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Density matrix and spin-dependent correlations of normal liquid He
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The influence of spin-dependent correlations on the one-body density matrix of a Fermi system is explored,
for a normal-state wave function in which difFering Jastrow factors are assigned to pairs in spin-projection
states t t and )&. The structural results of Ristig and Clark for state-independent Jastrow correlations
are generalized by appealing to the commutativity of the assumed correlation operators and the topological
properties of the diagrammatic representations of cluster expansions of the density matrix and corresponding
occupation probability. Application to liquid He (or the electron gas) calls for suitable spin-dependent spatial
distribution functions. Such inputs may be supplied by Fermi hypernetted-chain theory adapted to r, -

dependent correlations. The required extension is carried out for the Krotscheck-Ristig version of the theory,
resulting in two coupled nonlinear integral equations for theoretical determination of the experimentally
accessible spin-dependent radial distribution functions g "(r) and g "(r). Preliminary to a full

implementation of this. approach for liquid He, the spin-dependent structure functions associated with a
Jastrow factor of Schi6'-Verlet type are determined.

I. INTRODUCTION

Substantial advances in the- microscopic descrip-
tion of dense Fermi fluids have recently been re-
corded. ' The ground-state energy per particle,
the spatial distribution functions and static struc-
ture functions, and the momentum distribution and
one-body density matrix have been evaluated in
some detail for liquid 3He and simple models of
nuclear matter, based on variational ground-state
wave functions of state-independent Jastrow type. ' '
The development of methods for summing. , to all
orders, important classes of contributions to the
cluster expansions of expectation values has played
a pivotal role in these studies. Of special impor-
tance are the successful generalizations, ' ' to
Fermi statistics, of the hypernetted-chain (HNC)
techniques long in use for the treatment of Bose
and classical fluids. '3' It is equally significant
that Monte Carlo algorithms are now available'
for testing the accuracy of these new cluster sum-
mation procedures. Favorable comparisons of
such procedures with Monte Carlo evaluations of
the Jastrow energy and momentum distribution
have been reported in Refs. 3 and 9, respectively.

It is now widely recognized that the simple Jas-
trow wave function,

A

O'=F4, F =g f(rtt),

where 4 is the ground-state wave function of the
noninteracting system, provides a valuable start-
ing point for a true quantitative description of
strongly interacting Fermi fluids. The next gen-

eration of studies is addressed to the incorpora-
tion of the essential state-dependent correlations
absent from the Jgstrow ansatz. In one general
approach to this problem, the model function C is
replaced by a complete set of energy eigenfunctions
of the noninteracting system, and perturbative
computations are performed in the correlated ba-
sis so generated. ' '5 In the second general ap-
proach (which may be combined with the first's);
the correlation factor I' itself is generalized to
carry state dependence of varying degrees of com-
plication.

Presently, the second approach is being ener-
getically pursued toward a quantitatively accurate
evaluation of the ground-state energy per particle
of nuclear matter assuming realistic, highly state-.
dependent nucleon-nucleon interactions 16-20 IQ this
context it is necessary to assume a correlation
operator I depending explicitly on tensor and spin-
isospin operators. ' ' ' Unfortunately these op-
erators do not in general commute with one anoth-
er. This complication presents a serious obstacle
to acceptable generalization, to realistic nuclear
matter, of the Fermi HNC procedures developed
for wave function (1).

Here we shall focus instead on Fermi fluids
like liquid 3He and the electron gas, for which a
useful and tractable generalization of the estab-
lished Fermi HNC methods can be readily accom-
plished. These systems are of course quite im-
portant in their own right. Much effort has been
directed toward a quantitative understanding of the
ground-state correlations of the electron gas,
which is one of the most fundamental models of
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solid-state physics. 3' Normal liquid He enjoys
continued theoretical attention, while a new gener-
ation of experiments (and experimental facilities)
is opening up the field of high-. flux neutron scatter-
ing studies of this system. ' Spin-dependent.
correlations, in particular, are beginning to play
an interesting role. In principle, information on
such correlations may be extracted from neutron-
and x-ray scattering experiments.

The interaction between two 3He atoms (in the
case of the electron gas, the Coulomb potential)
does not depend significantly on the spin degrees
of freedom. This property allows one to treat 3He

atoms with opposite spin as different particles;
accordingly, the wave function need only be anti-
symmetric with respect to exchange of the coor-
dinates of the constituents with the same spin pro-
jection. ' A generalization of Eq. (1) appropriate
to exploration of the effects of spin correlations
(in addition to spatial correlations} is therefore
provided by

gttp4lpt l c t t
@

& l (2)

E"= Qf (r,„,), E"= IIf (r„,),

E' =II f'(r)a)

(3)

where k, k' (l, l') denote pairs of particles with
spin up (spin down). By symmetry, the two-body
correlation factors defining I"" and I'" must be
identical. The independent correlation functions

f~(r) and f '(r) approach unity for large distance r
and are determined at small r to take care of the
singular behavior of the potential.

For the explorations to come we replace ansatz
(2) by the equivalent trial function

4=E(l, . . . , A)4, (4)

where C is again the ground-state wave function of
A. nonin ter~cting fermions with spin proj ec tion
s =+1. The correlation operator E(1, . . . , A) is of
the familiar pair-product form

E = Qf(fg),

but the two-body factors are now spin-dependent
operators,

f(12) =—,'[f~(r} +f '(r)]+ ,'g„o2,[f~(r) -f '(r)].—(6)

Ansatz (2) describes an antiferromagnetic two-
component Fermi system, 4" or 4" being a Slater
determinant of A/2 independent fermions of paral-
lel spin. For the correlation operators we assume
the conventional Jastrow form:

II. ONE-PARTICLE DENSITY MATRIX

The one-particle density matrix '(r'
~

I"&
~

r ') cor-
responding to the ground state of a homogeneous
isotropic Fermi fluid depends only on r= ~r' —r'~.
This quantity is related by a Fourier transforma-
tion

)r')&)', )&r') =n)x) =—-
~ fn(a)e' die,

"'

to the average occupation n„" =n(k) of single-parti-
cle orbital 0:

ng =(@~a~a.
~
@)/(@~@).

