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We study the time-dependent properties of an Ising chain with random bonds Gaussianly dis-

tributed. We obtain some exact as well as Monte Carlo (MC} results. Remanence, as we11 as a

seemingly logarithmic long-time decay of the magnetization and of the energy towards their

equilibrium values is observed at low temperatures by means of MC simulation. The remanent
1

values of the magnetization ( 3, starting with all spins up) and of the energy are derived. A

simple and explicit physical picture of the mechanism behind remanence and the logarithmic re-

laxation emerges. The equilibrium value of q(t) = lla, (0)a, (t)))1 is obtai~ned via the Mc

technique; it also seems to relax logarithmically for low temperatures. In contrast with the two-

and three-dimensional cases, it is shown how any MC calculation can start immediately from an

"equilibrium state" in this model, a very convenient feature for very-low-temperature MC com-

putations. We show that if H is s~itched on at t =0, then t[Brn(H, t)/9H]z~ - {1/kT) [I —q(t) j

holds exactly in any number of dimensions, where. rn is the magnetization per spin. A time-

dependent susceptibility X(H, t). is defined and shown to vanish (as H —0) for low enough tem-

peratures an/ finite t, The MC results for X are in accord with this result and, if graphed versus

T, show a hump at a time-dependent temperature. Fin'ally, we compare the exact equilibrium

specific heat, C, for this model with the results obtained by MC simulation of calorimetric

measurements. Thus, a simple explicit case is exhibited of the difficulties which may arise in

measurements of C in spin-glasses due to 1ong-time effects.

I. INTRODUCTION

After a magnetic field applied to a spin-glass is
switched off, a remanent magnetization, which decays
non-exponentially (perhaps logarithmically) is always
observed. ' Monte Carlo (MC) studies" of the spin-

glass model proposed by Edwards and Anderson4
show similar behavior in two and three dimensions.
Approximate solutions have recently been obtained. '

In order to obtain a clear picture of the mechanism
behind remanence and its non-exponential relaxation,
we study, in this paper, what we believe is the sirn-

plest possible model which exhibits such behavior:
the nearest-neighbor Ising model in one dimension,

N

H = —$ J;tr; tr;+t —H $ tr;; tr; = +1

where each J; is random, and distributed according to

P(J) ~ exp[ ——,
' J2(AJ)2]

As shown below, this model is simple enough so that
some exact results are readily obtained (not only
thermodynamic quantities for H =0, but some non-
equilibrium quantities as well), and yet, in spite of its
simplicity, MC computer experiments yield
remanence and subsequent seemingly logarithmic in

time relaxation (for kT 0.55J) which is typical of
spin glasses. Due to the. simplicity of the model, the
mechanism behind such time-dependent effects be-
comes transparent.

In Sec. II we briefly derive the thermodynamic pro-
perties of the model for H =0. We then give the re-
cipe for an "equilibrium state" which can be used as
the initial state for MC calculations of equilibrium
time-dependent correlation functions [such as
(o;(0) tr;(t))]. Lack of such a recipe makes such cal-

culations unfeasible at low temperatures in two or
three dimensions.

In Sec. III, we first discuss the magnetization and
energy relaxations (starting with all spins up) as ob-
tained from our MC computer experiments. We then
derive the following results: in the zero-temperature
limit, the magnetization decays to a remanent value
of —(it remains constant thereafter) and the energy

decays to a remanent value of 86'/o of the ground-
state energy. A very simple semiquantitative picture
of the mechanism behind such time-dependent
behavior emerges. From this picture, one can easily
see why no logarithmic decay ~ould be observed if
each J were allowed to take only the discrete values
+Jp. The absence of such logarithmic decay has al-

ready been observed by Kirkpatrick6 in two and three
dimensions, and follows exactly in one dimension
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from the work of Glauber. 7

In Sec. IV we consider the equilibrium tirne-
dependent autocorrelation function

qr(t) = ((o.;(0) tr, (t)))J (1.2)

x(H =O. T t) =P~I qr(t)) (1.3)

is exactly satisfied for any random bond Ising model
as long as P(J) is even in J (for any dimensionali-
ty). Monte Carlo results for qr(t) are given. They
show a long-time, seemingly logarithmic, time decay
for low enough temperatures (kT & 0.5AJ). Curves
of X(T, t) vs T are exhibited for a few values of t.

