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Influence of quenched impurities on first-order phase transitions
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Microscopic random quenched impurities may or may not produce rounding of a first-order
phase transition. We derive a criterion for the appearance of rounding due to local fluctuations
in thermodynamic phase. Such fluctuations occur when the free-energy lowering due to taking

advantage of local fluctuations in impurity density more than offsets the free-energy cost of the
interface proddced. The argument also predicts the spatial scale of such phase fluctuations,
when they occur. In some situations this scale is just the coherence length $; in others, the in-

homogeneity develops over "domains, " which may be much larger than g. Near a second-order
transition our criterion reduces to the one due to Harris. We specifically discuss what happens
when a first-order transition becomes second order as an external parameter is varied.

I. INTRODUCTION

What effect do microscopic random quenched im-

purities (or other local defects) have on thermo-
dynamic behavior near phase transitions~ The cen-
tral-issue is whether, near the phase transition, the
coherence length is sufficiently large effectively to
"average out" the inhomogeneity, thus producing a

sharp, pure-system-like transition, or whether, on the
other hand, the growth of correlations is blocked by
the impurities, effective inhornogeneity remains, and
the transition becomes "smeared" or otherwise
anomalous. Many authors have studied these ques-
tions in the context of second-order transitions. '

First-order behavior has, by contrast, attracted much
less attention. ' This is probably due to the fact that
the coherence length remains finite at a first-order
transition, so "universal" behavior is not to be expect-
ed.

The question which we address in this paper is,
does the presence of microscopic inhomogeneity pro-
duce significant rounding of a transition which is

sharp and first order in the pure, homogeneous sys-
tem? Our argument, which' is heuristic but (we
hope) physically correct, predicts that (a) there are
several quite distinct types of behavior possible and
(b) which one of these is observed in a particular
sample depends in a specific way on sample parame-
ters. We have not here attempted, comparison of
the theory with experimental data: There are, in

practice, severe difficu. ties to be overcome in prepar-
ing and characterizing microscopically random sam-
ples. Furthermore, first-order data are complicated
by the presence of metastability and hysteresis. '
Nevertheless, recent experimental developments are
not unpromising.

Our discussion is a simple generalization. of an ap-
pealing argument used by Harris' to provide a neces-
sary condition for the existence of a sharp second-
order transition in an impure system: Suppose there
is to be sharp, pure-system-like critical behavior at a
temperature T, (p) (p is the fractional concentration
of impurity sites). At a distance from criticality
6 T —=.

~
T —T, (p) ~, the size of a typical correlated re-

gion is measured by the coherence length
g —(AT) ". Each such "coherence volume" contains
nl =pfd+ltnl impurities, where the typical fluctua-
tion is Anl [p(1 —p)—g ]'i . The corresponding fluc-
tuations in local impurity density,
Ap —[p(1 —p)]' (,produce local variations in
T, , 6 T, —~dT, (p) Idp

~
Ap. Consistency then requires

I

for d T sufficiently smati. [Scaling relations translate
Eq. (1) into the condition that the specific-heat ex-
ponent a must be negative. ] The corresponding ar-
gument for first-order transitions is closely related, as
we shall see; however, additional (nonuniversal)
parameters appear, which may represent experimen-
tally useful degrees of freedom.
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II. DERIVATION

Consider for specificity a magnetic lattice model in
which each site has a probability p of being occupied
by some impurity species. The system is assumed to
have a transition at a temperature Tr(p). When

p =0, the system is pure and the transition is sharp
and first order. We focus on the rounding of the
transition caused by the introduction of impurities.
The coherence length g (measured in lattice spacings)
remains finite at Tr(p) and provides a natural length
scale. The dimensionless parameter p g~ represents
the average number of impurities in each coherence
volume. When p("« 1, then all but a fraction p g
of the sample is effectively pure, so there is no signi-
ficant deviation from pure-system thermodynamics.
We treat the opposite limit pg~ && 1. Each coher-
ence volume has its own impurity density p + b,p.
The typical density fluctuation goes as
hp —[p(l —p)]'t'g i', in precise parallel to
Harris's argument. The corresponding spread in

transition temperatures is

—f, (p+hp, TJ(p) —hT) J & Co.g" (4)

where o is the interfacial tension and Cg" measures
the amount of interface formed. Normally,
) = d —1; however, there are special situations in-

volving coexistence between ordered phases of sys-
tems with continuous symmetries2 where A. = d —2,
as we shall comment on below. C is a geometrical
factor. Dividing by g~ and using Eq. (3), we obtain
for small 4T and Ap the stability condition for an iso-
lated coherence volume, '

de(p) C (r T~(p)

p L(p)(d —xhp( +b, T

where we have noted that

the cost in interfacial free energy be sufficient to sta-
bilize the system against such a local phase fluctua-
tion is