The operator a;(a)",) is the usual creation (destruc-
tion) operator for a fermion of momentum hk and

specific spin projection, s =+1. The one-particle

(8)

Henceforth we shall abbreviate v&„o2„etc. as
0'~, 02, etc.

T' he state dependence (6) is particularly simple
because all spin operators commute with one anoth-
er. A study of the consequences of ansatze (4}-(6)
may yield useful clues for dealing with the more
robust forms of state depend. ence important in
realistic nuclear matter.

This paper presents a detailed study of the one-
particle density matrix associated with the tria)
state (2)-(3) or (4)-(6). We draw heavily from
structural results derived earlier for the density
matrix based on ansatz (1)—results which we prop-
erly generalize. In addition, we extend one ver-
sion of Fermi HNC theory' ' to deal with the
spin-dependent correlations of (4)-(6). As a pre-
liminary numerical application of our formalism,
the spin-dependent structure functions are calcu-
lated assuming state-independent spatial correla-
tions for which comparable Monte Carlo results
are available.

The formal structure of the one-particle density
matrix of a two-component Fermi fluid described
by ansatze (2)-(3) or (4)-(6) is explored in Sec. II.
In Sec. III we accomplish a partial summation
analogous to the compact cluster summation of the
function Q(r) performed in Ref. 6. The general-
ization of the Fermi HNC procedure of Krotscheck
and Ristig' ' is sketched in Sec. IV. This gener-
alization is needed for a projected determination
of optimal spin-dependent structure functions,
which will serve as inputs in the evaluation of the
one-particle density matrix of liquid He. Section
V collects some technical results which may help
to elucidate the physical content of the structural
results on the density matrix. Section-VI is devot-
ed to the aforementioned numerical evaluation of
the spin-dependent structure functions of liquid
3He for sPin-indePendent correlations.
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density matrix (7) is seen to coincide with the par-
ticle density p =k+2 j3v for vanishing distance r,
where k~ is the Fermi wave number.

A powerful theory of the quantities (7) and (8)
based on spatially correlated trial ground-states
of type (1) has been developed in Ref. 6 and applied
numerically in Refs. 7-9. (For further formal
developments, see Ref. 32.) The density matrix
(7}is found to possess the structure

with the strength factor n given by n = exp Q(r = 0).
The deviation of the sum N, (r}+N2(2') from unity
reflects important exchange effects.

Furthermore, the occupation probability (8) may
be decomposed as

n(k) =n[N(k) +N, (k)], (10)

in such a manner that the function N1(k) describes
the effect of the Fermi medium. That is, N1(k)
vanishes for k & k&, and the discontinuity of the oc-
cupation probability at the Fermi surface is given
by 12N1(k = kl ).

The functions Q(r), N, (r), N2(2), N(k), and N, (k}
are defined in terms of their cluster expansions,
which contain only irreducible contributions. Ref-
erence 6 presents also a compact cluster summa-
tion of the Q(2') expansion, in terms of the success-
ive spatial distribution functions g2(r1 r2) =g(r12),
g, (r1 r2 12), . . .corresponding to the wave function
(1). The contributions to the various cluster ex-
pansions may be represented most conveniently by
generalized Ursell-Mayer graphs. The basics of
this diagrammatic scheme for state-independent
correlations of Jastrow type (1) may be found in

Reft. 6 and 10.
To generalize the formalism and results of Ref.

6 to two-component Fermi fluids described by an-
satze (2)-(3), we employ the equivalent expression
(4) involving spin-dependent Jastrow correlations
(5) and (6). It is essential to realize that result (9)
rests on t,he topological structure of the cluster
expansion for the probability (8) and the pair-prod-
uct ansatz (1) with commuting factors f(r, 1). Con-
sequently, the density matrix n(2) and occupation
probability n(k) associated with the spin-dependent
correlated state, Eq. (4}-(6), still exhibit the
respective structural properties (9) and (10}. The
functions Q(r), N, (r), N2(2), N(k}, and N, (k) are
now of course functionals of f~(r) and f '(r), and
are thus more complicated than for the ansatz (1),
i.e., for f~(2') =f'(r). Nevertheless, we may rep-
resent the cluster expansions which define these
five quantities by the same sets of diagrams as
given in Ref. 6, provided we adopt an appropriate
generalization of the graphical rules.

A wavy line connecting two dots, labeled say 1

and t,he superscript s refers to the spin-density
corr elation

(14)

A light oriented line represents the exchange op-
erator

l(12) =—,'(I +o,o2)l(k 2 12),

where l(x) is the Slater exchange function l(x)
= 3x '(sinx-x cosx). Note that this convention
differs from that introduced earlier. ' Equation
(15) expresses quite plainly the fact that Pauli
exclusion applies only to fermions with parallel
spin projections.

A heavy oriented line represents a plane-wave
function A '8'."'». A solid dot labeled 1 implies a
factor p together with an integration fdr, and an
average over the spin projection s, of the particle
at point 1. Two open dots, labeled 1 and 2, imply
if present a dependence of the corresponding con-
tribution on the separation 2' =

~
r1 —r2

~

and the spin
operator O,o2. Similarly, three open dots, labeled
1, 2, and 3, imply a dependence on the spatial co-
ordinates r&, r2, r, and the spin operators o&o„
a&a'3, o2o', . The oriented lines will always form
closed loops, if two open dots joined by them are
counted as one.

In contrast to the rules of Refs. 6, 8, 10, no
statistical weight factor need be assigned to any
loop. Its effect is already absorbed in the spin-
dependent form (15) of the exchange operator l(12}.

