonon states becom-
ing bound to each wall. One bound state gives rise to
an oscillation of the wall profile while the second one
is associated with wall translation. We show that the
domain-wall dynamics are those of a Brownian parti-
cle in a bath. In the absence of a field the wali un-
dergoes a diffusive motion for which we calculate the
corresponding diffusion coefficient D. In an external
field the wall reaches a terminal velocity proportional
to the applied field from which we determine the mo-
bility. p.. The constants p, and D are linearly related;

this follows from the fluctuation dissipation law. Our
theory shows how these transport coefficients for the
macroscopic domain walls are derivable from the
parameters o'f the microscopic phenomenological
equation of motion. Combining the exact results for
the classes of large and small amplitude excitations
we calculate analytically the dynamic structure factor
corresponding to these solutions. We find that the
diffusive Brownian motion of the domain walls leads
to a Rayleigh quasielastic peak whose width at wave
vector k is 2Dk', The next paper shows how all

these theoretical results compare with the observed
properties of two classes of ferroelectric substances.
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Our equation of motion (3.3) may be readily
viewed as arising from the strain forces in the crystal.
In this Appendix we show that the inclusion of elec-
trostatic interactions leads to precisely the same form
for Eq. (3.3), but with renormalized coefficients.
Hence, our solution is more general than the struc-
ture of Eq. (3.3) may suggest.

Consider eW(ut, . .., u;, .. . ) to be the electrostatic
potential energy due to the ions at positions
u~, ...u;, . . . . The total electrostatic field at u; is

~ext + ~nn (A1)

with E,„t the external field and F.„„the field due to
the neighboring atoms. In the following we assume
that the potential W decays very rapidly with dis-

tance, so that only the next neighbors contribute.
If the displacements from equilibrium are small,

the total energy associated with u; is

i

, 1 O'W
e~extui e

l equi —t2 Jul & Jul

+ ~ ~ I equi+i ui
0ul'. 0uj+]

i

(A2)
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Because of the translational symmetry of the crystal

Q2 8' Q2 8'
Bu Bu; Bu;Bu;

eq eq

and we set

st(t) = —
(y&

—y2)
'

x e" e" Q(r)dr

—e e Qi(r) dr
aJ tp

where

(82)

Moreover,

ui t + ujyt = (ut i
—u;) —(tt; —ui+t) +2u;

yi g=ia)t+
2

[X+(A. —4tpj)it~]

=lOJJ +Pi 2 (83)

which in the continuum limit corresponds to
I282u/Bx2+2u (x). Equation (A2) thus has the form

Now, to calculate the correlation (Su (x, t) Su (x', t')
we expand Su (x', t') in the basis set [yi '(x' —xp) }.

Denoting the expansion (3.23) in abbreviated form
1

9 u—eE u —eK l'u +2u'ext
Qx!

(A3) Su(x', t') = ' si'(t')yi'(x', xp, t') dj

we have

(84)

Since the Euler-Lagrange equations of motion are

d 9 9z
dt gu 9

8 8L
Sx 8(Su/Bx)

(Su(x, t)Su(x', t')), = ( ' st(t)y, (x,xp, t) di

X J si (t')yi'(x', xp, t') dj)

gZ
Sx' S(S',u/Bx')

(A4)

mcus mc + 2el'K

A A —4e12K

E E,„,

One should remark that Eq. (A6) also leads to a
change in T~ [see Eq. (5.22)].