These cur s, which are not too different from the
ones obt ined by Bray et al. ,

' exhibit humps, whose
location depends on time. Indeed, whereas the
equilibrium zero-field susceptibility (Xo), defined by

where the outer brackets denote average over all the
allowed values of each J», and the inner brackets
denote thermal average. The limiting value,
qr(t —~), is the spin-glass order parameter, 4 which,
of course, vanishes in one dimension.

We define a time-dependent susceptibility X(H, T, t)
(H is switched on at t =0, and the magnetization is
measured at time t), and show that

II. EQUILIBRIUM

The thermodynamic quantities for zero external
field are obtained in this section. We also point out
that, in contrast to the t~o- or three- dimensional Is-
ing models, it is possible to give a simple algorithm
(in one dimension if H =0) to generate an "equilibri-
um state" of the system, which may be used as the
initial state in MC calculations of equilibrium proper-
ties. Thus, we can compute (see Sec. IV) equilibri-
um quantities, such as (o;(0)o;(t)), at any tempera-
ture. In contrast, in MC calculations of spin-glass
models in two or three dimensions, one must first
wait for equilibrium to be reached, and it is far from
clear that equilibrium is obtained within the time
elapsed in the Usual MC computer experiments. '

The thermodynamic functions of the model are
easily derived for H =0. First note that any state of
a chain of spins (with the two end spins free, say)
can be specified either by giving the state of each
spin, or alternatively by specifying one end spin plus
the state of each bond. The partition function for

pl,. -pJ,.
one single bond of strength Ji is e '+e ', and
since the energy of the system is the sum of the bond
energies, it follows that the partition function for a
system of N bonds is given by

x, —= lim x(H -0, T,t), (1.4)
Z =2 g2cosh(PJt) (2.1)

satisfies (see Sec. 11)

xp ——I/kT

the following contrasting result is sho~n to hold ex-
actly

lim lim X(H 0, T, t) =0
facto T~ (1.6)

Equation (1.6) clearly shows that Xo as computed by
the MC technique will vanish for low enough T,
since t is of necessity finite. Our equilibrium results
are in agreement with Eq. (1.6).

In Sec. V, we discuss how the slow-time relaxation
of the energy at low temperatures may affect the in-

terpretation of calorimetric measurements in spin-
glasses. In particular, the experimentally observed
specific heat seems to vanish at a finite temperature, '

which may appear to be consistent with a gap in the
energy spectrum. " Instead, remanence of the energy
is shown to produce such an effect.

Finally, in Sec. VI, we make some comments on
the results obtained. In particular, we elaborate on
the point that, although the model studied here has
no frustration, " it exhibits the most prominent
time-dependent features found in spin-glasses. The
relevance of the distribution of J values to the effects
observed is also discussed. -We also discuss how frus-
tration causes X(H O, T.t) not to satisfy Eq. (1.6) in
more than one dimension.

where the 2 in front is due to the two states of one
end spin which are necessary, in addition to the state
of each bond, to specify completely the state of the
system. It follows that, in the N ~ limit, the free
energy per spin (or bond) is given by

f = —kT
&

dJ P(J) In[2cosh(PJ)] (2.2)

An alternative derivation of this expression can be
given using the transfer matrix method, ' by noting
that all the transfer matrices are diagonalized simul-
taneously if H =0. The entropy and energy expres-
sions follow immediately.

To obtain the zero-field susceptibility Xp, note that

(2.3)

and (see Sec. IV, or Ref. 9.),

& ' X &o;o;+.) = g., o,
l

for P(J) = P( J), whence we hav—e

Xp= (2.4)

since8 (o.;) =0 in one dimension.
To obtain the algorithm to generate an "equilibrium

state" (if H =0), first note that the state of each
bond in the chain can be specified independently of
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FIG. 1. Magnetization m vs the number of Monte Carlo steps (MCS) per spin is shown for different temperatures T expressed
in units of b J. All spins point up initially. The values shown are averages over the times elapsed between adjacent points
shown. The straight lines come from Eq, (3,1).

the rest of the system, and the energy of the system
is the sum of the bond energies if H =0; therefore,
the probability that the ith bond be broken is given by

P~ =exp( IPJ I)/[exp( —PJ) +exp(PJ)] . (2.5)

The probability Pf that it be fulfilled is, of course,
given by Pf =1 —Pb. What we call an "equilibrium
state" is generated by first choosing a spin at the end
of a chain to be up or down arbitrarily and each suc-
cessive spin down the chain is set pointing up or
down randomly with the probability just given. It is
now clear why we call the state thus generated an
"equilibrium state, " for repetition of this process
ad infinitum will generate a canonical distribution of
the states of the chain.