In order to make the graphical formalism more
accessible, we have collected in the appendix a
number of typical cluster expressions and their
diagrammatic counterparts.

Equipped with the above generalized graphical
rules we may represent the cluster. series

N(k) = [&N (k)]2 + [b N(k)]2 + ~ ~ ~

and

(16)

N1(k) =[&N1(k)]1 + [&N1(k)]2+ [b N, (k)12+ ~ ~ ~ (17)

which define the functions N(k) and N, (k) associated
with the states (4}-(6), by the sets of graphs given,

and 2, stands for the spin-dependent operator

g(12) =f(12) —1 = r"(r, 2) + g'(r 12)o,o2

~ (+12)&(1+o1o2)+~ ( 12)&(I o1o2)'

A dashed line depicts the operator

1}(12)=f (12) —1 =1}"(r12) +q'(r»)o, o2

=1}(&,2)—,'(1+(r,a2) +2}'(r,2)2(I —o,cr2). (12)

The superscript m indicates the overall (mass den-
sity} correlation
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FIG. 2. Graphical representation of the bvo- and
three-body contributions to the cluster expansion. de-
fining N& (A'). The first diagram depicts the occupation
probability for noninteracting fermions.

FIG. 1. Graphical representation of the two- and
three-body contributions to the cluster expansion de-
fining N(A).

respectively, in Figs. 2 and 4 of Ref. 6. Figure 1

shows the two- and three-body cluster contribu-
tions to the function N(k), while Fig. 2 depicts the
two- and three-body portions of N, (k). The step
function [AN, (k)J, = e(kz —k) originates from the
statistical properties of the noninteracting Fermi
gas.

Similarly, the strength factor n appearing in
Ell. (10) is given by

inn =Q(r = 0) = 2D[/] —D[l)]. (18)

Nl(12) =[ENl(12)]l + [AN)(12)]2

+ [b Nl(12)]) + ~ ~ ~,

N2(12) =[AN2(12)]2+[2 N2(12)]3+' ' '
I

Q(12) = [SQ(12)],+ [aQ(12)J, + ~ ~ ~ .

(20)

(21)

(22)

The functional D[f] is defined by the cluster expan-
sion

D(r J = (»[t]),+ (»[fJ), + (»[K])4 + ~ ~ . (19)

Its diagrammatic representation is indicated in
Fig. 3.

We next turn to the ingredients N&(r), N~(r), and

Q(r), which form via (9) the one-particle density
matrix of the correlated states (4)-(6). It is most
convenient to introduce, in analogy to the scheme
of Refs. 6, 9, the (spin-dependent) operators

tural result (9) follow as spin averages:

Nl(r) = —, Q (s1s21Nl(») Isls2),
S)S2

N2(r)
2 Q (sls21 N2( 12)ls1s2)

S)S2

Q(r) =—Q (s,s21r'(I + ol&,)Q(12)
I sls2).

S)S2

Equivalently, we may introduce the operator

n(12) =pn[N&(12) +N2(12)]e o"~' (24)

n(r) =—p (sls21n(12) Isls2).
S($2

(26)

Relation (25) follows if we observe the properties:

Nl('12) = r~(1 +ol(T2)N f(r),

N, (12) =-,'(I +v,o, )N, (r). (26)

III. COMPACT CLUSTER SUMMATION

In Ref. 6 massive partial resummations of the
cluster expansion of the function Q(r) were accom-

A(ZDrg) =~~, 2Abn):g) =
2 ' 3

2A(kogj) = . + . . -2 -2, -2!', .~ —2-;"
4

and derive the one-particle density matrix for a
Fermi fluid described by the wave functions (2)-(3)
or (4)-(6) as the trace of expression (24):

The leading cluster contributions are represented
by the diagrams shown in Figs. 4, 6, and 6 (or in
Figs. 7, 9, and 8 of Ref. 6). We stress that the
more general interpretation adopted here, in which
dynamical lines stand for commuting operators,
allows the treatment of more complex systems
than is possible with the version of the theory ex-
plored in Ref. 6.

The constituents N, (r), N2(r), and Q(r) of struc-

iP-m ) 4&.—+ i+—i l —2" —2

2) 2 ]
l ~l + i, +2 +2 I +

FIG. 3. Graphical representation of the two-, three-,
and four-body contributions to the cluster expansion
defining the functional Df, g) .
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I.&N(~2)j = o -LAN&(i2)3z =

[BN(l2)j =-2 ' + ' —2 ' + '. ' +
I

-t:ax&(iz)j& = 2 + +z +2 +

+p ~ +p

FIG. 4. Graphical representation of the exchange
operator of noninteracting fermions and. the two- and .

three-body contributions to the cluster expansion of
the operator N& (12).

plished in terms of spatial distribution functions
corresponding to the Jastrow wave functi'on (1).
This procedure may be applied as well to the clus-
ter expansion (22) of the operator Q(12) associated
with the more general wave functions (4)-(6}. We
arrive at

Q(12) = [AQ(12)]"~ + [EQ(12)]t2~ +

For. use in relation (18) we obtain

D[f] (~[/])C[] + (~[)])(23+ (sg)D[f])t31 +. . .
(28)

All terms appearing explicitly in Eqs. (27) and (28)
are displayed graphically in .Fig. V.

