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The free energy and equation of state for the Ising-type random-bond spin-glass are gene'rated

in 6-~ dimensions with the aid of renormalization-group recursion relations. Scaling predictions

based on previous renormalization-group work are borne out. The specific heat is found to be
smooth with a rounded peak above the transition temperature, and the order-parameter ex-
ponent P is greater than 1. We also find, however, that the spin-glass phase is unstable in that

certain fluctuations have a oegative gap. This instability leads immediately to the nonphysical

prediction that the bond average of the square of a spin correlation function is negative. We
conclude that there is a serious flaw in current approaches to the spin-glass phase based on the

Edwards-Anderson order parameter.

I. INTRODUCTION

The theory of spin-glasses has recently attracted a
great deal of atterition. The theory which is due to
Edwards and Anderson' uses as a model for the
spin-glass system a set of spin variables on a periodic
lattice interacting via exchange bonds that are ran-
domly ferromagnetic and antiferromagnetic. The
analysis by Edwards and Anderson of this model con-
tains three crucial elements. The first is the perfor-
mance of averages over configurations of random
bonds so that all spatial inhomogeneities are averaged
out. The second is the characterization of the spin-
glass phase by the order parameter Q, where we have

0=((s( )) (s

5 (x) is the spin variable at the lattice site x, and the
inner brackets correspond to a spin average for a
given configuration of bonds, while the outer brack-
ets ( )J correspond to an average over bonds.
The final element in their approach is the use of the
replication technique to allow the bond and spin aver-
ages to be performed interchangeably. . This over-
comes the problem posed by the "quenched-in" char-
acter of the random exchange which normally re-
quires that all spin averages be taken before the bond
averages are performed.

Edwards and Anderson treated this model in the
mean-field approximation. They derived the first
theoretical prediction of a frozen in magnetization
and gave a description of the spin-glass transition.

However, very soon the theory began to run into
difficulties. An infinite-range model for which the
mean-field approximation of Edwards and Anderson

should be exact was formulated by Sherrington and
Kirkpatrick. ' Their solution, obtained with the use
of the replica method and a saddle-point integration
matched Edwards and Anderson's results in all
respects. The solution, however, also contained h

pathology, The entropy in the Sherrington-Kirk-
patrick solution becomes negative at sufficiently low

temperatures, and such a result is not possible for the
discrete Ising-type model they started with. Further,
there is the puzzling prediction of complex thermal
exponents for the spin-glass —ferromagnetic —para-
magnetic multicritical point in 6-~ dimensions, ob-
tained by Chen and Lubensky with the use of the rep-
lication technique. Such a prediction is certainly
unusual, although it cannot be ruled out on physical
grounds, since a complex exponent does not neces-
sarily imply nonreal resu, its for thermodynamic quanitities.

It has been generally assumed that these difficulties
are due to the use of the replica method. The nega-
tive entropy prompted Thouless, Anderson and Pal-
mer' to reconsider the Sherrington-Kirkpatrick model
to attempt a solution that did not rely on the replica
technique. Using a mixture of analytic and numerical
methods they obtained results in two temperature re-
gimes, immediate vicinity of the spin-glass transition
and very low temperatures. Their results near the
transition agreed with those of Sherrington and Kirk-
patrick, ' while at low temperatures they generated a
non-negative entropy and results that differed quanti-
tatively and qualitatively from the replica-method
solution. On the basis of this Thouless, Anderson
and Palmer concluded that the replica technique
storks near the spin-glass transition but breaks down
somehow at low-enough temperatures. The numeri-
cal validity of their work on the low-temperature pro-
perties has been supported by recent Monte Carlo
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calculations by Kirkpatrick and Sherrington. 3

The possibility that the temperature at which the
replica method begins to fail is the spin-glass transi-
tion has recently been raised by Almeida and Thou-
less, who investigate the stability of the Sher-
rington-Kirkpatrick saddle-point solution for the
spin-glass order parameter. They find the solution to
be unstable in that the quadratic form for the effect
on the free energy of fluctuations about that solution
is neither positive-definite nor negative-definite to
lowest order. In order for the solution to be con-
sidered stable (in the light of the current picture of
the spin-glass phase) it should be negative definite.
That is, the free energy should be a maximum as a
function of Q. The fact that there is a possibility of
lowering the free energy by a suitable variation in the
system's. degrees of freedom may be considered evi-
dence that the Sherrington-Kirkpatrick solution is on
the wrong energy "sheet". Ho~ever it is hard to
make definite inferences from the results of Almeida
and Thouless, since they are for a model with
infinite-ranged interactions, and the effect of the ins-
tability is O(l/N) where Vis the number of spins in

the system.
We suggest that the problem with the existing

spin-glass theories is of a more fundamental nature
than the use of the replica method. We base this on
the fact that in all cases where alternate analytical cal-
culations have been performed, they give rise to ex-
actly the same predictions. The complex exponents
of Chen and Lubensky are obtained when an alterna-
tive formulation of the spin-glass system relying on
the first two elements of the Edwards-Anderson ap-
proach, but not the replication technique, is applied.
Furthermore, it is possible to duplicate exactly the
results of Sherrington and Kirkpatrick, including
their negative-entropy prediction, with the use of a
tree-diagram summation procedure based on the .
linked-cluster technique of Brout and with no resort
to replicas. ' This last calculation is to be contrasted
with that of Thouless, Anderson and Palmer, dis-
cussed above, who also perform the tree-diagram
sum without the use of replicas. Although their cal-
culation disagrees with the calculation of Sherrington
and Kirkpatrick at low temperature, in that region
they abandon an analytic approach in favor of numer-
ical techniques. A critical comparison between their
numerical solution and the nonreplica analytic solu-
tion has not yet been made. Their numerical calcula-
tions and those of Kirkpatrick and Sherrington
presumably give a correct description of the low-

temperature behavior of this model.
The critical point, we believe, of the analytical

results is that the predictions in question are not ar-
tifacts of the replication technique, but are rather to
be associated with the other two elements of the
Edwards-Anderson approach, namely, the averaging
out of all spatial inhomogeneities and the characteri-

zation of the spin-glass phase uniquely in terms of
the Edwards-Anderson order parameter, Q.

In this paper we present the results of a
renormalization-group calculation in 6 —e dimensions
for a model based on this order parameter and using
the replica technique. What we have done is to carry
the calculations of Harris, Chen, and Lubensky"
one step further and to construct explicitly the free
energy and equation of state of an Ising spin-glass in
6 —~ dimensions. In order to make definite predic-
tions about critical behavior, it is necessary to have at
hand not only the critical exponents but also the
thermodynamic functions. This is especially true
when the e expansion predicts power-law singularities
weaker than those in mean-field theory.

The thermodynamic functions yield behavior con-
sistent with the exponents predicted by Harris, Chen,
and Lubensky on the basis of recursion relations and
assumed scaling relations. We obtain a rounded
specific-heat peak with a maximum above the transi-
tion temperature, and an order parameter exponent P
greater than 1. The specific-heat peak is in qualita-
tive accord with experimental observations. Since we
are not interested in multicritical behavior of mul-
ticomponent spin-glasses we do not have complex ex-
ponents to contend with.

These results are overshadowed by the fact that we
find an instability of the spin-glass phase which is
manifested in the form of fluctuations with a nega-
tive gap. The instability, which appears immediately
below the spin-glass transition, is found to be directly
coupled to the completely unacceptable prediction
that the bond average of the square of a correlation
function is negative.

What this means about the spin-glass phase is not
yet clear. It could be that the spin-glass phase, if one
exists, is not characterized by a frozen-in random
magnetization. Bray, Moore, and Ree&, ' in particu-
lar have performed numerical simulations that they
interpret as indicating that the spin-glass phase has
no frozen-in order, but rather anomalously long re-
laxation times. They have argued that the froze@-in
magnetization predicted in other approaches is an ar-
tifact of the mean-field approximation used, and that
in any system with fewer than four spatial dimen-
sions this state will not persist indefinitely. They bol-
ster their arguments by looking at solvable models
and by considering analytically the properties of finite
random systems.

Alternatively there could be such a phase but with
a frozen-in magnetization that requires a mole com-
plete description than is provided by the Edwards-
Anderson order parameter.