III. REMANENCE

In this section we first discuss some results of re-
laxation towards equilibrium of an Ising chain of
1000 spins, as obtained by the application of the stan-
dard MC method' (a spin is first selected at random
without bias; then it is flipped if the energy of the
system is thereby lowered (b, E & 0), but if b E ~0,
then the spin is flipped only if a random number
(0 ~ R ~ l) generated without bias satisfies
R ~ exp( —phE). The exact values of the remanent
magnetization and energy are derived and compared
with the MC results.

The evolution of the magnetization in time ob-
tained in the MC computer experiment is exhibited

in Fig. 1. We start from an initial state with all spins
up (m = 1), with no external field present (H =0).
At low temperatures (kT &0.5b J) two distinct re-
gimes can clearly be observed in the curves: (a) an
initial fast decay, from m = 1 down to m =0.3; (b) a
slow decay towards the equilibrium value (m =0).
The latter part is satisfactorily fitted by the
logarithmic-decay equation,

m =0.285 0.07(kT/dJ) —in(t/r)

where v is the time of a MC step per spin. The con-
stants 0.285 and 0.07 are peculiar to our particular
choice of 1000 values for the exchange constants in
the Ising chain. As we will see below, the value
0.285 would go into

3
for an infinite chain.

Figure 2 shows the relaxation of the energy towards
equilibrium from an initial state with all spins up.
Again, the curves show two distinct regimes at low
temperatures (kT &0.55J); after the rapid decay, the
remanent value seems to relax logarithmically. The
energy reaches its equilibrium value faster than the
magnetization does.

Visual inspection of Figs. 1 and 2 shows that
remanent values are only defined exactly in the
T 0 limit. Accordingly, we shall now derive the
values of the magnetization and energy after the ini-
tial fast relaxation (remanent values) for kT « hJ.

It is convenient to take the following approach: in-
stead of considering the spins, look at the bonds. In
Fig. 3, we have a histogram representing the absoiute
value of the coupling constants of a section of the



3564 JULIO F. FERNANDEZ AND RODRIGO MEDINA

chain. There are three kinds of bonds: (a) tops; (b)
steps, and (c) bottoms. Any bond which is broken
will be marked with a dot. Each broken bond contri-
butes to the energy by exactly twice its height. As
time elapses, the dots move through the chain fol-
lowing the rules: (1) a dot can jump from a bond to
the next; (2) if two dots meet in the same bond they
annihilate each other; (3) pairs of dots may be creat-
ed in adjacent bonds.

Now, one can easily understand why there is

remanence in the system. Consider first the T 0
limit. The energy must decrease in every process,
and consequently the dots (energy defects) can only

descend to the bottoms where they arrive after only a

few steps per spin. Thereafter, the dots are trapped

and can move no further. Thus, the system gets into

a metastable state and cannot reach true equilibrium

(no dots). For smail but finite temperature (0 & kT« 5J), the dots have a nonzero probability of es-

caping their traps, and consequently, a slow evolution

towards equilibrium ensues after the first rapid decay.
%e now obtain the value of the remanent energy.

First note that the probability that a bottom bond be

broken at the end of the rapid relaxation is —,, as fol-

lows from the fact that the probability that a bottom
bond be broken initially (i.e., the probability that it

be antiferromagnetic, since all spina are up initially)

is 2. Thus, half the bonds sandwiched in between

bonds of higher strength will remain broken
thereafter in the T 0 limit. To see how much en-

ergy this configuration amounts to, note first that the
probability density that a bond be of strength J, and
that it be a bottom bond, is given by

'2
Pbp(J) =P(J) 2 J P(J') dJ' (3.2)

Now, since the defect energy associated with a bro-
. ken bond of strength J is 2I JI, it follows that the
mean remanent defect energy per bond is given by

2IJIP(J)

2 P J'dJ' dJ (3.3)

Integrating by parts, it becomes
f+ oo ' oo 13

AEp=
3 ~

'dJ J P(J') dJ'

which yields

AEp =0.1126J

(3.4)

(3.5)