The blob with two dots on it symbolizes the corn-

FIG. 5. Graphical representation of the two- and
three-body contributions to the cluster expansion of
the operator N2(12).

pact part, g(12) —1, of a spin-dependent distribu-
tion operator g(12), which is defined by means of
its cluster expansion

g(12) = [b g(12)]2 + [hg(12)]3+ ~ ~ ~ (29}

The two- and three-body portions of g(12) are rep-
resented diagrammatically in Fig. 8. In like fash-
ion, the blob with three dots on it stands for
g(123) -g(12) -g(13)-g(23) +2, where g(123) is a
three-body distribution operator, the Iowest-order
cluster approximation to which is explicated in

Fig. 9. The graphical rules stated in Sec. II apply
in the.presence of these new elements; for exam-
ple, the next-to-last diagram of Fig. 7 represents
t

2AQD[g])t2~ = P (ij k
I &(12)g(13)[g(23)—1] lijk)

=—.p' P f drsdrsdrs(ssssss]2(12)g(12)[g(22) —1][s,esse).
8

S)8)8q

(30)

Inspection of cluster expansion (29) reveals that
the operator g(12) is of the form S(2) =1+p f[g(r) —1]e' 'dr

g(12) =g(&[2) + &[o2g (~[2). (31) (4 I p][p~l 21)

A (4 I4)
(34)

g' (&) = [g (&) -g (&)]. (33)
] s

Here g"(r) and g"(t') are the radial distribution
functions for particles with parallel and opposite
spin directions, respectively.

The Fourier transforms of g(x}-1 and g'(i) may
be given direct physical interpretation in terms
of (mass-) density and spin-density fluctuations.
They define the liquid structure function S(k) and
the spin structure function S.'(k) through

The "overall" component g(r) may be identified
with the radial distribution function'3

(32)

while the coefficient of the spin operator o&o2 is the
spin distribution function defined by

;],.; 1 (4 I p'-p'I 0S'(2) =1+p fg'(r)e"'dr =—
(0 I @)

The operator p]", =Z, e' '2 produces the (mass-}

-t~@~~~)~p =

+zI

g. L

3-'X
P [ l

I'IG. 6. Graphical representation of the two- and
three-body contributions to the cluster expansion of
the operator Q(12).
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oj C2j I

-CQ(I2) j -CBQ(I2)j = + 2 +
2

0
g(123) = )+

0-—M

pI+
d o

l+
o b

cij
A(QDCQ)

x I
— — — +2 + ~ ~ ~

2!A{8,DC)3)
f23

XA(aOgl)
C53

FIG. 7. Graphical representation of addends in the
compact expansions of the operator Q(12) and the func-
tional D[&1 in terms of the distribution operators.

density fluctuations; analogously, pf =2& o;e'"'~
generates the spin-density fluctuations. Quantities
(34) may, in principle, be measured for liquid He

by means of neutron- and x-ray scattering.
The three-body distribution operator g(123) which

appears in the term (&D[f]) 3 has the structure

g(123) =g(r„r&, r, ) + [g'(rf I p r3)0((TJ+c.p.j. (35)

Inspection of Fig. 9 demonstrates that the spin-
independent component of (35) is the familiar
(spin-averaged) three-body spatial distribution
function,

g(ri r»r3) =-'(g'"+g"'+g'"+g'") (36)

For the coefficient g'(r&, r&, r3) one finds

g( ir, r~, r3)= '(g'"+-g"'-g'"-g'") (37)

The functions g'&'P3 =g'&'&'3(r„r&, r3) are the vari-
ous three-body spatial distribution functions for
fermions of specified spin projections. The con-
nection of g(r„r&, r3) and g'(r„r~; r3) to density
and spin-density fluctuations is made by trans-
forming (36) and (37) into k space; we generate,
respectively, the three-particle structure func-
tion'"

and the quantity

1 &+ ~ pr, pr)p ~, =~, ~ @)
A (+)+)

(38)

[hg(12)] = I + o- —-o
2

[h,g(12)] = 1+o-- -o
6 b ~ 6%

—2 ' +2 +26

FIG. 8. Graphical representation of the two- and
three-body contributions to the cluster expansion of
the operator g(12).

O'
Q

S'(k„k, —k, —k ) = — P"'P" "' "' . (39)
A (@ I @)

The operators N, (12) and N, (12) are defined by
their cluster expansions (20) and (21), respective-
ly. It would be desirable to perform compact clus-

FIG. 9. Graphical representation of the cluster ex-
pansion of the operator g(123).

ter summations for both. quantities in analogy to
the procedure executed for the operator Q(12), as
this would allow a more consistent numerical eval-
uation of n(r) and N(k) than has been achieved so
far. ' ' Such a treatment of N&(r) and N&(r) will be-
come imperative once optimal correlation func-
tions f (t') and f '(x) become available, since the
optimal functions are necessarily of long range,
having components decaying only as x for x- ~
(or as x ' in the case of the electron gas). Optimal
correlation functions could be determined in prin-
ciple —and hopefully. in practice —as solutions of
Euler-Lagrange equations3' based on Fermi HNC

or other integral relations between the correlation
and distribution functions.

For the state-independent Jastrow wave function
of (1), Fantoni" has recently been able formally
to sum the series for Q(0) and N(k) +N&(k) in terms
of series of basic"' diagrams, by means of a
complicated set of coupled nonlinear integral equa-
tions. It is of considerable interest to apply this
formalism numerically to the helium liquids and
to extend it to the o;dependent correlations stud-
ied here. Work along these lines is in progress.

IV. TWO-COMPONENT FERMI HNC RELATION

As a first step toward determination of an essen-
tially optimal correlation operator f(12), one may
develop generalized HNC relations that are suited
to the spin-dependent correlations (6). In the next
step one could establish Euler-Lagrange equations
for f(12) by proceeding along the lines of Lantto
and Siemens' generalization33 of the paired-phonon
analysis'3'3 to Fermi fluids, that is, by functional
variation of the energy expectation value with re-
spect to f (r) and f '(r) and an appropriate set of
auxiliary functions, subject to the Fermi HNC re-
lations as constraint.

Let us begin with the Fermi HNC scheme pro-
posed by Krotscheck and Ristig' ' for state-in-
dependent correlations. Their formulation allows
proper care to be taken, at each s tage of approxi-
mation, of certain important effects of the exclu-
sion principle. The relationships of the Krots-
check-Ristig version of Fermi HNC theory to that
of Fantoni and Rosati" have been elucidated in
Refs. 1 and 35.