(~[f2(p + hp, T~(p) —h T)

de(p)
b, Tg = hp

dp
(2)

(f2 —ft) =L(p),8
g T p T~(p)

de(p) i)

dp Bp QT
(f2-fi)/ (f2-fi) (3)

Suppose the sample as a whole has impurity concen-
tration p and is at a temperature T = Tt(p) —h T with

Tr(p + hp) & T & Tt(p), i.e., nominally in phase 2

(see Fig. 1). Any coherence volume in the sample
with loca/ impurity concentration p + hp will actually
prefer to be in phase 1, provided that the Cost in in-
terface energy is not too great. The condition that

It is tempting but wrong to argue now that each
coherence volume undergoes a transition at its own

Tr(p + hp), thus leaving the sample in an inhomo-
geneously mixed phase between T~(p) —h T~ and
Tr(p) + hTI, i.e., rounding or "smearing" the transition
over a temperature range AT~. The difficulty is that,
when one coherence volume changes phase relative
to its neighbors, an interface is created. In order for
the phase change to take place, the lowering in
volume free energy must more than compensate the
cost in interfacial ("surface") free energy. This bal-
ance between volume and interfacial contributions
determines both the temperature range hT, of the
rounding and the spatial scale of phase inhomogenei-
ty. Consider the situation depicted in Fig. 1. Phase 1

(the high-temperature phase) becomes more stable
(lower free energy) relative to phase 2 (the low-

temperature phase) as the impurity concentration is
increased from p to p +hp. The temperature Tt(p)
of the first-order phase transition is, therefore,
lowered by the addition of impurities and it is easy to
see that

(hT)2 —a —v gd
—x (hT) —v

and

L —.(hT)'

K
4J

Laf
LLI

Tt(p+Dp)
~

'
[ Tt(p)
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FIG. 1. Free energy per site as a function of temperature.

f~(p, T) and f2(p, T) denote free energies of the high- and

low-temperature phases, respectively. A first-order transi-

tion occurs at T&(p), where the two free energies are equal.

Addition of impurities lowers the transition temperature.

the latent heat per site at the transition. Note already
the close connection with the Harris criterion'. Near
a second-order transition (and for k =d —I)
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dTf(p) . C o Tf(p)
Ap &,+LET, I~(

dp f p Id
—1 (6)

where hp now represents the local density fluctuation
in the cluster of t" sites.

In a quenched random system there is some proba-
bility for arbitrary local density fluctuations, limited
only by 0 ~ p + hp ~ l. Indeed, the probability of
density fluctuation 4p in a region of N sites follows a
binomial distribution,

N(P +kP) (1 ) N(l —P —AP)

(Pjy(hp) = N
[&(p + &p))![&(1—p —&p) j!

t i/2
N

27rp (1 —p)
e

—N(dp) /2p(1 —'p)

where the approximation is good provided'

hp & (p+hp)', (1 —p —hp)'

so the whole right-hand side of Eq. (5) is proportion-
al to ET and, as AT 0, Eq. (5) reduces to Eq. (1).

In some situations it will pay to form a fluctuation
involving a cluster of coherence volumes of linear di-
mension I ) g, in order to lower the interfacial "bar-
rier" by eliminating internal surfaces. Summing Eq.
(4) over such a cluster generalizes Eq. (5) to'

Because d exceeds X, it is clear from Eq. (4) that, for
arbitrary positive' Ap and 4 T clusters of sufficiently
large size will always be unstable against phase fluc-
tuation; however, if hp )) [p(1 p—)]'I'I d~, the
probability of such clusters (and their influence on
thermodynamic functions) will, from Eq. (7), be ex-
ponentially small. %e distinguish these "precursor"
effects, which are always present, from real "round-
ing,

" arising from Clusters with

hp —[p(1 p)l'I—'I ~I2, which have probabilities of
order unity. Equation (6) shows that these "prob-
able" clusters will be unstable at Tf(p) —6 T, whenever