For comparison, note that the ground-state energy is

Ep = —0.7986J (3.6)

as follows from Eq. (2.2).
To obtain the remanent magnetization in the T 0

limit (all dots must descend in this limit), consider
first any spin which is not next to a top bond. To
show that the probability that it will finish pointing
down is —, , note that: (a) it will do so if the number
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FIG. 3. Two alternative ways to describe a state of the Ising
chain for H =0. The letters A and F indicate whether a
bond is antiferromagnetic or ferromagnetic, respectively.
Each broken bond is shown in the diagram below by a dot.
The diagram below exhibits the strength of each bond,

~ j~.
Bonds with an a, b, or c below them are called tops, steps,
or bottoms, in the text.

of dots passing through it is odd; (b) all the dots
passing through will come from the same side (where

. the higher strength bond lies); (c) that the probability
that the higher strength bond next to it have a dot on
it initia11y is 2. A bit Of reflection shows that the

spins wi11 finish pointing down with probability 2.
We next consider all the other spins, i.e., all pairs of
spins connected by top bonds. Note that if a top
bond is initially broken, then one of the two spins
will flip, for the dot on the bond will fall. On the
other hand, all the pairs of spins joined by bonds
which are initially fulfilled (all the ferromagnetic
bonds) will stay up, since in the T 0 limit no dot
can move up to a top bond. Therefore, the remanent
magnetization m is equal to twice the fraction of fer-
romagnetic bonds which are tops. Now, the probabil-
ity that a J bond be in between two bonds of lower
strength is given by

~ lJl

J P(J') dJ'

therefore,

dN
~ )if

dt
= —mo e (3.9)

for a barrier with a given jump over rate A. , ~here mo
is the "initial" magnetization. By averaging over dif-
ferent barriers, Eq. (3.9) becomes,

d—(m) J ———— itP(it)e "'dit,
dt

(3.10)

where P(k) is the probability density that the jump-
over rate of a barrier be A. , and the factor —, is the

mean "initial" value of (rn) J, that is, its remanent
value. To evaluate Eq. (3.10), note that,

it = (I/T)exp(-PbE) (3.11)

where hE is the activation energy (i.e., the energy
necessary to climb the barrier), and T is the order of
the time of an MC step per spin. Substitution of Eq.
(3.11) into

=0.112 +0.003, in complete accord with our derived
values.

A very rough argument showing why the remanent
magnetization and energy decay close to logarithmi-
cally to their equilibrium value is given next. Clear-
ly, there will be energy defects only at or near the
bottoms of valleys after the initial rapid relaxation at
low temperatures. As follows from the above deriva-
tion of remanent values, half of the valleys will then
be occupied. The system must shed some of these
energy defects to reach equilibrium. Different energy
defects in the system must surmount different barrier
heights to meet other energy defects and be annihi-
lated in pairs. To estimate the. relaxation of the mag-
netization, recall that the spins to be flipped are the
pairs joined by ferromagnetic tops, and any such pair
will flip when an energy defect climbs over the top.
Consequently, the rate of change of the magnetiza-
tion is proportional to the rate at which tops are being
jumped over, therefore,

dm = —
A, m (3.8)

dt

which using the solution becomes

t IJI
Am =2

z
P(J) dJ „P(J')dJ'

which becomes,
oo t 3

hm = — P(J) dJ

since P(J) = P(—J). It follows that

(3.7)

P (it) =P (AE)
d /kE

yields

PiP(x) =P(SE) .

(3.12)

(3.13)

Am=—1

3

Crudely, P(/kE) is about constant for ikE ( &J,
therefore

which is the desired result.
The remanent magnetization and energy derived

were checked by MC computations at T =0. The
average values (over 13 different chains of 10' spins
each) obtained are: hm =0.33 +0.01 and EEp/AJ

—(m)J= —
J e '"ditd kT

dt 35J
where

(I/T) e alikT—

(3.14)

(3.15)
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Now, for t such that exp( —t/r) « 1 and

exp( —X~t) =1, that is, for

r/r & 1 and ln(t/r) & 6J/kT

Eq. (3.14) becomes

(m) g
= —,

' —(kT/36 J) ln(t/r)

(3.16)

(3.17)

The system is in thermal equilibrium at temperature
T for t & 0, and it evolves in time for t & 0 according
to the MC scheme. Note that our definition of X is
not the usual one; in our case 0 =constant for t & 0,
whereas usually H ac 8(t).