The principal features of the Krotscheck-Ristig
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approach are made explicit in terms of five char-
acteristic functions, viz. L(r}, P(r), B(r), %(r),
and R(r} o—r, equivalently, their conveniently
normalized Fourier transforms L(k) = p J L(r)e' '"
dr, etc. Tbe quantities L(r) —p '6(r) and P(r) are
represented diagrammatically by the sums of all
non-nodal diagrams'4 with two open dots having
exchange lines attached to both, of these points and
to a chosen one of them, respectively. The quanti-
ty B(r) is represented by the sum of all elementary
diagrams' having no exchange lines attached to the
two open dots present. Tbe function R(r) is a
"dressed" or "renormalized" version of the cor-
relation bond ))(r) =f (r) —1; in Refs. 10 and 12 it
was denoted by vj„(r} or by g»(r). The quantity
X(r), represented by the sum of all nodal dia-
grams'4 with two open dots and no exchange lines
joining them, may be regarded merely as a re-
dundant function which permits a convenient pre-
sentation of the HNC equation. This relation reads,
for state-independent correlation functions f(r)

f'(r) =f '(r. ),

61(k)[1+R(k)L(k)j

=R(k)(1 +R(k)L(k) —[1 —P(k) j f (40)

together with

R (r) =f2(r) exp[Jt(r) +B(r)j —1. (41)

S(k)[l —P(k)j =L(k)[1 +R(k)L(k}j. (42)

We shall cast Eq. (42) into an abstract operator
form suitable for generalization to the presence of
spin-dependent correlations (6). First Eq. (42) is
transformed into r space to obtain

Given suitable approximate inputs for the func-
tions L(k), P(k), and B(k), Eqs. (40)-(41) gener-
ate a corresponding approximant for the quantity
R(r). The functions L(r), P(r), and B(r) can in
turn be expressed more compactly in terms of the
renormalized bond R(r). Numerical calculations '3

for liquid 3He -indicate that simple approximations
to I., P, arid 8 of low order in the number of re-
normalized bonds may suffice. A reasonable
starting point is provided by setting L(k) =Sz(k)
and P(k) =B(k) =0, where S~(k) is the static struc-
ture function of the noninteracting Fermi gas. '3

Such computational matters will b'e considered
further in Sec. VI.

A connection of the dressed dynamical bond R(r)
with the liquid structure function —which is here
the fun'ction of prime interest —may be established
by the structural relation

G(r») —2P(r»)+pf P{r»)P(r»)dr~ —5pf P(r»)G(r»)dr~+p P(r»)G(r»)P(r»)dr~dp~
5

=EL(r, 2) +R(r, 2) +2p R(r(3)AL(r23) dr, + p r5L(r(g)R(r34)&L(r24) dr, dr4 (43)

with G(r) =g(r) —1 and AL(r) =L(r) —p '6(r) Sym-.
bolically we may write

G —2P+P —2PG +PGP

= b L +R + 2R(b.L) + (rdL)R(r4L), (44)

upon agreeing to define the product of two opera-
tors, say P and 8, by

Pd{= pg fdp, {r,~p(r»)){(r—»)~s,). (45)
s3

In tbe same way, the Fermi HNC relation (40) may
be expressed in operator form as

st+&R +R(b L)&=R2+R(r L)R pRp+ 2PR. —

(46)

Equations (44), (46), and (41) are derived purely
from the topological structure of the underlying
diagrammatic representation. Thus they are valid
also in the more general case of differing corre-
lation functions for pairs with parallel and anti-
parallel spins, f~(r}«f'(r). All we need to do is to
replace the various functions of relative distance

f

r appearing in Eqs. (41), (44), (46), and (46) by the
corresponding spin-dependent operators, i.e.,
f(r), G(r), R(r), L(r), P(r), B(r), audit(r)-f(12),
G(12), . . . . The operator quantities are defined by
precisely the same sets of diagrams as their coun-
terparts of the simpler case f~(r) =f'(r); of course
the new graphical rules spelled out in Sec. II are
now to be applied. In particular, Figs. 10 and 11
give the diagrammatic contributions of low order
in the cluster expansions of the operators L(12),

f)5 L02)32

LELOZ)]& = —~-~+2 r

+2 d' +2 d. 4 +2 /

t:b,p{I2)3 = —2 ' -2

FIG. 10. Graphical representation of the two- and
three-body contributions to the cluster expansions of
the operators I and &,
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l.b,R(~2)3 = o--~ 0 [b,R((2)j = ' 'g + ' ' t

g l
0 P 2 0 P l + 4 I

KQ 691 &~ &&3r
b d b b 6' b b' b 2P 'g 2y

FIG. 11. Graphical representation of the two- three-,
and four-body contributions to the cluster expansion of
the dressed dynamical-bond. operator R(12).

P(12), a.nd R(12),

aL, (12) = [d,l.(12)J, + [d,r, (12)] + ~ ~ ~

P(12) =[bP(12)]s+' ' '

R(12) =[dR(12)]2+[hZ(12)]3+[bA(12)J4+' ' '
~

(47)

Further questions on representation, differing
modes of classification of contributions, and par-
tial summations are touched upon in Refs. 1, 4,
10, and 35.

Equation (46) together with the operator version
of (41}amounts to two coupled nonlinear integral
equations for the ingredients R(r) and R'(r) of the
dressed dynamical-bond operator R(12) =R(r)
+R'(r)o, o2 Upo.n specialization to f =f ', we have
R'(r) =0 and the original Fermi HNC equations
(40) and (41) for state-independent correlations
are recovered. Specialization to bosons, i.e.,
setting 4L =I' =0, yields the classical HNC
scheme for a two-component Boltzmann system. 3'

%e note that a generalization similar to the above
has been carried through by Smith in the frame-
work of the Fantoni-Rosati approach to Fermi
HNC theory.