(As)

(A6)

(A7)

Eq. (A3) leads to additional terms in Eq. (3.3). A
simple way to account for them is to change

(Bs)
where ( )„represents an equilibrium average over

all degrees of freedom except the position xp of the
domain wall. Clearly, we have

(Su(x, t)Su(x', t'))„= '~ J yy&" (s, (t) si'(t')) di dj

(86)

Using Eq. (82) the properties of the random fluctuat-
ing force and the orthonormality of the set [yi}, we
find

( ')
(s, (t) sj "(t')) = Siie ' T(t t ) (87)

APPENDIX 8

To calculate the dynamic structure factor we set

u(x, t) = u„(x —xp)+ Su (x, t) (81)

We expand Su(x, t) in terms of the set [yt(x —xp)}
appropriate to a wall centered at x = xp [see Eq.
(3.19) to Eq. (3.23)] and solve the Eq. (4.3) for the
time-dependent coefficients s&(t). The solution is

where

T (t —t ) = (tt 1' —P2) '

—p, (l —t')
2

H2

—lI, ](f—t') '

e

p~, 2m

and 5& is the Kronecker delta function. Thus we
have

(88)

(Su(x, t) Su(x', t'))„=[f&(x —xp) ft(x' —xp)] Tt(t —t') + [f2(x —xp) f2(x' —xp)]Tp(t —t')

+ „ if, (x xp) f, (x' —xp) i T, (t —t'—) di (89)

Finally, we regain the translational invariance of the sytem by averaging over the domain-wall position xp. %e
have

teL

(Su(x, t)Su(x', t')) = lim J (Su(x, t)Su(x', t'))„,dxp, (810)
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where L is the length of the lattice. Then for small but nonvanishing domain-wall density n we write

(Su (x t) Su (x', t') ) = n JI [f}(x —xp)f &(x' —xp) Tt +f2(x xp—)fq(x' —xp) Tz] dxp

t

p oo

+ T; lim -- f;(x xp) f;—(x' xp) dxp di
', L-- 2L ~-L '

t t

(812)

Then, the contribution to S(k, tp) from the second term is

2Re Jj e" ' ' d(t —t') Jt dj Jl e '"" "ett~" 'd(x —x') Tj(t —t')

=2Re„( e'*' 'd(t —r )J diT'(i —t )R(& —g'/ 1

=2Re„e"" 'T t (t —t') d(t t')—
Jp k/e

We can now readily evaluate the power spectrum S(k, t0). Let us consider first the second term in Eq. (811) as-
sociated with the continuum basis functions. From Eq. (3.21) we see that the continuum functions fj are com-

iJe(x—xo)
posed of a plane wave term e and a part localized to the domain wall. In the limit as L

pL L

2L -L 2LJ ft(x xp&ft'(x—' —xp)dxp J eO t' "l dxp=e" t" "l

Integrating we obtain

S (k )
C/m'

[tp' —t«'(k)]'+ )2tp'
(813)

(als)

as t«j/ =~ (4+k /tz ) =tpp(k). Here we have used the definitions (2.7) and (5.8).
We have simply regained the same phonon spectrum that appears when domain walls are absent. The neglect

of the localized part of the modes ft(x —xp) was equivalent to ignoring the smail perturbation of the usual pho-
non modes caused by a low density of domain stalls.

Now, the first term in Eq. (811) is associated with osciliations of u (x, t) which are localized to the wall, as can
readily be seen from Eqs. (3.19) and (3.20) for ft and f2 These two contr.ibutions are phonon modes arising
from the presence of domain walls. Their contributions toS(k, «p) are given by S2(k, tp) and S3(k, «&), correspond-
ing to the modes f2 and ft, respectively,

S3 2(k, tp) =2Re Jt e"t' 'l Tt 2(t —t')n„Jt Jt f& 2(x —xp) ft 2(x' —xp)e '"" "'
dxpd(x —x') (814)

=2Re Jt e"t' 'lTt 2(t —t')n ~Ft 2(k)[z

where Ft 2(k) is the Fourier transform of ft 2(x),

F, 2(k) =Jt e '~ft 2(x) dx . (816)

The second mode, associated with f2, is an asym-
rnetric fluctuation of the wall with frequency co2,

t«2 = (3)' 'tp, (see Fig. 2). Its contribution to S(k, tp)
is S,(k, t«),

Let us now consider the first discrete term
S3(k, tp). From Eq. (87) Tt(t —t') is given by
(st(t)st(t')), which, according to Eq. (4.7) is related
to (x (t)x (t')); thus Tt(t —t') grows linearly with
(t —t') at long times [see Eq. (4.18)]. However,
since

Su & up, (Su (x, t) Su (x', t) ) & up

(tp' —30&'/4)'+ (ll )'
t

C 3mk h2= fltst sech
m 2o. 20.'

