
PHYSICAL REVIEW 8 VOI.UME 19, NUMBER 7 I APRIL 1979

Variational calculation of ground-state properties of a binary boson system: Properties of
dilute mixtures of He atoms in superfluid He

Moo Bin Yim* and %a|ter E. Massey

Department of Physics, Brown University, Providence, Rhode Island 02912
(Received 29 September 1977)

In the theory of Woo, Tan, and Massey the properties of 'He atoms in superfluid He are determined by
ground-state properties of the corresponding binary boson system, Here, we present a variational calculation
for these ground-state properties of the binary boson system as well as for the 'He-'He mixture. A correction
to the long-wavelength effective interaction is calculated by a paired-phonon analysis using the ground-state
wave function of pure liquid He. The present results are consistent wi. th other phenomenological theories.
Particularly, the effective 'He quasiparticle interaction above about 7.4 atm is qualitatively in agreement
with that obtained by Landau, Tough, Brubaker, and Edwards from osmotic-pressure data.

I. INTRODUCTION ..

The properties of dilute solutions of 'He atoms
in superfluid He have received considerable at-
tention, , theoretically' "and experimentally, ""
over the past decade and a half. 'The theoretical
treatments have been either "phenomenological"
or "microscopic" in their approaches. In phenom-
enological approaches' ' a quasiparticle Hamil-
tonian is assumed at the outset and experimental
data are used to fit certain undetermined para-
meters. Microscopic theories' "usually begin
with a consideration of the Hamiltonian describing
'bare" helium atoms and attempt to develop a
quasiparticle Hamiltonian containing no undeter-
mined parameters. Pertinent physical parameters
to be calculated in any theory include the chemical
potential and the effective mass of a 'He atom, and
the effective interaction between a pair of 'He

. quasiparticles. Woo, Tan, and Massey" (W'rM)
have developed a microscopic theory of dilute
mixtures which expresses these physical para-
meters in terms of pair distribution functi, ons
appropriate to a binary boson system. These pair
distribution functions, g' ' '(r)'s, and their
Fourier transformations, E' ' '(g)'s, "'"""are
defined by

N(N 5 )Jill d(r~

" "8 j [y ['dr ~ dr

and

E' '8'(y) = n [g'~'t"(r) —I]e'"'"dr,
where (," is the ground-state wave function for
the binary boson system; d(r, , r& ) denotes'e' &8

d r, ~ ~ ~ d r~ with dr,. d r& omitted; N, and N are the
number of mass-3 and mass-4 bosons, respec-

tively; n, and n4 are partial number densities of
mass-3 and mass-4 bosons, respectively, n or P
can be either 3 or 4, and

and at k=O

E &c, 3)(0) 0 (4)

where ao and z(n) are the volume-excess parameter
at zero concentration (x=N, /N =0) and a positive-
definite function less than o.„respectively. These
conditions are very different from the sum-rule
requirements for stability of the binary boson sys-
tem against phase separation. "'" Variational cal-
culations, such as MAT, "which depends on the
minimization of the total energy are not sufficien-
tly sensitive to yield accurate information about
distribution functions in the limit of small k.
Hence, in such calculations the total ground-state
energy is determined primarily by short- and
intermediate- range correlations which extend
over the order of two interparticle spacings

0
(-7 A).""In this paper we present an alternative

Pl gg + Pl4 ~

Applications of the WTM theory" to the real
'He- He mixture, therefore, depend on an accu-
rate knowledge of g' '~'(r) 's [or E' '6'(k) 's]. In
their original paper Massey, Woo and, Tan"
(MWT) calculated the g"'~'(r)'s for this system
by a variational procedure which utilized a set of
coupled integro-differential equations relating the
ground-state wave function to pair distribution
functions. Although this procedure yields numer-
ical results which compare favorably with experi-
ments, the formulation of the problem is not phys-
ically intuitive, and it suffers from the defects
that E' '~'(k) does not satisfy the general condi-
tions"

limE"""(k) ~„,= —(I+a,)+z(n),
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method for the calculation of the ground-state
properties of the 'binary boson system. 'This pro-
cedure utilizes a simplified cluster expansion of
g&~~)(r),""which is amenable to numerical cal-
culations, and which can be conveniently and ac-
curately used to calculate the ground-state energy
over a, wide range of densities. Also, F &«""'(k) sat-
isfies the general condition, Eq. (4). A further
correction"" to the long-wavelength effective
interaction is considered in a paired-phonon ana-
lysis using the ground-state wave function of pure
liquid 'He. "