We want to emphasize that our interpretation of
the results presented here is that what has broken
down is not the replica approach, but rather the
description of the bond-averaged spin-glass system in
terms of the Edwards-Anderson order parameter.
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This means that a reformulation of existing ap-
proaches is absolutely essential for further progress in
this field.

An outline of the paper is as follows: In Sec. II the
replica-based spin-glass Hamiltonian for a spin system
with short-range interactions is presented and
analyzed in the mean-field approximation. It is then
shown that when physically reasonable coefficients
are inserted into the Hamiltonian, the mean-field
solution in the ordered phase is unstable with respect
to fluctuations to lowest order in perturbation theory.
This instability has recently been obtained indepen-
dently by De Dominicis" by a diagrammatic expan-
sion, without the use of the replica technique. Furth-
er, this instability corresponds, in the finite-range
model we consider here, to the instability seen in the
infinite-range Sherrington-Kirkpatrick model by Al-
meida and Thouless.

The terms leading to the instability in this lowest-
order calculation are identified and found to be ir-

relevant in the renormalization-group sense in 6 —~

dimensions. This suggests the possibility that the
instability renormalizes away for d & 6. In fact, we
find that destabilizing terms are generated, in higher
order, by the renormalization-group calculations.

In addition to Bray et aI. , the suggestion that the
spin-glass phase may not exist below four dimensions
has also been made by Fisch and Harris'2 based on

high-temperature series expansions, However, it has

been generally accepted that in the neighborhood of
d & 6, the model considered in this paper gives
correct results. The fact that the model is unstable
with respect to fluctuations for d ( 6 represents a

serious problem for this model.
In a very recent paper Bray and Moore' have ob-

tained an instability in second-order perturbation
theoty but find that the instability can be removed
for d & 4 by breaking the symmetry between dif-

ferent replicas and restoring it at the end by a partic-
ular limiting procedure. The significance of this pro-
cedure is, however, not very clear.

The results of the renormalization-group calcula-
tions are presented in Sec. III for the disordered phase,

and in Sec. IV for the ordered phase.
So far we have discussed only the random-bond

model of spin-glasses. It has recently been suggested
that amorphous magnets with a random uniaxial an-

isotropy axis also exhibit a spin-glass phase. ' The
calculations presented below apply equally to both
models. 4 '4

II. INSTABILITY OF THE MEAN-FIELD SOLUTION

The Landau-Ginzburg-Wilson effective Hamiltoni-
an for an isotropic m-component spin-glass takes the
following form in the replica approach:

~ =
4 J (r + k') $Q„'"(k) Qi "(—k) —W Jl Q Qg"(k) Qg'(k') Qk'; ( —k k')—

+ U ~ $ QJ "(k) Qg (k') Q, '(k") Q„' ( —k k' k")——

+ X JI X Q(s(k) QIi (k') Q,"(k")Qg'( —k —k' —k")

+2X J $ Q(1 "(k) Q(pp(k ) Qik'(k") Qg'( —k —k' —k")

+ Y JI' $ Qk "(k) Qk "(k') QJI ~(k") QI~( —k —k' —k")

+2 Y Jf $ Qp"(k) Qk" (k') Qil s(k") Qjks( —k k' k") + O(Q—')— (2.1)

Q& "(x) =S; (x)S/(x)(1 —g i) . (2.2)

In line with the standard application of the replica
technique we have

&Qg'& = &S,-sf'& = «S,& &S,) &, , (2.3)

The superscripts (n, P, .. .) are replica indices while
the subscripts (i, j, ...) stand for spin components.
The tensor components Qg" are defined by

where in the last term on the right the inner brackets
represent a spin average for a given bond (or
anisotropy-axis) configuration. A brief review of the
replica technique is contained in Appendix A where
the derivation of Eq. (2.1) is outlined.

The sums over the indices in Eq. (2.1) are aii un-

restricted except that Qgp =0 for n = P.
For simplicity we will in this section confine our-

selves to the case of a single-component spin system.
The subscripts on the Q's are ali the same and can be
dropped. The Hamiltonian becomes
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X= —, Jt(r+k') QQ "(k)g ~( —k) —w J gg "(k) Q"'(k') Q"(—k k'—)

(2.4)

+u J gg a(k) QP»(k') Q» (k") Q' ( —k k—' k—")+x J $Q ~(k) Q P(k') g»(k") Q»( —k —k' —k")

+y, ~k ~k' Pk" ~ —k —k' —k" +0

The partition function is given by

e
—XIQ ~Ig (2.5)

Q = Q ~(0) 5(k) (2.6)

for all (n, P). The partition function then becomes

(2.7)

where

X(g) = IVn [ (n —1)rg—2 —w (n —1) (n —2) Q3

The mean field approximation consists of setting
all the Q a(0) 's equal and neglecting all Q P(k & 0)
in the partition function calculation (2.5). We are
left with an integral over a single variable Q, where
we have

I

solution to the extremum equation (2.9). Standard
approaches require that the appropriate extremum be
a minimum of X(Q) so that the integrand in Eq.
(2.7) is maximized. In the spin-glass case, for rea-
sons not altogether understood, it is necessary in ord-
er to obtain physically sensible results to maximize
X(g), for n & 1. This is a feature of all existing
spin-glass calculations whether or not the replica
technique is being used. ""

The extremum equation is

r(n —1) Q ——3w(n —1) (n —2) Q

+4 [
—"[(n —1)'+ (n —1)] +x(n —1)'

+y (n —I) }g' =0 . (2.11)

The appropriate solutions are, in the limit n 0

+ u(n' —4 n'+6n —3) g'

+x(n —1) Q +y(n —1) Q ], (2.8)
0, r&0
+O(r'), r &0

12w

(2.12)

and where n is the number of replicas.
For any finite n the integral (2.7), in the limit

iV —~, is given by the integrand with Q replaced by
the appropriate extremizing value. The extremum
equation is

~X(g)
d

(2.9)

For the subsequent discussion explicit expressions
will be needed for the various coefficients in Eq.
(2.4) as derived for an Ising spin system. These are

r=A(T —T2); 3 &0, w= —Z3,

Since w & 0 when g is nonzero, it is positive, as it
must be [recall Eq. (2.3)]. The contributions of ord-
er r' in Eq. (2.12) are due to the quartic terms in the
Hamiltonian. It has been traditional to neglect them
as unimportant in the region of the transition, but we
will see that they play an important role there. In
fact they are responsible for what we will call the des-
tabilization of the mean-field solution (2.12).

In order to assess the stability of a mean-field
result it is traditional to expand the full Hamiltonian
with respect to fluctuations about it. What is done is
to write

Q= Z x= Z p'= —Z1 4 1 4 1 4
8 ' 4 ' 12

(2.10) g.p(k) = g g(k) + q.p(k) (2.13)

where Z in Eq. (2.10) is the coordination number of
the lattice. The important points to note are: (i) r is
a monotonically increasing function of temperature,
(ii) w & 0, and (iii) y & 0.

We now turn to the question of the appropriate

and expand Eq. (2.4) to second order in q r (k).
That is, we consider the effect of fluctuations to
lowest order in the interaction parameters. The new
Hamiltonian consists of the mean-field Hamiltonian

(2.8) and a quadratic Hamiltonian X2[q a} given by

X2=
4 J (r +k') Xq P(k) q ~( —k) —3wg Jt X q a(k) q»( k)

P&y

+2ug'[(2n —1) J $q P(k) q a( —k)+(2n —2) Ji X q a(k) q»( —k)+JI X'q a(k) q '( —k)]

+2xQ [(n+ I) Jt Xq a(k) q'a( —k) +2 Jt X q.«k) q»( k)]+6yQ2 I gq a(—k) q a( —q)
PWy

(2.14)
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where X' denotes that all the indices are different.
In order to facilitate the task of considering the

fluctuation Hamiltonian we introduce three

2
n (n —1) by 2

n (n —1) matrices acting on the

, n—(n —1) vectors q'n, (q n=q" ). These matrices

are: (i) The identity matrix

, 1 if u=y and P=5 or u=5 and P=y,
aP, y8 0 otherwise,

(2.1S)

(ii) The association matrix

1 if u=y, p &5or u=5, p Wy
R &,,=' oru&y, p=5oruA5, p=y,

0 otherwise,

and (iii) The matrix S
1S,0 if u=y, p=5or u=5, p=y

aP. V~ 1 otherwise.