2'2
cp — + (Ztp)'

3~,
(817)

the correlation function cannot grow indefinitely. We
have already encountered this problem in Sec. III;
there our equation for Su(x, t), Eq. (4.2), was valid
only for small 5u. At large times t —t' the wall moves
considerably and Su(x, t) must be large near the wall.
While this does not affect our evaluation of the velo-
city autocorrelation in Sec. IV, here we must find
some other means of evaluating the displacement au-
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tocorrelation. In Eq. (4.5), the wall motion is
described by

= u„(x+ Qst(r))

=u (x —x (t)) (819)

dQ~
u(x, r) = u„(x) + Qst(r), for small s)(t) (818)

dx

The breakdown of Eq. (818) for large s~(t) causes
the divergence of T, (t —t'). We assume that Eq.
(819) applies regardless of whether st(t) is large or
small. Equation (819) is an appropriate description
of the domain wall when all fluctuations of the
domain wall are ignored except its diffusing position.
Such fluctuations are accounted for by the usual pho-
non modes in the limit as n„0, and by the second
discrete term. Therefore, we now consider the con-
tribution to S(k. ~) stemming from the term
S3(k, ro). Using Eqs. (819) and (5.3b) we have

S3(k, t —t') =—n J e Ikt" "'~
J (u (x —[x,(t) +xp]) u„(x' —[x (t') +xp]) ) dxp d (x —x') (820)

A simple change of variables, y =x' —[x„(r') +xp]
and z = (x —x') +y —[x,(t) —x, (t')], gives

S3(k, r —r') = n„iu„(k) i'(e ) . (821)

where

u (k) = Jf u„(x)e '~dx

where

K2(r —r') = —k'„
aJ p

fe Ti

dT) d T2 (v (T~) V (T2) )
—)t, (r )-r~}= —k2D) I d~) ~ d72 e

dp op

e -)t(t -t')
= —k2D (r —i')+ (825)

m m'k= -/Qp —csch
A 2A

(822) = —k'D(r —r') for r —r') i ' (826)

-u tx (r)-x„(t'))
To calculate (e "

) we observe that from

Eq. (4.8) follows: Thus, for time differences larger than X ' we have

-1k[x„(t)-x (t')1
(e " " )=(exp ik i

v—(T)dT )

-/kyar„(&)

x(t')1, pk2(( (-) (827)

V('T) dT ).
(823)

= (exp ik-
sp

S3(k, t —r') is then given by

S3(k, r —r') = n ) u (k) ('e

c

fog

t —t K2(t-t')
exp ik v—(T) dT =e

Jp (824)

The last expression can be evaluated readily if we as-
sume R (x, t), Eqs. (2.9) to (2.11), to be a Gaussian
process. Then only the second cumulant, K2(t —t')
is nonvanishing, and P

Finally, the frequency transform S3(k, ru) 'is, using

Eq. (822)

2' mk 2Dk'
S3(k, co) = n csch

2o, co2+ (Dk )
(829)

'Present address: Research School of Chemistry, Australian
National Univ. , Canberra 2600 Australia.

tPresent address: Lehrstuhl fiir theoretische Chemic, Tech-
nische Universitat Munich, D-8046 Garching, West Ger-
many.

'Present address: Dept. de Genie Physique, Ecole Polytech-
nique, Universite de Montreal, Montreal, Quebec H3C
3A7 Canada.