~T & g(I) -=[p(1 —p))'" dTJ(p)
dp

C(r Tf(p) I"

()
There is no "probable" instability for sufficiently large
6 T. Such instability first develops at a particular
cluster size I', when

~T=ST, =g(I"),
which determines the typical width AT, of the round-
ing. For 0 & 6 T & 6 T, a range of I 's are unstable

Q Q
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FIG. 2. Schematic behavior of a typical first derivative of the free energy at a first-order transition. (a) Characteristic sharp

discontinuity of pure-system behavior. (b) Exponentially small precursor effects, which are always present in the impure sys-

tem, (c) Partial rounding due to impurities (discontinuity reduced by a fraction of order unity), (d) Complete rounding due to

impurities (discontinutiy eliminated),



INFLUENCE OF QUENCHED IMPURITIES ON FIRST-ORDER. . . 3583

and some fraction of the sample of order unity is al-

ready in the "wrong" phase. This will reduce by a
fraction of order unity the characteristic first-order
discontinutities at Tf(p). Our argument is not suffi-
ciently powerful to predict whether such discontinuti-
ties are entirely eliminated ("complete rounding") or
only reduced ("partial rounding"). The various possi-
bilities are illustrated in Fig. 2. Physical behavior
depends crucially on the shape of the function g (l)
and is discussed in detail in Sec. III. Figure 2 might
represent the possible behavior of the bulk entropy,
for example. Behavior of the order parameter (mag-
netization), itself, may be especially delicate: For
hT ( AT, there will certainly be local regions of ef-
fective ferromagnetic alignment. However, if these
regions are sufficiently separated by regions of disor-
dered material, it seems likely that their moments
will remain uncorrelated, so no bulk magnetization
will be observable. Only when the ordered regions
are sufficiently close to one another to communicate
through the intervening disordered materia1 will a
transition occur to a state with bulk magnetization.

So far our attention has focused on a thermally-
driven first-order transition. Generalization to transi-
tions driven by other fields is straightforward. Con-
sider, for example, a magnetic system below T, which
undergoes a first-order transition from "up" to "down"

as the external magnetic field passes through H =0.
Suppose that a random distribution of randomly
directed local moments is introduced, exchange-
coupled to the neighboring magnetic ions. This is
equivalent to introducing at a fraction p of lattice
sites a magnetic field of some fixed strength Hp but
randomly directed such that its average vanishes. A
typical coherence volume contains pg~ such sites and,
thus, feels an extra local magnetic field per site
~H„, ~

—Hop'~'( "~'. Because of this, the transition is
shifted 1oca11y to H =—H]„. Thus, even though the
external field is up, there may be local regions where
the total field is down. These regions will remain
stable only if the cost in interfacial free energy of
flipping them is sufficiently large. A development
entirely parallel to that leading to Eq. (6) gives as
the condition for stability of a cluster of Id sites at
externa1 field hH,

(10)

where M is the magnetization per site. For an Ising
magnet (n = 1) h. = d —1; however, for XV or
Heisenberg models (n & 1) the direction of local
magnetization can vary continuously, so the "surface"
free energy is distributed over the whole cluster2 and
X=d, —2. The structures of Eqs. (10) and (6) are
identical, so discussion of the first-order magnetic-
field-driven transition parallels that given in Sec. III
for the therma11y-driven transition. .Terms similar to

tltose appearing in Eq. (10) have been discussed in
connection with the critical behavior of systems with
random fields. ' The random-field model has been
applied to charge-density-wave transitions. '

III. APPLICATIONS

In this section we discuss the physical behavior ex-
pected ori the basis of Eqs. (6), (8), and (9). The
shape of the function g(l) [Eq. (8)] depends crucially
on d and X. The I dependence of the two terms is
the same at d = d, = 2 (for A. = d —1) or 4 (for

1—2). When d & d„ the second (surface) term
dominates at large i, while the first (5Tf) term dom-
inates at small /. %hen 1 (d„ the situation is re-
versed, as illustrated in Fig. 3. The zero of g(l) oc-
curs at

[p(1 —p)]'"L (d~ ldll (Ip=
Ccr Tf

(1la)

and its extremum takes place at
t 1/(g —d/2)

& Ip

The relative magnitudes of g, Ip, and i„will be im-
portant in what follows. When g(l) exceeds AT for a

range of I 's, so instability can occur on a variety of
length scales, the dominant configurations of phase
inhomogeneity will be those that maximize the free-
energy benefit per site, i.e., those which maximize
g(l) subject to I ~ (. We now examine some dif-
ferent physical situations.