The quadratic Hamiltonian then takes the form

(2.16)

(2.17)

X2= —„(r+k')q(k) I q( —k) —3wQ q(k) R q( —k)

+4ug2 q(k) [(2n —1) I +(n —1)R +2(S —R )] q( —k)

+4xg2 q(k) [(n +1) I +R ] q( —k) +12yg2 q(k) I.q( —k) . (2.18)

q(k) =C(k)y, (2.19)

where v is the eigenvector. Substituting Eq. (2.19)
into Eq. (2.18) we obtain for the contribution of this
eigenmode to the fluctuation Hamiltonian

C(k) C( —k) [ (r +k2) —6-wg +12ug

+4xg2(n —1) +12y Q2] . (2.20)

Making use of Eq. (2.11) and taking the limit n 0,
the fluctuation Hamiltonian (2.20) reduces to

C(k) C( —k) (—,
'

k +gyg') . (2.21)

In order to have an extremum value, the complete
quadratic form (2.18) should be positive or negative
definite. This is the case for the eigenvectors
corresponding to two of the three possible eigen-
values. For the remaining eigenvectors which we
consider here, however, the quadratic form is neither
positive nor negative definite. The reason is that, ac-
cording to Eq. (2.10), the term gyg2 in Eq. (2.21) is
negative. That means that for sufficiently small
wavenumber k, the coefficient of
C(k) C( —k) = ~C(k) ~' in this equation is also nega-
tive, while for larger k the coefficient becomes posi-
tive. This is precisely the instability obtained by De
Dominicis)l and for k 0 by Almeida and Thouless.

To diagonalize the quadratic form (2.18) one must
find the eigenvectors and eigenvalues of R and S.
These are discussed in Appendix B." Altogether we
find three different eigenvalues. In the following, we
focus our attention on those eigenvectors which have
eigenvalues —2 and —1 when operated on by
R and S, respectively. If we take a q proportional to
one of these eigenvectors [there are

2
n (n —3) of

them], then we can write

I

Thus the mean field is unstable just below the spin-
glass transition to sufficiently long wavelength flu-
ctuation.

It is possible to place a more physical interpretation
on the instability. In Sec. IV the instability is dis-
cussed in terms of a'correlation function ~here it is
shown that the negativity of the coefficient in Eq.
(2.21) corresponds to a negative result for a correla-
tion function that must necessarily be positive.

Looking at the Hamiltonian (2.4) formally we can
isolate the term leading to the instability. It is the
quartic term proportional to X & (Q P) . This can

be characterized as a "multiple-loop" term, where a
single-loop term of any order has the form

g 12Q 23g34 gi I

the summation over each n being unrestricted. A
multiple-loop term is generated by requiring that two
nonconsecutive 0.~'s be-equal. A graphical classifica-
tion of terms is contained in Appendix A. The insta-
bility results from the graph shown in Fig. 2. In Ap-
pendix C it is shown that if the Hamiltonian consists
entirely of single-loop terms and the interactions are
treated to lowest order, then the lowest-lying terms in

the quadratic Hamiltonian correspond to gapless
modes. Thus, it is both the existence and the sign of
the multiple-loop q'uartic term that leads to the insta-
bility of the mean-field solution.

It is now clear that we have to take a much closer
look at the quartic and higher order terms in the
spin-glass Harniltonian. The coefficients of all the
terms will alter as we take into more complete ac-
count the effects of fluctuations about the mean-field
approximation, particularly near the transition to the .

spin-glass phase. It is necessary to keep very careful
track of what happens to the higher order terms as
they become renormalized.
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A naive prediction is that the destabilizing terms
are not important in 6-e dimensions where we will be
carrying out our calculations, since fourth-order
terms in a Ginzburg-Landau-Wilson Hamiltonian are
irrelevant in the renormalization group sense in more
than four dimensions. We will find, however, that
even though we use an initial Hamiltonian containing
only single-loop diagrams, with no quartic interac-
tions of the type shown in Fig. 2, destabilizing terms
are generated directly by the renormalization group
calculations. Both the instability of the mean-field
solution and the unphysical predictions associated
with it, emerge as a direct consequence of our calcu-
lations.

'
valid for r(l) & 1, where t(l) and w(/) satisfy the
equations

dt(i) 2

dl
= [2 —g(/)]t(l) +72K6(n —2) mw (I) t(l),

Again to leading order, these equations have the
solutions

t(l) =te"W(l)',

w2(/) = w2e'W(/) ',

(3.5)

(3.6)

(3.7)

dl
= [—e —3q(/)] w (/) + 36K6[(n —3)m + 1]w3(/) .

III. RENORMALIZATION-GROUP CALCULATION

FOR THE DISORDERED PHASE

where

WW(l) =1 —36K,[(n —4) m+2] (e' —1),(3.8)

In the renormalization-group calculation we expand
about d =6. Because they are irrelevant for d )4,
the quartic terms in Eq. (2.1) can be neglected, and
we are left with the standard spin-glass model

SC=-,' „(r+k') gg„"(k) gee( k)-
—w '

age�

"(k) Qg~(k') Qp]' ( —k —k') . (3.1)

This model applies both to the random exchange and
the random anisotropy spin-glass. In the latter case,
i =j= k =1. The critical behavior of the rando'm-

anisotropy spin-glass is expected to be the same as
for an Ising random-exchange spin-glass. 4

The recursion relations for the disordered phase
have been derived by Harris, Lubensky and Chen.
When written in differential form these are

dr(l) = [2 —q(/)]r(/) —36w (/)2

dl

5 (2 —n)m
3 [(4 —n)m —2]

' (3.9)

I'

K6) 1n [1+r(l)]e t4d/, '

nm 4
(3.10)

where I' is chosen such that r (I') —1. To leading
order we can replace r(l) by t (/) and expand 1n

[1+t(/)] in powers of t(l) The domi. nant contribu-
tion to the integral will come from the term in which
the I dependence of e t~t"(/) is weak —e", so that
the integration gives an extra factor of 1/e. For
t/ -6 that term is t'(/),

and where w and t denote the initial values,
t = t(0), w = w (0).

The above solution for t(/) can be used to calcu-
late the free energy in the disordered phase. The
free energy per degree of freedom is determined by"

K6
x(n —2) m

nm
K Jf e '~t'(I) d/ . (3.11)

t/w (I)
dl 2 2

= [—e ——q(/)] w(l) +36 w'(/)
This integral is straightforward. Taking the limit
n 0 we obtain

where

&& [(n —3) m + 1] 1+r I
(3.2) (3.12)

t3
[ W(l')' 1]—

nm 864w'(3m +1)

q(/) =12K,(n —2)mw'(I) . (3.3)
where

Here e =6 —d, and m is the number of spin com-
ponents. Th'ese equations may be integrated up in
the usual way. " To leading order in e and w' we ob-
tain

r (I) = t (I) + 18K6(n —2) mw (I)

b =-(3m+1)/(2m -1) .

The value of l'is determined by the condition
t(!')=1. From Eq. (3.6)

t(l') =1 = te 'W(l')' .

(3.13)

(3.14)

x 1 —2t(l) 1n [1+t(/)] — ' (3.4)
t'(/)

1+t(l)
To leading order, e' = t ' . Then by iteration, we
obtain from Eqs. (3,8) and (3.12),



19 SCALING, EQUATION OF STATE, AND THE INSTABILITY. . . 3609

F t3

nm 864w~(3m +1)

x 1+72K6(2m —1) (I 'j2 —1) —1

X '=exp [—2I" + J q(l) dl]X '(I'), (3.22)

(3.1s)

where I' is determined by Eq. (3.14). The trajectory
integral can be evaluated with help of Eqs. (3.2) and
(3.3), i.e.,

For t =0 the corresponding expression for the
specific heat, C„=—82F(t, w)/Bt', can be written

exp i g(l) d/ = W(I")'
~ ~0 (3.23)

C„=Cit —C2t

where

3m+1
0. = —1+

2m —1 2

(3.16)

(3.17)

We calculate the noncritical susceptibility X '(I') to
leading order in (a, e) using fluctuation corrected
Landau theory. From the diagram in Fig. 1(a) we
obtain

X ' (I') = r (I")—36K6 ( n —2)m w2 (I")

The coefficients C~ and C2 are both positive

t

1C(= 2, Cp = C) 72K6(2m —1)
144(3m +1)w' '

(3.18)

k~ dk
" r(I')+k' '

where we have made use of the propagator

G;, „P '(k) = (QjP(k) Q„,'(-k))

(3.24)

This expression for o. agrees with the result obtained
from scaling.