II. THEORY: THE BINARY BOSON SYSTEM

The binary boson system is defined by the Hamil-
tonian"

@2 i N

P ~', + ———

~ g V,'. + g V(r,,),
4 i1 g=N +1

where rn4 and m, are, respectively, the masses of
mass-4 and mass-3 bosons obeying Bose statistics;
V(r), the two-body potential, is taken to be the
same for both types of particles, and for numer-
ical calculations we use the usual Lennard-Jones
6-12 potential. 'The ground-state properties of
pure liquid 'He are known to be fairly accurately
described by a Jastrow-type wave function,

p, (T„., :,r„)=exp(—Q x(r, ))
i & g1

(6)

where u(r) measures the correlations between
two 'He atoms.

MW'7's generalization" of this ground-state
wave function for the binary boson system is

u' '8'(r) is a function describing the correlations
between (n, p) particle pair, where n or p can be
either 4 or 3. 'These correlation functions sat-
isfy the usual boundary conditions

lim u' "(r)= —~,o

and

MWTg~
o &r&& ~ ~ & r))&. &r)(& e&& ~ ~ ~ & r)p)4, . 4

N4

= exp —Q e "'e(r, ))
1

i&f 1

1
N4 N

x exp — ~(4» y,
k~1 luN +1'

4

r — g e""(r„)), (&)
n&m uN 4+1

lim u' "(r)=P,
00

~, P= 4, 3. (8)

Pair distributionr functions, g"'4)(r)'s, are de-
fined by Eq. (I), and S' 'o)(p)' s, ""the liquid-
structure functions, are defi~ed as

S' "4'(k) = I+ (n n4)' '

x g' "~ —1 e'"'dr .

In principle the variational procedure can be car-
ried out in the following steps: (a) The wave fun-
ction, Eq. (7), is used as the trial wave function.
(b) The ground-state expectation energy is ex-
pressed in terms of u' ' o()r)'s and g& ' o)(r)' s (e.)
The correlation functions, u"'8'(r)'s, are ex-
pressed in terms of gI '~'(r)'s using coupled in-
tegral equations. (d) The ground-state expec-
tation energy is then represented only in terms
of g& '~)(r)'s, and the total ground-state energy is
minimized with respect to the g' ' '(r)'s. In prac-
tice it is very difficult to determine the ground
state variationally as in step (d) because of
small contributions of O(x) and O(x') to the total
ground-state energy. MWT" introduced, there-
fore, a simpler variational procedure expected to
give a negligible error to the ground-state energy.
(We refer to their original paper for details. )

'This variational procedure is composed of three
steps: (a) Consider a system of pure liquid'He
and a trial wave function of the form in Eq. (6).
Determine g""(r) and u&4'4)(r) variationally. (b)
Replace a 'He atom by a mass-3 boson and intro-
duce the trial wave function

MWT/ ~rN-x' rN)

N-1 N 1
= exp —5 u&4 4)(r. .)+ —V' u&4 o)(r ) (]p)

2 ~ 2 ~ AN

i&j=l A=l

The energy expression then contains g(4 4'(r),
g'""(r), u""(r), and u' "(r). Assuming that
g&4 "(r) has been optimally determined in step
(a), g&4 "(r) is determined variationally, solving
in the process coupled equations for new u""(r)
and u'4 "(r). (c) Replace N, 'He atoms by the
same number of mass-3 bosons and introduce the
trial wave function Eq. (7). Assuming that g&4 4'(r)
and g&4 "(r) have been fixed in step (b), g&3 s)(r)
is finally determined and the upper bound to the
ground-state energy of the binary boson system
is also determined by solving in the process coup-
led equations for new u""(r), new u'4 "(r), and
u" "(r). These procedures constitute the varia-
tional calculation of MWT. "