A. d & d„ inhomogeneity on the scale of the coherence
length

.n-
Tf. dp C a

so small o, large L, and large Tz 'idTqldp
~

all
enhance smearing, as is physically reasonable.

(12)

This case applies, e.g., to normal thermal first-
order transitions in d =3. When g & Io, then there is
no significant rounding over any temperature range
hT & 0, although precursor effects will as always be
present [Fig. 2(b)]. When $ ( &0, then there is signi-
ficant rounding at d T„=g($) [Figs. 2(c) or 2(d)].
As b T decreases, the phase inhomogeneity remains
on the scale of g but there is increasing probability of
"wrong-phase" coherence volumes. Precisely what
occurs as 5 T 0 is beyond our argument. Perhaps
all discontinuities are wiped out, leaving only some
weaker singularity associated with the percolation of
wrong-phase coherence volumes. Note that the con-
dition ( & Io can be expressed as
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B. d ( d„domain formation D. Behavior near criticality

This case applies, e.g. , to the magnetic transition
[Eq. (10)] for n & l. If g & I„, then b, T, =g(() and
inhomogeneity occurs on the scale of the coherence
length, as above. However, if ( ( I„, then the
rounding width is 3 T„=g(l„). The thermodynamic
situation is again as shown in Figs. 2(c) or 2(d);
however, microscopically the situation is quite dif-
ferent. The scale of phase inhomogeneity is now I,
which can be much greater than g, depending on the
parameters (e.g. , o) appearing in Eq. (11). We refer
to such regions as "domains. "

(=(p(~p) " . (1.3)

An interesting situation occurs when variation of
some external parameter p, (e.g, pressure)
transforms a second-'order transition into one which
is (weakly) first-order, as, for example, near a tricriti-
cal point. Suppose p, is a nonordering field and
p, = p, , defines the limit of criticality. .We expect that
for p, = p, , +d, p, , L and a are small, while g is large,
i.e.,

For A. =d —1 and d & d, =2,

C. d = d„ the marginal dimension
d/2 —1

ip [p(1 —p)]'"Lp de g~ —ai2

CopTfg ' ' dp
(14)

Our example here is a thermally-driven first-order
transition in a two-dimensional Ising-like system such
as the Blume-Emery-Griffiths (BEG) model. "At the
marginal dimension the magnitude of the constants
in Eq. (g) becomes crucial. If

then g (I) is never positive and only precursor effects
occur [Fig. 2(b)l. Otherwise, d T, =g(() and round-

ing takes place with phase inhomogeneity on the
scale of (.

The argument of Sec. IIIA shows that for'2 o. &0
there is no smearing near enough p,„in accordance
with the Harris criterion. ' It would be interesting to
find a system with n (0 but exhibiting a large pre-
factor in Eq. (14). Thus, the first-order transition
~ould be sharp near p, = p, , but would smear strong-
ly with increasing Ap, . Observation of such systemat-
ically variable smearing would constitute clear evi-
dence of an intrinsic microscopic effect (the type dis-
cussed by theorists!) as opposed to one due to ma-

croscopic sample inhomogeneities. .

g(L)

(0) (b)

FIG. 3. Sketch of the function g(l) defined in Eq. (8). g(lo) =O. .The extremum takes places at l = l„. The magnitude of (
relative to that of lo and l„ is crucial in determining the presence and type of rounding.



INFLUENCE OF QUENCHED IMPURITIES ON FIRST-ORDER. . . 3585

IV. SUMMARY

We propose a criterion based on measurable
parameters which predicts whether or not a first-
order transition will be smeared by the presence of
quenched random microscopic impurities. Above a
critical dimensionality d„a system with sufficiently
large coherence length [g ) Io, see Eq. (11a)] will

not exhibit smearing, while one with sufficiently
small coherence length (g ( lo) will smear by
developing inhomogeneity on the scale of g. When
1 & d„we predict that smearing is always present;
however, for large coherence length [g & l„, see Eq.
(lib)] phase inhomogeneity is on the scale of g,
while for small coherence length (g ( I„) phase inho-

mogeneity occurs over domains of size I„, which may
be much larger than g.
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