V. REDUCTION TO r SPACE

Practical evaluation of the distribution functions

gii(r) and g'l (r) [or equivalently the structure func-
tions S(k) and S'(k)] via, Eqs. (46) and (44), and the
operator form of Eq. (41) begins with summation
over the spin degrees of freedom. Thereby the op-
erator HNC equations are recast as a set of two

coupled integral equations.
Such reductions to r space are achieved by ele-

mentary algebraic manipulations which may be
omitted here. However, additional physical in-
sight can be gained by an examination of the pure
r-space versions of Eqs. (27), (20) and (21). To
this end, we introduce further graphical elements.
The function f (r) entering Eq. (11) is denoted by
a wavy line bearing index m, while indices s, P,
and a are attached to indicate the functions f'(r},
k' (r), and 0'(r), respectively Likewise. , the func-
tions q"(r), . ..of Eq. (12) are represented graphic-

ally by dashed lines with indices m, . . . . Further,
a (light) oriented line with subscript P symbolizes
the familiar exchange function l(k~r) of Eq. (15)
(without the spin projector). A loop containing o.

points constructed from such exchange lines is
accompanied by the weight factor 2 ' appearing
in the original diagrammatic rules for state-in-
dependent spatial correlations (1).

The r-space versions of (20) and (21) are

Z, (r) =[~,(r}],+[~,(r)], + ~ ~ ~,

A, (r) = [aV, (r)], + ~ ~ ~ . (48)

Q( )=[ Q( )] +[ Q( )] '+ ~ ~ ~ (49)

are displayed in Fig. 13. We notice that Q(r) may
be viewed as a superposition of three components;
a first term (sum of diagrams with m labels only}

2.'A(AD[gj)
LH

fg] m s s
ZA(h, DL.g) m +~ N

ITl S

FIG. 12. Symbolic representation of the second and
third addends of the compact expansion of D[&] in terms
of mass- and spin-densig distribution functions g{r},

( ) ~ 8( $ 2 3) g (rf r2 r3) '

The cluster contributions appearing explicitly in
(48} have the same diagrammatic representations
as the corresponding terms of (20) and (21), ex-
cept that a P index is to be associated with each
line element. The higher contributions [bX,(r}]3,
[LDl'2(r)]„etc. involve sets of diagrams of rapidly
growing complexity, with a line indices interspers-
ed among the inevitable P labels.

The functional D[f] related to Q(r =0) via Eq.
(18) has the reduced graphical representation ill-
ustrated in Fig. 12. Consider the contribution
(AD[/])t2'. The two-dot blob labeled m represents
the function g(r) —1, and the blob with index s
stands for the distribution function g'(r) The. term
(dd)[f])' involving the compact part of the three-
body distribution operator g(123) is decomposed
into two qualitatively different portions. The first
part contains a three-dot blob specified by index
m, which represents the overall function

g(r„r„r,) -g(r») g(r»)—g(r»)—+ 2. The second
part, describing the effect of the interference of
mass- and spin-density fluctuations, involves the
function g'(r„r„r,) —g'(r, ~), which is depicted as
a three-dot blob labeled ssm.

Elimination of the spin degrees of freedom gen-
erates a similar decomposition of the function
Q(r) into physically distinct portions. The first
and second terms of its compact expression
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-lQ{r)j = +

m
'

N N
I

S

-LGQ(r)] = m +2 m m +™m + — m
2 N

N ITl S

N N S S

+2S m+m m+ s +2m s

S S S

S S N

+m s +p s s+m s

. S, N S

FIG. 13. Symbolic representation of the first two
addends of the compact expanston of Q(r) in terms of
mass- and spin-density distribution functions-.

VI. THEORETICAL STRUCTURE FUNCTIONS

To demonstrate the efficacy of essential com-
ponents of the scheme described herein, and to
provide a starting point for more elaborate appli-
cations of it, we have evaluated the spin-depen-
dent structure functions S"(k} =-,'[S(k) +S'(k)] and
S ' = ~[S(k) —S'(k)] associated with a Jastrow
ground-state trial function (1) containing state
indePendent correlation factors of Schiff-Verlet
type. That is, we take"

f(12) =f(rf2) =exp[-2(ajrf2) ]. (50)

Such correlations have been studied recently in
Refs, 5 and 9, with a =2.888 A at p =0.0142 A 3.

which describes the effect of mass-density fluc-
tuations, a second term (sum of diagrams with s
labels only) arising from spin-density fluctuations,
and a third term (diagrams with both s and m la-
bels) which accounts for the interference of the two
kinds of fluctuation. For completeness we provide
in Fig. 14 the diagrammatic representation of the
distribution functions involved, i.e., the functions
g(r} and g'(r) or, more conveniently, g"(r) and
g"(r).

L(k)[1+R(k)L(k)]
[1 —P(k)]' (53)

The function S'(k}—1(or rather its Fourier in-
verse) is represented graphically by circular-ex-
change diagrams, i.e., diagrams of the "cc"class
of Refs. 1 and 18. Figure 15 gives the leading con-
tributions to the diagrammatic cluster expansion
of hL'(r) in terms of the renormalized bond R(r)
The latter function is determined from the bare
dynamical bond r)(r) =f2(r) —1 via the Fermi HNC
equations (40) —(41). In Fig. 15, R(r) is depicted
by a heavy dashed line. Besides hL'(r), the func-
tion

In particular, Ref. 5 gives results for the spin-
dependent structure functions derived via a Monte
Carlo sampling algorithm, for 114 particles. It
is of considerable interest to assess the degree of
agreement of our Fermi hypernetted-chain evalua-
tion with these Monte Carlo results.