'R. Blinc and B. Zeks, Soft Modes in Ferroelectrics and Antifer-

roelectrics (North-Holland, Amsterdam, 1974),
2E. Fatuzzo and W. J. Merz, Ferroelectricity (North-Holland,

Amsterdam, 1967). .

S. M, Shapiro, J. D. Axe, G. Shirane, and T. Riste, Phys.

Rev. B 6, 4332 (1972).
4C. Domb and M. S. Green, eds. , Phase Transitions and Criti- .

cal Phenomena (Academic, London, 1972).
5B. I. Halperin and C. M. Varma, Phys. Rev. B 14, 4030

(1976).
6H. Schmidt and F. Schwabl, Phys. Lett. A 61, 476 (1977);

F. Schwabl, Z. Phys. 254, 57 (1972); Phys. Rev. Lett. 28,
500 (1972).

T. Schneider and E. Stoll, Phys. Rev. B 13, 1216 (1976); J,
Phys. C 8, 283 (1975),

P. A. Fleury and K, B. Lyons, Phys. Rev. Lett. 37, 1088
(1976),

9L, D. Landau and E. M. Lifshitz, Electrodynamics of Con-



3644 M. A. COLLINS, A. BLUMEN, J. F. CURRIE, AND JOHN ROSS

tinuous Media (Pergamon, Oxford, 1960).
S. E. Cummins and T. E. Luke, Proc. IEEE 61, 1039
(1973).

' V. P, Bender and V. M. Fridkin, Sov. Phys. Solid State 13,
501 (1971).
R. A. Cowley, J. D. Axe, and M. Iizumi, Phys. Rev. Lett.
36, 806 (1976).

' K. H. Germann, Phys. Status Solidi A 38, K81 (1976).
E. Fatuzzo, Phys. Rev. 127, 1999 (1962).

' T. V. Panchenko, M. D, Volynanskii, V. G. Monya, and
V. M. Duda, Sov. Phys. Solid State 19, 1311 (1977).
L. E. Cross, Phase Transitions 1973 (Pergamon, New York,
1973).

' L. L, Hench and D. B. Dove, eds, , Physics of Electronic
Ceramics (Dekker, New York, 1972), Secs. A and B.

8T. Riste, ed. , Anharmonic Lattices, Structural Transitions and-
MeltI'ng (Noordhoff, Leiden, .1974).
J. A. Krumhansl and J, R. Schrieffer, Phys. Rev. B 11,
3535 (1975).
S. Aubry, J. Chem. Phys. 62, 3217 (1975); 64, 3392
(1976); Ph. D. Thesis (University of Paris VI, 1975) (un-
published); La Recherche 79, 574 (1977).
W. Cochran, Adv. Phys. 9, 387 (1960); 10, 401 (1961);
18, 157 (1969).

G. J. Coombs and R. A. Cowley, J. Phys. C 6, 121 (1973);
R. A. Cowley and G. J. Coombs, J. Phys. C 6, 143 (1973);
R. A, Cowley and A. D. Bruce, J. Phys, C 6, 2422 (1973);
R. A. Cowley, J. Phys. Soc. Jpn. Suppl. 28, S239 (1970).
J. F. Scott, Rev. Mod. Phys. 46, 83 (1974).
G. L. Paul, W. Cochran, W. J. L. Buyers, and R. A. Cow-

ley, Phys. Rev. B 2, 4603 (1970).
D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and
Correlation Functions (Benjamin, Reading, 1975).
M. B. Fogel, $. E. Trullinger, A. R. Bishop, and J. A.
Krumhansl, Phys. Rev. Lett. 36, 1411 (1976); 37, 314
(1976); Phys. Rev. B 15, 1578 (1977); J. F.Currie, S. E.
Trullinger, A. R. Bishop, and J. A. Krumhansl, Phys.
Rev. B 15, 5567 (1977).