To finally arrive at Eq. (1.3), we now use the
linear-response theory equation, "

where the integrating constant was fixed using the
calculated value (—,) of the remanent magnetization

[see Fig. 1, or Eq. (3.7)). Equation (3.17) is not too
different from Eq. (3.1), which is based on our MC
results; there is a discrepancy of a factor of about 5

in front of the logarithm, which is not too surprising
in view of our very crude derivation.

IV. SELF-CORRELATION FUNCTION AND

TIME-DEPENDENT SUSCEPTIBILITY

The Edwards-Anderson order parameter is

(4.1)

where the inner brackets indicate a thermal average
and the outer ones indicate an average over the ran-
dom exchange constants in H. It does not vanish
only in the spin-glass phase. Note that

q = lim ((o.;(0)o.;(r) ) )J (4.2)

assuming that the system is mixing, ' i.e., that

( ;(0)o.;(t)) (a;(0)) (a;( ))

To obtain Eq. (1.3), first note that

((a.;(0)crj(t)))J =0 ifi Wj

(4.3)

(4.4)

(H T,) Sm(H, T, r)
9H

(4.6)

and if P(J) = P( J), as follows f—rom the following
simple argument: let (a&(t)) @ be the mean value of
o;. at time t, provided the system was initially in state
@; now, let o, —o& in the initial state @, and let
&g J» for every k. —Clearly, (aj(t))~ is un-
changed for any i &j, if H =0, for an Ising or classi-
cal Heisenberg model as long as the time evolution of
the system depends only on H (as it certainly does in
MC simulations). That is,

(a, (0)aq(r))~- —(a.;(0)oi(r))~; i W j (4.5)

under the transformation a-; —a; and Jk —Jk for
every k. A bit of reflection shows that Eq. (4.4) fol-
lows if P(J) P(-J).

We now define X(H, T, t). Let Hbe switched on at
t =0, and M(H, T, t) be the magnetization at time t;
then

X(r) = P X [(a.,(0) a.j(0)) —'(a, (0) a.)(r)))

which becomes Eq. (1.3) after taking averages over
all J's and using Eq. (4.4).

With the connection between qr(t) and X(H, T, r)
provided by Eq. (1.3), in mind, we now examine the
time evolution of qr(t). Our MC results are shown
in Fig. 4 for a few temperatures. For low tempera-
tures, k T & b J, the curves show a seemingly loga-
rithmic approach to its t ~ asymptotic value. The
curves for qr(t) do not show the initial rapid relaxa-
tion of the energy and magnetization (Figs. 1 and 2).

Figure 5 shows an MC run of the time evolution of
the magnetization after a small field (H =0.15 EJ) is

applied. The continuous line represents the result of
Eq. (1.3) using a smoothed qr(t) taken from Fig. 4.

The mechanism behind the logarithmic decay of
the magnetization and of the energy, discussed in
Sec. III, can also account qualitatively for the long-
time behavior of qr(t) At equil. ibrium and low tem-
peratures, the energy defects are mostly on bottom
bonds (see Fig. 3), and the spins within any given
valley will only lose memory of their initial position
after an energy defect either leaves or comes into the
valley over a barrier. The distribution of different bar-
rier heights produces the close to logarithmic decay in
time, as shown in Sec. III.

On the other hand, at higher temperatures one
may assume that a spin, loses memory of its initial
direction after flipping once. In this case, one can
consider each spin o-& approximately independent of
its neighbors. There are four different initial possi-
bilities for the adjacent bonds; each one.with its own
transition rate 8'„, that depends on the coupling con-
stants J', J" ((J'( & (J"(). These four possibilities
are: (i) both bonds broken; then, W~ = r ', (ii) no
broken bonds; then W2 = r ' exp[—2P(( J'~ +

~

J"~) 1;
(iii) only J' broken, then W3 = r ' exp [—2P(~ J"

~—~J'~)]; (iv) only J" broken, then W4=r '. For
each initial possibility, the relaxation of the spin is
exponential —exp( —2 W t). By weighing each initial
possibility u with its probabiiity P (J',J"), calculated
from Eq. (2.5), and by taking the average over the
configuration of J one gets

(4.7)

This formula was used to compute the solid lines
shown in Fig. 4. For kT &0.54J, the independent
'spin approximation fails,
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FIG. 4. Equilibrium value of the time-dependent self-correlation function, qr(t) -N ' g, o';(0) o;(i), is shown for different

temperatures. The temperature (T) is in units of hJ. The full lines follow from Eq. (4.7},valid fo«T ~J.