The operator version of Eq. (44) is easily recast
in momentum space, to yield a set of two algebraic
equations for the quantities S(k) and S'(k) [or S '(k)
and S"(k)]. The operators G, P, . . .are all of the

type t'(l2) = &(rf2)+0 (rf2)ofo2 Introducing the
Fourier transforms e(k) =pf 0(r)e'"'"dr and e'(k)
= pJ f)'(r)e'"'dr, we obtain

[1 + G(k)][1-P(k)]

=[1+bL(k)l/I+R(k}[1 +dL(k)D (51)

together with a second equation which is of the
same form but with functions s(k) replaced by
o'(k). These equations determine, respectively,
the structure function S(k) =-1+G(k} and the spin
structure function S'(k) =—1+G'(k).

For state-independent correlations we have
R'(r} =P'(r) =0. The equation for S'(k) then col-
lapses to

S'(k}=1 + &L'(k);

that for S(k), with 1+ bL(k) =L(k), of course sim-
ply reproduces Eq. (42):

P

g (r) = I+o.-~ I-2~+ — ' ' +-P / + ( a+a
2d & 26 b

P P

b L(r) =L(r) —p '5(r) = hL'(r) + L2(r)

P P(T
hL (r) =- +2 pr P p + ~ ~ ~

P P P P
P

(54)

+OP ~ P+ 4 P ~ ~ P+ "
P

g~(~) = ~+o--~ I+ ~ ~ -2 ~ —2 ~ ~ + ~ ~
a +a a a

6 b

FIG. 14. Graphical representation of the cluster ex-
pansions of the radial distribution functions for pairs
with parallel and opposite spin projections. As in Figs.
12-13, all diagrams are here to be interpreted simply
as (multiple) integrals over r space.

P P P r

L2(r) = p p P p+ -4P P +2 p
p pp +

P P P

P

P(r) -" — f) + .-' P + "~6--- P p

FIG. 15. Graphical representation of the leading
terms of the expansions defining the functions ~ (i),
I 2(r), and P(r). All diagrams are to be interpreted as
integrals over r space and contain one or two renor-
malized bonds A(r).
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contains a sum of terms L2(r) represented by dia-
grams of the exchange-exchange or "ee" class of
Refs. 1 and 18. The diagrams contributing to the
renormalized-bond expansion of L2(r) must involve
at least two heavy dashed. lines; those with exactly
two are shown in Fig. 5. This figure also displays
the leading diagrammatic contributions to the func-
tion P(r) entering formula (53}.

The version of Fermi HNC(FHNC) theory adopted
in thepresent work is especially suited to explica-
tion of the low-k behavior of the structure functions
(34) and the relation of this behavior to the asymp-
totic properties of the correlation operator (6}.
For a state-independent correlation function with
asymptotic behavior

f(r) - I + X/4w2r2, r (55)

the spin-averaged structure function is found to
have the long-wavelength behavior'

S(k) - n~(l —Apnea) 'k, k 0'. (56)

Here, n~ ——3/4k~ is the slope, as k-0', of the
structure function S~(k) of noninteracting ferm-
ions. For a "short-range" correlation function
like (50), one has A. =0 and the slope of S(k) as
k —0' coincides with that of the free Fermi gas.

It follows from Eq. (52) that the spin structure
function S'(k) associated with a state-independent
correlation factor has the property

S'(k)-npk, k —0' . (57)

(One need only note that the low-k behavior of
&L'(k} is governed by the first term in its renor-
malized-bond cluster expansion, Fig. 15.) The re-
sult (57) holds for "long-range" spatial correla-
tions [with asymptotic form (55)J as well as "short-
range" correlations [e.g. , choice (50)]. We can
obtain a differing slope of S'(k) at k =0', meaning
S'(k)-nk(k-0') with n Wnz, if spin-dependent
correlations of long range are present in the trial

I.O
0 o o

0

0.5

O. I

0.5 I.O l.5
k(A )

I

2.0
I

2.5

FIG. 17. Theoretical spin structure functions S~(k)
of liquid He at density p =0.0142 A, for Schiff-Verlet
correlation function (50), in the indicated FHNC —ap-

proximations. The circles are Fermi Monte Carlo re-
sults of Ceperley, Chester, and Kalos. s

function (4), i.e. , if we entertain a, state-dependent
correlation factor with asymptotic form

f(12)-1 + (X + X,c,o2)/4w r, r -~. (58)

Thus, at least in principle, experimental deter-
mination of the spin structure function S'(k) at low

wave numbers may yield valuable information on

the presence or absence of a A., component in-the
ground-state correlations of normal liquid 3He.

Our numerical evaluation of the structure func-
tions is based on choice (50), the structural Eqs.
(52}-(54), and the Fermi HNC Eqs. (40)-(41). The
hypernetted-chain procedure begins with the FHNC—
0 approximation, ' which is defined by setting L(k)
=S'(k) =SJ (k), P(k) =B(k) =0. An improved ap-
proximation incorporates the contributions to L(x)
and L'(r) containing one renormalized bond and the
contributions to P(r) with two such bonds. This
approximation, deemed to be rather accurate, is
labeled FHNC —1-2. Referring to Fig. 15, it cor-
responds to truncating the b,L'(r) and P(r) expan-

, sions at the dots and dropping L&(r) altogether.
The results for S(k), S'(k), and S"(k) are plotted

in Figs. 16, 17 and 18, respectively. For compari-
son, we also include data points derived from
Fourier transformation of the Fermi Monte Carlo

I.O

O. I—

0.5

O. I

0.5 I, O

k(A )

l.5
I

2.0
I

2.5

& -O. I

-0.2

-0.4 I

0.5

0

I

I.O
I

l.5

—I-2

I

2.0
I

2.5

FIG. 16. Theoretical structure function S(k) of liquid
He at density p =0.0142 A 3, for Schiff-Verlet correla-

tion functon (50), in the indicated FHNC —approximations.
The circles are Fermi Monte Carlo results of Ceperley
Chester, and Kalos. 5 Also shown for comparison j.s the
structure function Sz(k) of the nopinteracting Fermi gas.