1n the present calculation we choose a slightly
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different trial ground-state u)ave function, g, , a
simpler methodology requiring less computer
time for numerical results, and which also ex-
plicitly shows the concentration dependences of
the distribution functions; further, the general
conditions, E(I. (4), are satisfied. g0 is defined
as

r r0 ( 1) ' ' ' ) N») )]c»d1) ' ' ' ) r3c)

B=&I) (0r„. . . , r„)xexp -g g u)(r. )
i =1 j=N~+1

+2
1 "

& (11)
~&X =N4+i

where &t)0s(r„. . . , r„) is the ground state wave
function for pure liquid 4He at the same number
density as the mixture. Instead of using coupled
integral e(luations the g' 3)(r)'s are expressed in
terms of g0(r), S,(k), u)(r), and s (r) by a cluster

)/) t5
( 8Pf

) )f) f)t)
Em- ('c00 s'Oc —(Tm) + (ym)0

(pm' qm)
(12)

where

expansion, ""where g, (r) and S,(k) are, respec-
tively, the pair distribution and the liquid struc-
ture function of pure li(luid 'He. If $03 is consid-
ered to be of the Jastrow form [E(I. (6)], then
u)(r) and s(r) are a measure of the difference in
correlations between (4,4) and (4,3) pairs and
between (4,4). and (3,3) pairs, respectively.
These differences are expected to be small over
a large region of space. This should enhance the
convergence of these cluster expansions.

The ground-state expectation energy of the bi-
nary boson system can be expressed in terms of
g' 3)(r)'s, u(r), u)(r), and s(r) as

(T ) = — ', n, g'4 "(r)V'u(r) dr+ n, g'» "(r) V'[u(r)+ u)(r)] drN4@

4

N3h
'

n g' "(c)v'[u(r) + cd(c)] dr + m, fg" "(c)sc'[a(c) + s(r)] d)g
3

(13)

V(r)g" "(r) dr

+ N, n, V(r)g&4 ~ "(r) dr

of g, (r), S,(k), u)(r) and s(r) in the form"

g""(r)= g.(r) + xg,""(r)+ x'gl'"(r),

g (4, 3)(r) —
g (4, 3)(r) + xg (4, 3)(r) + ...

+ CC(d],V(r)g""(r) d r . (14) and

Using a cluster expansion the pair distribution
functions, g' 3'(r)'s, can be expressed in terms

g&3, 3)(r) —
g (3, 3)(r) + xg (3,3)(r) + .

where x = (N3/N), and

(17)

gt ~ '(c) = '
I d(ce ' '[s[s (g) —(]dc-+cc' )+dg' '(c)).g.(r)

(2(r)' n
(18)
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g' "(2)=g (r) e "&"' 1+ dk e '"'"[S (k) —1]E-+ hg&« "(2)0 0 (2)&)3n

e(g (r)
g,""(r)= ', dke '"'[l.;[g,(k) - (]+L„g]+-kg[ "(r)),

g,' '(r)=g, (r)e""'((r f dke '"'[2[g (k) —1]g-„.rg']+kg,""(r)),

(20)

(21)

ry'l e8«&
( 3, 3 ) ()e) —ga X

(2)() n3
ke &»'[S (k) - 1](L„-—E-„)+ dk e-ilP r(L2 E2) + Qg(3, 3)(3e)1 (22)

E;= n d r e'"'g, (3.) (e~&r) —1),

I.„-= n dre'"'g, x e'«'-1 . (23)

Whenever the 3-particle distribution function en-
ters in these cluster expansions, the Kirkwood
Superposition approximation" (KSA) is used.
These cluster expansions" are double expansions
in powers of the concentration x and expansion
parameters related to A-„and L-„. (T ) and (V )
in Eqs. (13) and (14) can be expressed in terms
of u()'), g, ()'), w()'), and s (r) by using the g'" 3'