The critical exponents v and q for this model have
been determined by Harris, Lubensky, and Chen

1
2

( gikgjl gaygps + gi 1 gjk gpsgpy)
r +k2

x(1 —8 p) (1 —8 „) (3.2S)

1 S m

2 12 2m —1

1 me
3 2 —1

From the scaling relations we have

dp =2 o.'

y=(2 —q)v,

2I3=2 —y —n,

it then follows that:

(3.19)

(3.20)

Performing the elementary integrations and eliminat-
ing r(l'), using Eq. (3.4) we find

X '(I') = I (I') —18K6(n —2) mw'(I")

x r(I")[inr(I') + —,
'

j .

Then setting r(I") =1 we obtain simply

x '(I') =1+0(w')

(3.26)

(3.27)

From Eqs. (3.14), (3.22), and (3.23), the critical sus-
ceptibility is then given by

3m+1 e
o. = —1+

2m —1 2
x ' =rW(I')'" . (3.28)

y=1+
2m —1

m+1
2m —14'

(3.21)
x '='t& with y=1+ m

2m —1
(3.29)

in agreement with the scaling relations discussed
above,

Iterating this expression we find, in the limit n 0,

where P and y are the exponents of the spin-glass
order parameter and of the susceptibility,
X= (Q pQ p)

Because u (—1, the leading temperature depen-
dence of C„when t 0 is given by the linear term
and not by the "singular" term, t

The spin-glass susceptibility in the critical region X

is related to the susceptibility far from critically X(I")

(b)

FIG. 1. Diagrams contributing to the (a) r; and (b) h re-

cursion relations.
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IV. RENORMALIZATION-GROUP CALCULATION

FOR THE ORDERED PHASE

In the ordered phase we consider for simplicity
only the case of a single-spin component with the
Hamiltonian

r+k' .~ k ~ —k

(4.1)

3C= — r +k2 q~~ k q ~ —k

k q ~ —k

—s qPk q» —k

—w JI $ q "(k) q"'(k') q"( —k k'), —(4.2)

where

/t =h "— rg+3(n —2) wg-

s =3wg,

(4.3)

and its fluctuation-independent (mean-field) part,

3C, = , rn(n —1) g' ——wn(n —1) (n —2) Q',1 (4.5)

where the spin-glass order parameter g is now to be
determined self-consistently from the condition,

Here h ~ is a fictious field which couples linearly to
the order parameter. This Hamiltonian describes ei-
ther an Ising random-exchange spin-glass or a general
uniaxial-anisotropy spin-glass. %e substitute Eq.
(2.13) for Q "(k) and separate %into its fluctuation
part

using cubic terms only, but becomes negative if quar-
tic terms are included. The corresponding degenera-
cies are

1, (n —1), and n(n —3)/2 (4.9)

respectively. By determining the eigenvectors as
well, the propagator in the disordered phase
G p""(k) = (q s(k) q "(—k)), can be determined.
However, it turns out to be simpler to determine the
propagator diagramatically by treating the s term in
perturbation theory and summing the s insertions to
all orders.

A. Calculation of the propagator

We define G„, Gb, and G, as the components of
the propagator with respectively two pairs of indices
equal, one pair equal and no indices equal

G, =(q aq ~)

G~=(q'q"). /3&

G, = (q a q"') u, P W y, 5,

(4.1o)

In order to assess the effect of i insertions we diago-
nalize the matrix in Eq. (4.11). There are three
eigen values,

~here G„Gb, and G, are independent of the indices.
Then after i insertions the propagator will be of the
form (G,", G~"', G,"') where the superscript indi-
cates the number of insertions. The following recur-
sion relation is straightforward to construct

G."'"(k)' '0 2(, -2) o 'lC'
G„t'+' (k) =- 1 (n —2) (n —3) Gq'

r+k
G(I'+&)(k) 0 4 2(n —4) I G &'&

'

c C

(4.11)

(q "(k)) =0 . (4.6)

From Eq. (2.18) the quadratic part of the Hamiltoni-
an (4.2) can be written

X, =2(n —2), Z2 ——(n —4), and Z3 = —2

with associated eigenvectors

(4.12)

X,= —
i q. [(r + k ) I —2s 8 j q,2 (4.7)

I
v)= I

t

v2
—— (n —4) /2 (n —2)—2/(n —2)

r~ =r —4(n —2)s,

rg ——r —2(n —4)s,
r3=r +4s .

(4.8)

Here r3 is the mode discussed in Sec. II which is
gapless when we substitute for s its mean-field value

where I is the unit matrix and R is the association
matrix defined by Eq. (2.16), the properties of which
is discussed in Appendix B. R has eigenvalues,
2(n —2), (n —4), and —2. Thus 3C2 has three diag-
onal elements, r +k, with

-1/(n -2)
,2/(n —2) (n -3),

(4.13)

1 2 rI —3
Vt + —V2+ Vg . (4.14)r+k2 n(n —1) n n —1

These eigenvalues are the same as those for the asso-
ciation matrix. The initial propagator G is of the
form

1
Go= 0r+k p
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After i insertions we have

G (I') 1 2$
r+k +k

2 /2 In 3[2(n —2)]' vt + (n —4) '—
v2 + ( —2) '

y
n (n —I) n n —1

2

(4.15)

The fully renormalized propagator is obtained by summing over all the insertions

2 1 2 1 n —3 1G= V) + — V2+ V3 .
n(n —1) r~+k n r2+k n —1 r2+k

(4.16)

By definition the components of G are G„G~, and G, respectively. Supplying all the replica indices, the com-
plete propagator can finally be written

G P&'(k) = G, (k) (I —5 p) (5,5p, + 5.,5p,) + G, (k) (I —5.p) (1 —5, )

where

x[5,(1 —5») + 5»(1 —5„)+ 5,&(1 —5p,) + 5»(1 —5,5)]

+ G, (k) (1 —5.p) (1 —5,,) (I —5.„) (1 —5p,) (1 —5.,) (1 —5p,), (4.17)

G, (k) = G)(k) + —G2(k) + G2(k),
n n —1 n n —1

(4.18)

and where S. Recursion relations

G (k)=, m =1,2, 3,
r +k (4.19)

with r given by Eq. (4.8).
In the disordered phase, G (k) = I j(r +k2) for ali

m. Then by Eqs. (4.18), G, (k) = I/(r +k') while

G, (k) =G, (k) =0.
In Appendix D these propagators are expressed in

terms of random-averaged spin-correlation functions
without use of the replica formalism.

To determine the critical behavior in the ordered
phase, we need recursion relations for each of the
three r (I) and for h P(I). For w(I), the solution
obtained in the disordered phase. will suffice. The s
term in Eq. (4.2) need not be further considered, as
it has been incorporated into the expressions for
r (I) and in the propagator given by Eq. (4.17).