For low temperatures, our MC results show that
the time it takes qr(t) to reach its zero asymptotic
value is of the order of exp(2lgd J)'. Therefore,
from Eq. (1.3) it follows that the susceptibility
x(H =0, T, t), obtained by the MC procedure, with a
fixed running time r, must decrease (for kT « AJ)
as T decreases. Figure 6 shows X(O, T, t) vs T for
some fixed values of t [as obtained from Eq. (1.3),
having computed qr(t)]. According to Bray ei al. ,

'
the susceptibility peak seen in two or three dimen-
sions is also a non-equilibrium effect, as it clearly is
in this one-dimensional model.

%e will now show that for any finite running time
the zero-field susceptibility must vanish as T 0 for
the one-dimensional model studied here. More pre-
cisely, Eq. (1.6) will be derived.

Let some J be such that
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kT « J «bJ, (4.8)

which can only be defined for very low temperatures.
Now, any spin which is going to flip within a time

t =—r exp(2 J/k T) (4.9)

IJl+IJ2l & J, (4.10)

must be in between coupling constants Ji and J2 such
thag

FIG. 5. It illustrates the validity of Eq. (1.3). The squares
CI show evolution in time (MCS per spin) of the magnetiza-
tion after a small field (H =0.15) is applied to the system
which was previously in equilibrium at temperature T =0.7.
Both T and H are in units of EJ. The full line is obtained by
smoothing qT(t) as shown in Fig. 4 for T =0.7 and then us-

ing Eq. (1.3). The dotted line indicates the equilibrium
value of m for H 0.15, computed by the transfer matrix
method for our particular chain of 103 fixed exchange con-
stai|ts. The values shown are averages over the times
elapsed between adjacent point shown.
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if the system is in equilibrium. The fraction f of
spins fulfilling this condition is given by

f = (1/m)(J/hJ)'

since J « AJ. But 2f «1 —q(r), whence

1 —q(t) & (2/n)(J/EJ)

Equivalently, it follows from Eq. (4.9) that

(4.11)

(4.12)

1-q(t) & 1 kT tln-
2m AJ

(4.13)

subject to the condition

1 «ln(r/r) «AJ/kT, (4.14)
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as follows from condition (4.8). Clearly, Eqs. (4.13),
(4.14), and (1.3) imply Eq. (1.6), which is the
desired result.

V. SPECIFIC HEAT AND THE RESIDUAL ENTROPY

0.4 I.SING CHAIN

O. I

The specific-heat measurements are also affected.
by the slow relaxation in our model. When the tem-
perature is changed, the logarithmic relaxation of the
energy makes the measured energy difference smaller
than the equilibrium one, and consequently, a small-
er specific heat results. Figure 7 shows the results of
our MC calculations of the specific heat. For each
temperature, an initial equilibrium state was used.
The energy of that state was obtained by averaging
over 800 MC, steps; then the temperature was
changed and the new energy was obtained by averag-
ing over the next 800 MC steps. The specific-heat
values so obtained are shown as bars in Fig. 7. For
comparison, the solid line shows the equilibrium
specific heat computed by the transfer matrix
method, "for the particular configuration of J's used
in the MC .calculation.

The slow relaxation effect appears for kT« 0.76J. Note that the MC result vanishes for
kT « AJ, whereas the equilibrium value is propor-
tional to T for kT « AJ. A similar behavior appears
in the two- and three-dimensional MC results. ' Of
course, the exact results for the specific heat are not
known in these cases, and no comparison can be
made.

The effects of the slow relaxation of the energy

FIG. 6. Zero-field time-dependent susceptibility

X(H =0, T, t), defined in Sec. IV, is shown for the following

running times: 5 for 10 MCS per spin; Ofor 10 MCS per

spin; and 0 for 10 MCS per spin. Equation (1,3) was used

to obtain X from the computer generated equilibrium values

of qT(t). The points marked by crosses (+) were obtained

similarly, except that the values used for qT(t) were not true

equilibrium values, rather qT(t) was generated as follows:

the system was allowed to "age" (evolve in time, starting

from an initial state with all spins up) for 10 MCS per spin,

and qT(t) was obtained subsequently, letting the system

evolve for an additional 10 MCS per spin. The full line

shows the equilibrium value of the susceptibility,

0.0
0.0 0.5 I.O f.5

FIG. 7. Full line shows the equilibrium specific heat C, The
points show values of C obtained by the following MC simu-