(3")'s expressions from Eq. (15) to Eq. (17). In
computing (T ) and (V ) it is assumed that u() )
and g, () ) are known. We then parametrize analy-
tic forms for w() ) and s(2) and minimize the
total energy with respect to the variation of these

where the ng&,. 3)(r)'s are complicated expressions
involving the n-particle distribution function
(n ~ 4). E» and L» are given by

E,"(n, x) =N, e, (n)+N, e, (n)

+ (N32/N) e2(n) + O(N33/N2), (24)

where

parameters. In order to obtain the energy to
O(x') we need g" "()) to O(x'), g" "(r) to O(x)
and g" 3)()r) to O(x'). The contribution of the
x' term of g""()) [and therefore, AgIN 3'(3")'s]
to the energy is known to be small. [See the
Appendix of Ref. 15.] It is, therefore, enough to
know g'«' )()') to O(x) and 6g,' 3)(r) c.an be ne-
glected. The total ground-state energy is ex-
pected to be determined primarily by:the short-
and intermediate-range correlations which ex-
tend over the order of two interparticle spacings
(-7 A) as in pure liquid 'He.""Thus we may choose
w(r) and s() ) to be short-range functions similar
to u(2) in pure «He. If we substitute the g" 3)() )'s
from the cluster expressions into Eqs. (15) to
(17), the ground-state energy is expressed as
follows:

e, (n) = -8 g, (r) V2u() ) dr+ —n g, (r) V(3) dr,1
Pl 4

e, (n) = —— g,""(r) V2[u(r) + w(3')] dr + n g,""()) V(r) dr7 I'"

g,' "(3') V'u(r) dr+ —n g)&« "(3)V(2)dr —e,(n),
- 1

4 (25)
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e, (n) = —— gof' "(r)V'[u(r)+s(r)] dr+ —n g,""(r)V(r) dr+ g," »'(r)V'u(r)dr4kn - 1 A2n

4 4

—n— g,'»»'(r} V(r) dr —— g,'» "(r)V'[u(r) +gv(r)] dr+ n g] 3'(r) V(r) dr
1 .

'7h

4

hn - 1
g,'»»'(r) V 'u(r) d r + —n g,' »'(r) V(r) d r —e,(n); (27)

40 (ra ~ ~ mr xi rn}-
Ã-' 2

= »;(r, , . . . , r„)exp(2 Qw(r, . )).
i=1

(28)

~(r) g«.»(r), and g« "(r) are then determined
by minimizing e, (n); (c) Assuming that w(r) has
been fixed in step (b) we finally determine s (r),
g&s ' (r), g& s (r), and g,' '(r) by minimizing
e, (n).

e, (n) is the ground-state energy per particle of
pure liquid 4He at density n. At zero concentra-
tion and zero pressure e,(n) becomes the chemi-
cal potential- of a single 3He atom in the mixture,
and the fourth term, p(N', /N'), is shown to be
unimportant in Ref. 15. The variational calcula-
tion is carried out in three steps: (a) The corre-
lation function, u(r), for pure liquid»He is as-
sumed to be known; (b) we consider the problem
of one mass-3 boson in liquid 4He. The tria1
wave function then reduces to E, (n„n, )=N» e,(n, )+N, [e,(n, )+n, eo(n, )]

+ (N,'/N, ) [e,(n, )+ n, e,'(n, )

+ —n', e (n, )]+p(N', /Ã', ), (32)

where

,
( )

ae, (n, )
~p n4 n 4

a'e, (n, )
n4

The pressures corresponding to the three densi-
ties are calculated from the virial theorem. "'32
The optimum values of the, parameters (a, c), e, (n),
and e, (n) are given in Table I.