To derive the recursion relations for r (I) we need
only consider the diagram shown in Fig. 1(a) propor-
tional to w2. Using the propagator in Eq. (4.17) we
obtain

9K6 w2( [(n —2) G,2 + (n —2) 2Gq2 + (n —2) (n —3) G,'] g q p q "

+2[(n —2)G, Gb+(3n —8) Gb2+(n —2) (n —3)G&G, +(n —3) (n —4)G2] g q'Pq r

pay

+ [2G,G, +(n —2) G&2+(n —4) (n —5)G,2+4(n —4)GbG, ] $'q pq~"), (4.20)

where we have suppressed all wave-vector depen-
dence. $' denotes as before that all the indices are
different. As Gb ——G, =0, when Q =0, we recover
trivially the result for the disordered phase
9K6w2(n —2) G'. We write Eq. (4.20) —8Cw2(S —R )] q, (4.22)

to obtain the following quadratic "inner shell" Hamil-
tonian

3C = —q [(r +k2 —4Aw2) I —(6wg+28w ) R

gW2 Xqapqap+gW2 g qapqay
ep per

+Cw'X'q pq&'

l

(4.21)

where the matrices R and S are defined by Eqs.
(2.16) and (2.17), respectively. The eigenvalues of
R and S are given in Appendix B. Using those
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r2 + k —4A w —28w (n —4) +8Cw (n —3),
r3 + /c2 —4g w +48K —8 Cgp2 (4.23)

results we obtain for the eigenmodes

r&+k2 —4Aw2 48—w (n —2) 4—Cw (n —2) (n —3),
Combining these results we can write

dr
(I) =[2 —ri(l)]r (I) + w'

dl

(m)xX-
t [1+r,(l)] [I +rt(I)] ' (4.26)

Then with the usual rescalings we obtain for the dif-
ferential recursion relations

drt(I)
dl

= [2 —q(l)]r((l) —4w'(I)

x[2 (I) + (n —2) 8(l) + (n —2) (n —3) C(l)],

where m =1,2, 3 and a/J are rather messy coeffi-
cients obtained by substituting for g„gb, and g, in
A, 8, and C and for the latter in the recursion rela-
tions. Explicit expressions for these coefficients are
given in Appendix E.

In view of the initial conditions, given by Eqs.
(4.8), we look for solutions of the form

dr2(l)
dl

= [2 —q(l)] r~(l) —4w'(I)

x A(I)+ " 8(l) —2(n —3) C(l)
2

tt(l) =t(I) —2(n —2)6w(I) Q(I),

t, (l) = t (I) —(n —4)6 w (I) Q (I),
t3(l) =t(l) +12w(l) Q(l),

(4.27)

dr3(l)
dl

= [2 —g(I)]r, (l) 4w'(I)—

x[3 (I) —8(l) +2 C(l)], (4.24)
l

Q (I) = Q exp [2 —b/2) I + q(I') dl'] . (4.28)

where t(l) and w(!) are given by Eqs. (3.6) and
(3.7) respectively. It is tedious but straightforward to
verify that these solutions satisfy the differential re-
cursion relations provided,

where g(l) is given by Eq. (3.3). The functions
A, 8, and C are equal to A, 8, and C, respectively,
except that the propagators G, b, are replaced by g, b,
where r (I) = t (I) + r, (l) + r '(I) (4.29)

The leading correction to order ~2 can then be ob-
tained rather simply with the result

g~, b, ~,
= G, , b. ~, (k =1) . (4.25) where

(4.30)

r '(I) = Xa; ~ 2t;(I) ln [1+t;(I)]+w'(I) t '(I)

w2(l) ( ) I; (I) +jt(I) +t;(I)tt(l) 1+t,(l) t, (l) +tt(I)+ att () () ln () + '() () t I ln I+t&! tJ I In 1+t I
i (J i J 1+tJ l t, l tJ l

(4.31)

The recursion relation for h (I) is obtained from the diagram in Fig. 1(b),
-aP

dl
(I) = [4 ——E — 7t(l)] h (I) +3Kb(n —2) w (l)g (I)b (4.32)

where gb(l) is determined by Eqs. (4.18) and (4.25). There are no g, or g, contributions. The solution of this
equation is straightforward. We obtain

h (I) It n(l) —-t(l) Q(l) +3(n —2) w(l) Q2(l)

+ 'w(l)(n —2)K-b t, (l) (1 —t, (l) ln [I+t,(l)]}+ " t, (l) (1 —t, (!)ln [I+t,(l)]j2 n (n —1) n (n —2)

(4.33)
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where

h "(I)=h eexp (4 — e—)l —— g(I') dl'
2 2Jp (4.34)

The form of the zeroth-order solution is again suggested by the initial condition Eq. (4.3). The trajectory integral
in Eqs. (4.28) and (4.34) is given by Eq. (3.23).

C. Order parameter —specific heat

The fluctuation-corrected noncritical spin-glass order parameter is given implicitly by the condition that,
(q P) =0. With I = I'we obtain from the diagram in Fig. 1(b)

1

h "(I')+3w(l') (n -2)K, „k'dk G, (..(l'), k) =0,

with Gb(k) given by Eq. (4.18). Performing the integrals and substituting Eq. (4.33) for h (I) we find

h n(l') —' t(l')Q—(I") +3(n —2) w(l") Q2(l') ——w(l") (n 2)K—6

(4.3S)

t~' (I') ln tt(l") + t2 (I") ln t2(l') — t3 (I") ln t3(l') =0 .
n n —1 n n —2 n —1 n —2

(4.36)

We note from Eqs. (4.27) that t~(I) - t2(l) for n =0.
In the ordered phase it is convenient to choose I'
such that

we have

WW(l')=1+72K, " (e t'-1) . (4.42)

t t(l') = t2(l') 1 .

Then for n 0,

h n(i") —, t, (l") Q(—l")+ , K w'(I")—

(4.37)
From the condition t3(l") =0 and Eqs. (4.27) it
further follows:

t&(l') = —t(l"), (4.43)

or to leading order

& t3 (I') ln t3(l') =0, (4.38) such that, by Eq. (4.37), I" is determined by

e ' = W'I'(I") . (4.44)

h "(I')/Q(l') = —,
' t3(l') . (4.39) By iteration, the leading temperature dependence of

the order parameter as ]t
~

0 is then given byThus in the ordered phase, where we have Q & 0, it
follows that in the limit h ~ 0:

t, (I') = t (I") + 12 w (I') Q (I') =0 (4.40)
Q —~t~" where P=l+ —,e (4.45)

or

Q =(gati/12w) W(l') ', (4.41)

where W(l) is given by Eq. (3.8). For m =1, n =0,

in agreement with the scaling relations ( for m =1)
discussed in Sec. III.

From Eqs. (4.5) and (4.7)—(4.9), the free energy
(per degree of freedom) can be written

—= —rQ (n —1) —wQ (n —1) (n —2)
F 1 3

n 4

I'
+ —

J dl e ' ln [I +rt(I)] +(n —1) ln [1+r2(l)]+ ln [1+r3(l)]
2 n 2

(4.46)

(4.47)

The mean-field contribution is given by the first two terms while the effect of the fluctuations is described by the
trajectory integral. The leading contribution to the latter comes from the terms

die-" t,'(I)+(n —1)t2 (I)+" " t,'(I)
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or making use of Eqs. (4.27), from

1

(n —1)K6 dl e '~ +18(n —2) w2(/) Q (l)I(i) 36—(n —2)2w3(I) Q3(I)
12

(4.48)

F
I
I

I [ W(I') -'+1],
n 3456 w

(4.49)

with I'determined by Eq. (4.44). The specific heat
obtained from Eq. (4.49) can be combined with the
expression for the disordered phase to give

These integrals are evaluated with the help of the dif-
ferential equations for t(i) and w(i), Eqs. (3.5). The
I dependence of Q(I) is given by Eq. (4.28). The
first term in Eq. (4.48) is identical to expression
(3.11) for the free energy in the disordered phase.
The mean-field terms in Eq. (4.46) are cancelled by
the contributions from the lower limit of the second
and third terms in the trajectory integral, and we are
left simply with

7;. From Eq. (4.50) it is clear that any peak will oc-
cur for T ) T„as the linear term dominates the
behavior near T, . This qualitative result is in agree-
ment with experiments on dilute spin-glasses, "

D. Spin-glass susceptibilities

The contribution of the diagram in Fig. 1(a) to the
fluctuation corrected susceptibilities at I =I'and to
the recursion relations for r (I) differ only by the
range of integration in k space. Thus from Eq. (4.26)
we obtain

X '(I") = r (I') + w'(I")

C„=C,I-C, ~r~--; 7' (4.50) ) kdk
[r, (I") + k'] [r/(i") + k']

where C~, C2, and a are given by Eqs. (3.17) and
(3.18), with m = 1.