27R. S. Tebble, Magnetic Domains (Methuen, London,
1969); J. F. Dillon, Domains and Domain Walls, in Magne-

tism, edited by G. T. Rado and H. Suhl (Academic, New

York, 1963), Vol. III, p. 415; D. J ~ Craik and R. S. Teb-
ble, Ferromagnetism and Ferromagnetic Domains (North-
Holland, Amsterdam, 1965); J. F. Janak, Phys. Rev. 134,
A411 (1964); U. Enz, Helv. Phys. Acta 37, 245 (1964).

28N. Flytzanis, S. Crowley, and V. Celli, Phys. Rev. Lett.
39, 891 (1977); Y. Y. Earmme and J. H. Weiner, Phys.
Rev. Lett. 33, 1550 (1974); J, Frenkel and T. Kontorova,
Phys. Z. Sowjetunion 13, 1 (1938); J. Phys. (Moscow) 1,
137 (1939); A. Seeger, H. Donth, and A. Kochendorfer,

Z. Phys. 134, 173 (1953).
A. Hubert, Theoric der Domanenwande in geordneten Medien
(Springer, Berlin, 1974), p. 342; J. C. Burfoot, Ferroelec-
trics, An Introduction to the Physical Principles {Van Nos-
trand, London, 1967), p. 195.
W. Hasenfratz and R. Klein, Physica A 89, 191 (1977);
study perturbationally and numerically the interaction of a
kink (domain wall) with the phonons; T. Schneider, E. P.
Stoll and R. Morf, Phys. Rev. B 18, 1417 (1978), calculate
the mean velocity field associated with the Brownian rno-
tion of particles in a periodic potential by means of the
Smoluchowski equation and through a molecular-
dynarnics study; Y. Wada and J. R. Schrieffer, Brownian
Motion of a Domain Wall and Diffusion Constant, preprint,
presented at the APS Spring Meeting, Washington, 1978,
consider the domain-wall phonon interaction by means of
second order perturbation theory.

'This approach neglects any effects due to the periodicity of
the lattice; such effects are important in the study of dislo-
cations (Peierl's stress). Also Eq. (2.3) assumes that the
domain wall is not too narrow; as we show in our second
paper, in lead germanate the domain-wall width is of the
order of 10 A, and thus we are possibly at the limit of;ap-
plicability of Eq. (2.3). The influence of crystal defects,
i.e., impurities and dislocations, and of localized charges is
also ignored; these factors have however a large impact on
the experimentally determined wal&'mobilities in external
fields and may change the diffusion coefficient.
J. F. Currie, J. A. Krumhansl, S. E. Trullinger, and A. R.
Bishop, Bull. Amer. Phys. Soc. 23, 273 (1978) (unpub-
lished).
E. W. Montroll, in StatistIcal Mechanics, edited by S. A.
Rice, K. F. Freed, and J. C. Light (University of Chicago,
Chicago, 1972), p. 69.

34J. D, Murray, J. Theor. Biology 52, 459 (1975); 56, 329
(1976).

M. A. Collins and J. Ross, J. Chem. Phys. 68, 3774
(1978); A. Nitzan, P. Ortoleva, and J. Ross, Faraday
Symp. Chem. Soc. 9, 241 (1974); H. Metiu, K. Kitahara,
and J. Ross, J. Chem. Phys. 64, 292 {1976).
D. G, Aronson and H, F. Weinberger, Lecture Notes in
Mathematics, (Springer, New York, 1975), Vol. 446.

T. B. Benjamin, Proc. Roy. Soc. London Sec. A 328, 153
(1972).

3 P. Morse and H, Feshbach, Methods of Theoretical Physics,
(McGraw-Hill, New York, 1953), p. 1650.

H. Haken, Rev; Mod. Phys. 47, 67 (1975).
4 R, Kubo, J. Phys, Soc. Jpn. 17, 1100 (1962); J. Math.

Phys. 4, 174 (1963).