k(K )

FIG. 1S. Theoretical structure function S (k) forth

antipargllel spins in liquid 3He at density p =0.0142 A

for Schiff-Verlet correlation function (50), in the indi-
cated FHNC —approximations. The circles are Fermi
Monte Carlo results of Ceperley, Chester, and Kalos. ~
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l.0
(A5)

(Ae)

(A6) (A7) ~

{Alo) ) (All) (+

(g)) o-~o (A2) ~ (A&) ~ (A4)

(AB)

(A~2)

0.5

2.0 3.0
I

40
I

5.0

)4)3) 4' '3 (il)4) + (ll)3( Q (4)6) ~
. FIG. 20. Diagrams representing the analytic expres-
sions of the appendix.

r ('A )

FIG. 19. Theoretical radial distribution functions of
liquid 3He at density p =0.0142 A 3, for Schiff-Verlet
correlation function (5), in the indicated FHNC —approxi-
mations. The circles are Fermi Monte Carlo results
of Ceperley, Chester, and Kalos. ~

results for spin-dependent radial distribution
functions. 2

It is seen from Figs. 16-18 that the behavior
of the structure functions expressed by Eqs. (56)
and (57) with X =0 is correctly reproduced by our
numerical procedure. On the other hand, the
Monte Carlo results at small k values (k ~ 0.5 A '),
which are shown in Fig. 2 of Ref. 5, violate prop-
erties (56) and (57) and are therefore incorrect.
[To avoid confusion in the present comparison, we
point out that So(k) should be interchanged with

Sz(k) in the legend of Fig. 2b of Ref. 5.] The gen-
erally good agreement between. the FHNC —1-2 re-
sults and the Monte Carlo results is very encour-
aging. Significant differences occur only for the
functions S'(k} and S"(k), at k values in the range
0.5 A ' &k &1.2 A '. In seeking the origin of these
differences it might be worthwhile to execute a
further step in the FHNC- approximation scheme
or to try the FHNC- scheme of Fantoni and Ro-
sati. '"

In some respects the agreement of FHNC- and
Monte Carlo results appears more impressive if
we transform the structure functions to coordinate
space, forming the radial distribution functions
g(t), g'(r), 'g" (r), and g"(r). Our numerical re-
sults are compared with Monte Carlo data in Fig.
19. We should reiterate at this point that the
FHNC- scheme is designed to generate reliable
approximations to the structure functions of liquid
'He for the chosen trial wave function. However,
it is not to be expected that at the level of FHNC-
approximation implemented here the Fourier in-
verses of S(k) —1, etc. will yield reliable results
for the above spatial distribution functions at small

0
distances, r ~ 2.2 A, where the repulsive portion
of the interatomic potential dominates. Thus,
the FHNC- and Monte Carlo studies are comple-
mentary in the sense that the FHNC- procedure

APPENDIX: GENERALIZED GRAPHICAL

REPRESENTATION OF FERMI CLUSTERS

It is instructive to apply the generalized dia-
grammatic rules of Sec. II to a selection of typical
cluster expressions. In Fig. 20 we supply the dia-
grammatic representations of the followirig com-
ponents:

l(12) = 2(1+ ,oo)2l(k r&2),

e

l (12),

q(13)l~(23),

(A1)
(

(A2)

(A3)

(A4)

A-'e'"'&n(12)q(13)q(23),

l (12)l (13)l (23),

(A5)

(A6}

is good at small k where the Monte Carlo method
is poor, while the latter is good at small r, where
the former fails.

The numerical example just presented demon-
strates the feasibility of performing accurate cal-
culations of the spin-dependent structure functions
S"(k) and S"(k) using the methods of Sec. IV, these
functions being key inputs to a determination of
the one-body density matrix and related quantities
as described in Secs. II, GI, and IV. Our program
is currently being applied to the treatment of cor-
relations (6) in full generality.

With the incorporation of spin-density fluctua-
tions via (6), we expect a significant improvement
in the description of the structure functions S'(k)
and S"(k) and, further, of the magnetic suscepti-
bility of liquid He. Qn the other hand, the spin-
averaged structure function S(k) and (consequently)
the energy per particle are presumably not much
affected by the presence of P'(r, 2) of Eq. (11). Ex-
plicit consideration of spin-density fluctuations is
thought to be of. vital importance to the develop-
ment of a successful correlated pairing theory of
superfluid 'He. The methods we have expounded
may be instrumental to the achievement of this
goal.
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P &ij ll((2) laj) =—P Q f dradra(sass ~/2(12) /sara&,
tj S/S2

(ajp ~i(12))&13)3(23)~ijp) =—P g f dra rara dra&sasasa
~

l(12)l(13)3(23) ~sasasa&,
jjk S(S2S)

P&'jill(12)l(13)~)ij2&=3p' P f alrdr dr as&asasa~l(12)l(13)l'(23)~sasasa&,
kgb S S Si23

~&a

P (ik lki) =e(k~ —k) =—p'P — dr, dr2(s, s, l

e'"'"(21{12)ls(s2),
t StS2

(A7)

(A9)

(A10)

P (ikj
l
f(13)f(23)

l
kij) =—p' P — dr(dr, dF3(s(s2s, l

(.'"' l(12)g(13)P(23) ls, s2s,),
ij S S S

(A11)

Q&dij~ 4(2)3~j ~31=&—O' P —f d rradr a&dasas~sasa3 (23)1&23)1&13)~sasasa&,
S S S

(A12)

—
p P dr, (s, [q(13)q(23)

l s,),
1

$3

—
p P dr, (s, l

f(13)f(23)1(13)l(23)ls3),
$3

—
p g dr3(s3 l~(»)l(13)l(12)l(23) ls3)

1

S

(A13)

(A14)

(A 15)

—
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