This result should be contrasted with the mean-
field result, which predicts a cusp in the specific heat.
Also, from scaling arguments one only obtains the
I'+2' term, which predicts a peak (with zero slope) at

(4.51)

where the coefficients a& are listed in Appendix E.
Substituting for r (I') the expression (4.29) obtained
by integrating up the differential recursion relations
then gives

X '(I') =r (I")+w'(I") Xa;,! 'I, (i') [1nr;(I')+ —,']

g (m)

+ —'w'(I') $ '
[r&' (I') 1«;(I') —I/'(I") In I/(I")1 .„,r, (i') I/(I')— (4.52)

ln the limit n =O, t~(l) = t2(i). Further making use
of Eqs. (4.37) and (4.40), we set t3(l") =0 and
r~(l') =1. The susceptibilities then reduce to

Xi, 2(I") =1+0(w'),

x3 '(I") = —72K, w'(I"),

(4.53)

(4.54)

X
—I ~

—2/' gr ((a) —I/3X —I ((a) (4.55)

Since X~ 2(i') =1+0(w') we thuS obtain

X, ', = W(l')' —
~r~

1 (4.56)

where y = 1 + e, as in the disordered phase.
We note that the susceptibility X3 '(I'), given by

where we have made use of the expressions for a;,' '

given in Appendix E. From Eqs. (3.22) and (3.23)
we have

Eq. (4.54), is negative. Because X3 is by definition
positive, as shown in Appendix D, this represents a
major inconsistency in the theory. In the mean-field
approximation X3

' =0 suggesting that there may be a
gapless mode, analogous to spin waves in a ferromag-
net for which the transverse susceptibility, Xq =0.
However, as soon as fluctuations are taken into ac-
count X3

' becomes negative.
The remarkable thing is that the instability of the

spin-glass phase shows up only, in X3 '. For all other
physical properties explicit scaling functions can be
calculated. Critical exponents can be extracted in
agreement with the usual hyperscaling relations. The
specific-heat peaks at a temperature above T, in
agreement with the experiments. In spite of all these
apparent successes the instability in X3 makes it clear
that the current picture of the spin-glass phase must
be revised. The fact that the spin-glass solutions
considered so far, maximize the free energy may be
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another manifestation of the breakdown of current
spin-glass theories. 'We can offer no concrete sugges-
tions except perhaps that the complete elimination of
the disorder by the bond averaging may be the source
of the problem and, perhaps, it will be necessary to
keep some aspect of the randomness in the calcula-
tion until the end. Spatial inhomogeneities and
paramagnetic clusters might well be crucial.

& 1/2

(J(x x')') =, J~ e ' J'dJ =J
2mJ

(A.4)

The average of any quantity f {J(x,x') j over the en-
semble of bond strength is

APPENDIX A
x g P(J(x,x')) dJ (x,x') .

In this Appendix we present a brief review of the
replica method. As applied to spin-glasses, the repli-
ca method begins with the identity

(x,x')

(A.5)

lim —(Z")1 —1 = (ln Z) /,1

n OP(
(A. l)

Equation (A.S) defines the bracket in Eq. (A. l). The
partition function in Eq. (A. l) is

X Ia(x) j = X J(x,x')a(x) a.(x') .
(x,x')

(A.2)

~here Z is the partition function of a system of clas-
sical spins interacting through exchange interactions
of random sign and strength. The brackets (.. .)/
stands for an average over configurations of bond
strengths. The exchange Hamiltonian is

Z —g e
—x}~(x}}/kt

f (A.6)

where g is the sum over spin configurations.

Since the bonds are quenched rather than annealed
the appropriate thermodynamic quantity to average
over the bond ensemble is the free energy
F {J(x,x') j, where

The o-'s are classical spin variables on a regular, or-
dered lattice, so that the arguments x are discrete
variables. The J(x,x'), couple a's on nearest-
neighbor sites.

The probability that a given J(x,x') will have a
value between 1 and J+dJis

F {J(x.x')j = —kTln Z . (A.7)

All the thermodynamics thus appear to be contained
in the right-hand side of Eq. (A. l).

To evaluate (Z")/ we set up n replicas of the sys-
tem

1/2

P(J) e
—/ /2J

27rJ
(A.3)

/ }
n

Z"= ff )exp g J(x,x') a. (x) o (x')
a 1 s kT( „)

The expectation value of any bond strength is thus
zero and Then we have

(A.g)

1

n

(Z") =, J /exp g X J(x,x')o. (x) a. (x') x g P(J(x,x')) dJ (x,x') .
s kr (xx') a=1 (xx')

(A.9)

The averages over the J(x,x')'s can be performed to yield

n

(Z")/=/exp X — X [o. (x) a (x')]2+ g a (x) o (x') o. (x) a (x')
s (xx'), kT} a=1 a&}8

The terms [a (x) a (x) ] are disregarded.
They reduce to a constant for a single-component
system. Otherwise, they give rise to an order param-
eter Q//, diagonal in the replica indices, which can

be sho~n to have a lower transition temperature than
the off-diagonal elements Q/J ~, o & p.

The remaining terms in Eq. (A.10) are decoupled
with the use of the identity
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'2

exp 2 o.; (x) a.f(x) a; (x') or/'(x')

(kT)' t'", kT
dq 1'/'(x, x') exp —qj'/"(x, x') 2 + q/ "(x,x') [a; (x) (rg(x) + o;(x.') (rg(x')]

'2

[(r; (x)'(rf(x) '+ a; (x')'a.J'(x')'J (A. 11)

Introducing q/ "(x,x') 's at every nearest-neighbor
bond and for every a; a-j' pair, with i =j included,
but not u = P, we can decouple the spin degrees of
freedom on different sites. If we define

Q ~(x) -=$q "(xx')
X

(A. 12)

we are left with the following sum at a given site:

/exp —,
' $ (r; (x)aj'(x)Q//'(x)

a, P,ij
(A.13)

~ g W(~) d- (x)

xexp —,
' $ Qg/'(x)~; (x)~g(x)

nWP

By introducing a weighting function

W(~ ) =g() —~'-I),
the sum over spin configurations in Eq. (A.13) can
be replaced by an integral over o-,

In the case of single component spins the term in
brackets, which we will call Mo(h), is

Mo(h) =2 cosh h . (A.16)

W(o) =e-2 -2
(A.17)

Each graph must be divided by a symmetry factor
corresponding to the number of ways the graph can
be mapped into itself by flipping and/or rotating it
and by permuting identical edges that connect the
same pair of vertices.

Because of the fact that the vertices are cumulants,
sums over replica indices are unrestricted in each
graph subject to the requirement that the edges must
join vertices corresponding to different replicas. The
graphs (a) —(e) correspond to the terms in Eqs. (2.1)
and (2.4). The instability discussed in S'ec. II results
from graph (e).

graphs (a),(b), (c) and (f) are single loop graphs.
It is interesting to note that they are the only graphs
we would have in a single-component system, if the
spin-weighting function were Gaussian, since if we
have

+ gh, a.
,"(x) (A.14)

then

M'0(h) l
eh~e —~ /2& do- (2rr o. )1/2eh rr /2 (A Ig)

2 -2 2 -2

where we have in addition introduced a set of linear
fields.

If we expand the exponential in this sum with
respect to the Q o a term, sum and re-exponentiate,
we obtain an expression that can be shown with the
use of standard methods to be expressible in terms of
a linked cluster sum of the type shown in Fig. 2.
Each edge in a given linked graph corresponds to a
factor of 0/j ~(x). Each vertex corresponds to the
cumulant average (u/ oj )„where a cr, is as-
sociated with a vertex if the (,.) end of a Qgp line is

incident there. The cumulant average is given by

6 6
eh. eh. "

i j

x ln [ J) W( o. ) d a.

and

inn, (h) = —', ln(2~~)+h' —,
' ~ .

(a) (c)

The only nonvanishing cumulant average is
(a.2), = cr

(A. 19)

&&exp Xh; o.; ]„
I I

(A.15)
FIG. 2. Low-order diagrams contributing to a linked-cluster

expansion of the free energy.
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From the discussion in Appendix C it follows that
for a Gaussian spin-weighting function there is no
instability to lowest order. Instead a gapless mode is
obtained. However, in a renormalization group cal-
culation, an instability would presumably again
develop as described in Sec. IV.

APPENDIX B

In this Appendix we discuss the properties of the
matrices R and S introduced in Sec. II.