lation: starting from an "equilibrium state, " the energy is

averaged over 800 MCS per spin, thus obtaining the equili-

brium value Eeq(T) then, without changing the state the

system is in, the temperature is changed by 4 T, and the en-

ergy is averaged again over 800 MCS per spin, thus obtain-

ing E(T+hT), which is not an equilibrium value for low

temperatures; finally, C = [E(T+ b, T) —E,~(T))/b, T. The
1

values of C thus obtained are shown at T+
2

5 T.
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have been observed experimentally. Nieuwenhuys
and Mydosh' showed that the heat flow in AuFe re-
laxes as t ', thus the energy relaxes logarithmically.
Furthermore, some specific-heat measurements show
similar behavior to the MC results. For example, the
extrapolation of the CuMn specific-heat data of
of avenger'and Keesom" suggests that the measured
specific heat would vanish for T (1 K.

These long-time effects, on both calorimetric ex-
periments and MC simulations, indicate that one
should interpret any data so obtained with caution. '

For example, if one uses the specific heat of Fig. 7
and the high-temperature value of the entropy
(S„=kln2) to calculate the entropy at T =0, one
gets Sp =0.2 S, while the equilibrium value is in ac-
cord with Nernst's law, as follows from Eq. (2.2).

lows: first, Eq. (4.10) becomes
z

0&X~J~(-» &J, (6.1)

f ac (J/d J)' (6.2)

On the other hand, for a spin next to a number n of
broken bonds, such that 1 ~ n & z, it follows easily
that

f =const(kT/bJ)

for kT && AJ, which leads to

I —q(t) ~const(kT/hJ) ln(r/r)

(6.3)

(6.4)

where z is the coordination number n; =0 (—1) if the
i th bond is fulfilled (broken). If n, =0 for all i, then

VI. COMMENTS

Note that:
(a) The system we treat has no frustration, "but

shows remanence and subsequent logarithmic relaxa-
tion to equilibrium. Our analysis of Sec. III shows
that the continuous distribution of Jvalues, giving
rise to a continuous distribution of barrier heights, is
the fundamental ingredient leading to remanence and
logarithmic relaxation. Thus, we can conjecture, for
instance, that a Mattis' model modified by letting
the exchange constants take a continuous set of
values, still an unfrustrated model, mill exhibit
remanence and logarithmic decay in any dimensions.
On the other hand, a frustrated model with J&j + Jp
does not exhibit a logarithmic relaxation, as Kirkpa-
trick has found, although it shows remanence.

(b) We have shown that X(H =0, T, t) vanishes as
T 0 in one dimension. In contrast, MC work ' jn
two and three dimensions yields a nonvanishing X in
the T 0 limit, in agreement with experimental
results. ' As shown below, this difference is due to
the fact that the systems in more than one dimension
are frustrated (broken bonds are present even in the
ground state).

To get the low-temperature behavior of
X(H =0, T, t), note that the argument leading from
Eq. (4.8) to Eq. (4.14) must then be modified as fol-

again subject to condition (4.14). Spins with no bro-
ken bonds attached to them contribute with a higher
power of T to Eq. (6.4), as foliows from the relation-
ship (6.2), and their contribution is therefore not in-
cluded as it wi11 vanish in the T 0 limit. Equations
(6.4), (4.14), and (1.3) now yield

lim X(H =0, T i) & (const/6J) ln(t/r)
Tm

(6.5)

in agreement with the known results in two and three
dimensions.

Note that the presence of broken bonds at T =0 is
crucial to arrive at Eq, (6.5); indeed, x ~ T' if there
were no broken bonds (as in the Mattis model), as
follows from relationship (6.2). Broken bonds are
present in more than one dimension because: (a)
frustration, and (b) MC calculations do not quite
simulate equilibrium (one would have to wait an infin-
ite time in the T 0 limit for equilibrium to be
reached). In our one-dimensional MC calculation,
we know how to start right off from an equilibrium
state, and hence we get a vanishing X in the T 0
limit, On the other hand, when we started from a
nonequilibrium state, we obtained a nonvanishing X

in the T 0 limit. This result is shown in Fig. 6 as
crosses. The calculation of qr(t) [which yields X, us-
ing (1.3)] started after allowing the system to decay
for 103 MCS per spin (MCS, Monte Carlo steps)
from an initial state with m =1.
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