We will begin with the simplest matrix S. S is the
m by m matrix all the diagonal elements of which are
zero, all the other elements being equal to one. A
relationship that is straightforward to verify is

S' = (m —1) I + (m —2) S, (B.1)

)'=(m —1)+(m —2)), (B.2)

A. being the eigenvalue. Solving for A. we obtain two
solutions, X = —1 and A. = m —1, The multiplicities
of these two eigenvalues, M 1 and M 1, are ob-
tained by noting that the sum of them is m, and that
because S is traceless, and the trace is an invariant

M t(—1) +M t(m —1) =0 . (8.3)

These two conditions yield

M 1=m —1, M 1=1. (B.4)

Eigenvectors corresponding to these two eigenvalues
are straightforward to construct. The un-normalized
eigenvector v 1 is the column vector

1
1
1
1 (B.S)

and an eigenvector v 1 is

where I is the m by m identity matrix. If we multiply
an eigenvector of S by both sides of Eq. (B.l) we ob-
tain

The association matrix R is familiar to graph theor-
ists. It operates on vectors v ~ spanning an

1

, n—(n —1) dimensional space, the unordered pair

(n, P), n 4 P, corresponding to the index of a given
axis in that space. The components of a vector v ~

are most conveniently displayed on an n by n matrix
as shown below-

p V12 V
13 V14 15

p V
23 24 15

34 35

P V45

Since the pair of indices n, P is not ordered, we need
fill the matrix only above the diagonal.

For every coordinate v ~ we can define two sets of
coordinates, the set of first associates and the set of
second associates. A coordinate v ' belongs to the
set of first associates if one of the pair (y5) equals u
or P and the other does not. Thus v" is a first asso-
ciate of v" while v' is not. A coordinate v" is a
second associate of v & if neither y nor 8 equals o. or
P. Any coordinate will be either a first or second as-
sociate of any other coordinate. Since the relation-
ship of being a first or second associate is reciprocal
we can speak of a pair of elements as being first or
second associates.

A given elements has 2n —4 first associates and

2
(n —2) (n —3) second associates. The association

matrix R as defined by Eq. (2.14) is an n(n —1—) by

, n (n —1) m—atrix which connects only those ele-

ments that are first associates.
In order to find the eigenvalues and the eigenvec-

tors of R we note, first, that R commutes with S,
where now m = , n (n —1) an—d S operates on the

1

vector space spanned by the v"~'s. This means that
R and S are simultaneously diagonalizable,

To find the eigenvalues of R we note that the fol-
lowing relationship may be verified by inspection:

R2=2(n —2) I +(n —2) R +4(S —R ) (B.7)

1
1

m 1
1

m —1
1

m —1
(B.6)

Z'=2(n —2) +(n —2) Z —4 —4Z . (B.g)

This equation has two solutions,

We can use Eq. (B.7) to find the eigenvalues of R.
We start by multiplying an eigenvector of R that has
the eigenvalue —1 when multiplied by S. We obtain

A. =n —4 (B.9)

Other eigenvectors can be obtained by putting 1 else-
where in the column and 1/(m —1) everywhere ex-
cept at that location.

X= —2. (B.10)

The other eigenvalue is that of the eigenvector of S
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with the single eigenvalue m —I =
2

n (n —1) —l.
This eigenvector is of the form (8.5). Multiplying it
by R yields the eigenvalue 2(n —2), corresponding to
the number of second associates of a given element.

The multiplicities, M&, of the eigenvalues follows
from the fact that their total number is n(—n —I)
and that the matrix R is traceless, so that the sum of
its eigenvalues equals zero,

the requisite
2

n(n —3). The relationships are of the

following form:

$ v3i'-0,
PWe

(B.18)

where the sum is over p only. Equation (B.18) holds
for each of the n 0.'s.

1+M 2+M„4=n(n —1)/2 (B.l 1) APPENDIX C

M„4= n —1

M 2=n(n —3)/2. (B.13)

The eigenvectors of R can be constructed as follows.
We choose a principal component, v ~ and give it the
value 1, give all first associate elements the value V~

and all second associate elements the value V2. The
values corresponding to the three eigenvalues of R
are as follows,

Vi =1
kt ——2(n —2); ~V =I '2=

2(n —2) +M„4(n —4) +M 2(-2) =0, (B.12)

we find immediately for M„4 and M 2

5'=a; I+b; S, (c.I)

In Sec. II we noted that the instability of the
mean-field solution for the spin-glass was due to a
multiple-loop quartic term. In this Appendix we
show that the modes giving rise to the instability are
strictly gapless if the Hamiltonian consists, instead,
entirely of single-loop terms. That is, we consider an
expansion to all orders in g& S, which yields an infin-
ite number of interaction parameters. The stability of
the mean-field solution is then tested to lowest order
in these parameters.

To begin, we will need an expression for S' where
S is an n by n version of the matrix discussed in Ap-
pendix B. Using Eq. (B.l) we can verify that

/

A2=n —4;

n —4
Vi =

2(n —2)—2V2=-
n 2

(B.15)

where we have

a; = I /n [(n —1)'+ (n —1) (—I) ']

and

(c.2)

A3= —2;

—1Vi=
n —2

2V2=
(n -2) (n -3)

(B.16)

If we denote the eigenvector by the index (np) of
. the principal component then we call the first eigen-
vector vp]', the second kind v2~ and the third v3 .
All of the vP~'s are clearly the same, while it appears
that we can form , n (n —I—) different y2"'s and

2
n (n —I) v3 s's. However we know from the multi-

plicity of their respective eigenvalues that there can
be at most n —1 independent v2 ~'s and

2
[(n —2) (n —3)] independent y3 P's. In the case of

the v2 ~'s it is possible to verify that all other v2 ~'s

can be expressed in terms of the n —1 y2P's (or the
n —1 v22k's etc.) as follows:

b; = I/n[(n —I)' —(—1)'] .

In the limit n 0

a; (- I)'(1-i) .

b~( )Ii 1+i

This means that

Tr ( S') = na; = [(n' —1)'+ (n —1) (—1) ']

so that

lim (I/n) Tr (S') =(—1)'(1 —i) .
n 0

Some results that will be useful later are

k

Ck —= $ a;bk

(c.3)

(C.4)

(C.5)

(c.6)

(c.7)

v2~ = (v' +v'k'): — $ v"n —4 2
2 —2

2 2
'

2
2

n — ~ p

(B.17)

i 0
1

(k +1) (n —I)"—(n —I) (k + I) (—1)"
n

for n, p & l. In the case of the y3 s's there are n

linear relationships between the eigenvectors, which
reduce the number of independent eigenvectors to

[(& 1)k+1 ( 1)k+1] (c.8)
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[(n 1 )k+1 ( I)k+1] (C 9)
n

k

Ek =—X b;bk
i=0

(@+1)(n —1)"+(k+1) (—1)"
n. t

—2/n [(n —1)" ' —(—I)"+'] (C.10)

The single-loop Hamiltonian is of the form

Jt X u, (k) Q "(k) Q "(—k)
ap

k

Dk —= x u, ak
i=0

r

(k + 1) (n —1)"+ (n —1)2(k +1) (—1)"
n

Now, we turn to the fluctuation Hamiltonian.
First, we write Q a(k) = QS(k) +q "(k). Then,
substituting this into Eq. (C.ll) we extract all terms
of zeroth and second order in q p. Because of Eq.
(C.15) there are no linear terms. The zeroth-order
term is just the mean-field Hamiltonian ('C. 12), while
the second-order term is rather tedious to extract.
We will content ourselves with describing in detail
how one contribution is obtained and leave to the
reader the task of verifying our final expression.

There will be five kinds of quadratic terms:
qaP qPa q P q P qaP qP' qaP q ', and q P q". The
first and second kind of quadratic terms are actually
identical, since q p=qp, but are generated in dif-
ferent ways. Similarly the third and fourth terms
must also be extracted by looking at different terms
in the q expansion of the Hamiltonian (C.l I), even
though they are identical. We will concentrate on the
first two terms.

If we look at a given order term in Eq. (C.ll) a
second order in q p part of it will look like

+u3)t $ Q'a(k) Q»(k') Q~ (—k —k') u g'-' Xq.a(k) S&„,q~'( k) S„. — (C.17)

+u J $ Q P(k) Q»(k') Q~'(k")
apy5

If we pick out the q

aqua

part of Eq. (C.17) we have
for its coefficient

x Q' (—k —k' —k") +.. . (C.I 1)
u;Q' SI»&s' „=u;Q' a&a; J (C.18}

The only restriction on the sums over replica indices
is that there are no diagonal elements, Q (k). In
the mean-field approximation we neglect all Q(k) 's
with k 40 and set all Q "(0)'s equal. Then the
Hamiltonian becomes

The coefficient of the q "q "part of Eq. (C.17) is

u;Q' 'b&b(
& 2. (C.19)

Summing over all contributions to the quadratic
Hamiltonian from the ith-order term in Eq. (C.ll)
we have for the coefficient of q pqp and q pq p

$ u;Q'Tr S',
1=2

(c.12)
I —2—u;Q' ' $ (a&a; & 2+b&b; & 2)

2 J' 0

~here

u, —= u, (0) . (C.13)

Using Eq. (C.7) we have for the Hamiltonian (C.12)
in the limit n 0

=
2

u; Q' '(D;, + E, ,), (C.20)

with D; and E; as. defined in Eqs. (C,9) and (C,10).
We can write

n X u;Q'( —1)'(1 —i) .
1=2

(C.14) Xq "q "=2g I g .
ap

(C.21)

The extremum equation is Thus we have from one ith-order term in (C.l 1) the
quadratic contribution

n X u;Q' 'i( 1)'(1 —i) =—0.
1=2

(C.15) iu;Q' (D; 2+E; q) q(k) I g(—k) (c.22)

n X u; Q' 'i ( 1)'(i —1) = 0 . —
1=2

(C.16)

When there is a Q A 0 solution of Eq. (C.15) we can
write Adding all the different kinds of quadratic contribu-

tions from the ith-order term and then summing to
all orders we have

iu~(k) Q' [g(k) I g(—k) (D; 2+EI 2)-
+g(k) R g(—k) (C, , +E, ,) +2 g(k) (S —R ) q(k)EI —2] (C.23)
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In Eq. (C.23), we have

( )
u2(k),

u /)2 (c.24)

6) = 62= 6, —4Gb+3G, ,

63= G, —26b+6, . (D.2)

By using techniques similar to those discussed in Ap-
pendix 8 of Ref. 3, we can show that

and S is the
2

n (n —I) by —, n (n —I) matrix con-1 1

sidered in Appendix B rather than the n by n matrix
discussed heretofore in this section. To diagonalize
Eq. (C.23) we take g(k) to be proportional to an
eigenvector of S and R. The eigenvector of interest
is one of the eigenvectors with eigenvalues —1 and
—2, respectively. This is the eigenvector that gave
rise to the instability in Sec. II. Then, substituting
into Eq. (C.23)

G. = (m'q/')

= $ (q'/') «(q'/2)// ((SS/) (S;Si))J k A I,

IJ

Gt = (qk ne")

X & «' & // ((sis/) (si) (SJ))J

G. = (qk ~e/")

g (k) = C(k) y, (c.2s) = $ (q'/')«(ri' ')// ((S;)'(S/)2) J, k W I,

where v is one of those eigenvectors, we have

$ iu, (k) Q' 'C(k) C(—k)
I =2

x [(D, , +E( 2) —2(C; +28; 2) + ~( 2J .

(C.26)

where for nearest-neighbor interactions

(7

2(kT)' " '

where a is the variance of p (I„") and

(D.3)

(D.4)

Using Eqs. (C.8) —(C.10) we obtain
r

$ iu, (k) g' 'C(k) C(—k) (—I)' '(i —I) .
I ~2

(c.27)

If Q is nonzero, we can add on the left-hand side of
Eq. (C.16) to obtain for our final result

, 1, i, j nearest neighbors
0 otherwise

The subscripts i,j,k, l now refer to lattice sites. From
Eqs. (D.2) we can express the diagonal propagators,
6, in terms of these correlation functions

2[u2(k) —u2(0)] C(k) C(—k) . (c.28)
Gkl g ( 1/2) ( 1/2)

II' u2(k) = u2(0) + k, we have for this contribution to
the fluctuation Hamiltonian, the quadratic Hamiltoni-
an of a gapless mode.

APPENDIX D

In Sec. IV we introduced the spin-glass susceptibili-
ties X = 6, m =1,2, 3 in terms of thermal averages
of pairs of operators q ~, In this Appendix we ex-
press these susceptibilities in terms of random-
averaged spin-correlation functions, without use of
the replica formalism.

In Eq. (4.18) G, ~, are expressed in terms of G~ 2 3.
We invert this set of equations to obtain

(((s,s, ) (s,s,)),
4 ( (s s/) (s ) (s ) )

+3 ((S;)'(S/)')/), all k, i, (D.S)

%e note that 63 is necessarily positive.

(D.6)

APPENDIX E

while

G3'= $ (q'") (q'") (((S;S,) —(S))') all k i

Gt = G, + 2 (n —2) Gb + (n —2) (n ——3) G, ,

G2= G, + (n —4) Gb —(n —3) G, ,

63=6, +G, —2Gb . (D.I)

In this Appendix we list the coefficients a&
' which

enters in the recursion relations for r (I) and in the
fluctuation-corrected susceptibilities. Let

In the limit n 0, G~ and G2 become equal, and
there are only two different propagators

—36',
n (n —1)2(n —2)2
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Then we have

at t
= K (4n6 —36n5 + 128n4 —224n3+192n2 —64n), atq = K(n5 —4n'),

a2q =K(n' —14n +77n' —212n +308n' —224n +64n), at3' =0, a23 =0,

a3j = K (2n6 —16n5 +48 n4 92—n3 + 24n2)

while

a =0, a =K(2n —26n'+128n4 —296n'+320n2 —128n), a =(18n' —132n" +338n —352n2+128n)

and

att32 =0, a =K(n —.12n +51n5 —88n4+48n3), a332 =K(2n —18n5+54n" —62n3+24n2),

at( =at2 =0, a22 =K(n —10n +33n —40n +16) n, a~ 3=4Kn(2n —10n +16n —8),
a2~3 =4Kn(2n4 —14n +30n 26—n +8),as3 = Kn (n —9n4+27n —23n~ —12n +16)

(E.2)

(E.3)

(E.4)

These coefficients contain, in general, terms proportional to I/n, which diverge as n 0. However, in the ex-
pressions in the text, these coefficients occur only in combinations such as

a~&P& +a,&2
' +a2&2 &, at&2

& +a2&P&, and (2a~tP~ +a2tP& + —a&2 )n,

which all approach finite constant values in the limit n 0.

'Permanent address, Physics Dept. , Univ. of California, San-
ta Cruz, Calif. 95064

'S.F. Edwards and P,%. Anderson, J. Phys. F 5, 965 (1975).
D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35,

1792 (1975).
S. Kirkpatrick and D. Sherrington, Phys. Rev, B 17, 4384

(1978).
4J. -H. Chen and T.C. Lubensky, Phys. Rev. B 16, 2106

(1977).
5D.J. Thouless, P.%. Anderson, and R.G. Palmer, Philos.

Mag. 35, 593 (1977).
J.R.L. de Almeida and D.J. Thouless J, Phys. A 11, 983

(1978).
~J. Rudnick (unpublished).
. S. -K. Ma and J. Rudnick (unpublished).

A.B. Harris, T.C. Lubensky, and J. -H. Chen, Phys. Rev.
Lett. 36, 415 (1976).

' A.J. Bray, M.A. Moore, and P. Reed, J. Phys. C 11, 11&7;
see also P. Reed, M.A. Mobre, and A.J. Bray, J. Phys. C
11, L 139 (,1978).

C. De Dominicis Phys. Rev, B 18, 4913 (1978).
~2R. Fisch and A.B. Harris, Phys. Rev. Lett. 38, 785 (1977).
' A.J. Bray and M.A. Moore (unpublished). %e call second

order what they refer to as first-order perturbation theory.
~4R.A. Pelcovits, E. Pytte, and J. Rudnick, Phys. Rev. Lett.

40, 476 (1978).
' K.H. Fischer, Solid State Commun. 18, 1515 (1976).

J, Chalupa, Phys. Rev. 8 17, 4335 (1978).
' See also A.J. Hoffman, Ann. Math. Stat. 31, 492 (1960).
' J. Rudnick and D.R. Nelson, Phys, Rev. B 13, 2208

(1976).
L.E. Wenger and P.H. Keesom, Phys. Rev. B 13, 4053
(1976).