It is convenient to express the ground state in
terms of n, and n, (MWT's expression") instead
of n and n, in order to compare these results to
the WTM theory. " The expression for the ground-
state energy, Eq. (24), can be written in terms of
n4 and n3 as

III. NUMERICAL RESULTS

A. Ground-state energy

,
( )

ae, (n, )
d'fE4

(33)

The correlation functions of (4, 3) particle pairs
and (3,3) particle pairs can be expected to have
the same form as u(r). Therefore, for numerical
calculations we choose the correlation difference
functions, nr(r) and s(r), as follows:

If we compare the ground-state energy expression,
Eq. (32), with the 1VIWT's expression", F~DT,
where-

»c(r) = —(ao/r)'

s(r) = —(ca/r)',

(29)

(30)

TABLE I. e& and e2 by the present variational calcu-
lation. The optimum variational parameters, a and c,
are calculated at three densities. The pressures corre-
sponding to three densities are calculated by the virial
theorem (Refs. 15 and 32).

where a and c are variational parameters. We
perform calculations of e,(n} and e,(n) by using
u(r}, S,(k), g,(r), and e,(n) as determined by
Schiff and Verlet' at number densities of n
= 0.0196, 0.0207, and 0.0218 A '. For V(r) we use
ep= 10.22 'K and cr = 2.556 A, "where

Pressure
(atm)

0
4.6
7.4

0.784
0.784
0.784

0.788
0.788
0.788

Variational
par ameters
0 C

e(
(K)

-2.5S
-2.32
-2.04

e2
(K)

0.62
0.653
0.95

V(r) = 4e,[(v/r)" -(v/r}']. (31)
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MWTn)&MWT(n, n, ) =N& o

y(N3 4
2/N ) a ('n4 ~n3)

where &
~T's and e, s, wtbe relations "

ompa, ring E0
between ~ .

4 withan d 2 are given [
EIl. (32)]

MwT(n ) = eo(ng)
tMwT(n ) = e, (n, )+ «eo "~ '64 l 4

(34)

YM
pressure

(atm)

2.59
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2.79
g q ~

~ ~

~ ~ ~

~ w ~,

~ ~

2.785
1.13

0
4
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6
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f a4He atomM+T is the bind' g;, energyowtiere s~ ("4)
MWT(„) is tbe cbemicin ure liquid 'H

~ l
3He-4He mixturetential of a

d 2 &MwT(n~ n3 8
ro concentration

n th effective inlong-wav l "
cles ' as

direct part o
3H uasi-partit' n V, betweeentwo eq c es,p ')

The pressure othe concentration goes
'd 'He is given bypure liqui

air
' ' '

functions, g~~ P&(r)'s, and their Fourier
tran

is ' ' nctions, g' 's'(x)'s, are ob-
gp

b and (c). The pair

k s ensity n=0.0218
g .

'Tanlt ot'Woo, T' "and sumfrom MW'Z s ' d um
and Wu, i.14

! ) e(n )2
' n2- ' =N2

2
4p

Sl S = —
4p

Sn4o

and

(37) (4s3) p plim EM„' =o=FMWT( )~.=0
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0.4'
(Oj,p)

F (K) n = 0.0218 A ' (P,=7.4 atm), (45)

0.2 '

0.0

-0.2

-0.4

-0.6

-0.8 .

-3.0 ~

3

K (=kg)

where the exact value of E'""(k)
~
„3, as k goes to

zero, is little larger than —1.22 at P p= 7.4 atm.
[See also Eq. (50) below. ] This discrepancy pro-
bably comes from the neglect of long-range cor-
relations in pure 'He and the binary boson system.

Some confidence in the present E""(k}'scomes
from the following reason: In the WTM theory"
the effective interaction induced by the phonon
coupling at constant number density, V~", is given

by

(d(k) [c,(k)+ (d,(k)]3 [E(""(k)]'
2ns(4 '«(k) [c(k)'- &u(k)3]

where c,(k), &u,(k), c(k), and ~(k) are the excita-
tion energies of a bare 'He atom, a free phonon, a
renormalized 'He atom, and a renormalized pho-
non, respectively, which are given by

co(k) = k3k3/2 m,

and
FIG, 2. --—, , an.d ... ... are I'" ' (&), &

(K), and E ' ' (K), respectively, atzeroconcentration
and n = 0.0218 )( 3.

c(k) = k'k'/2m+0(k'), (47)

(43)

where m is the effective. mass of a 'He atom at
zero concentration. The denominator of Eq. (46)
at zero pressure becomes zero at A. =1.68 A ' and
therefore it diverges at k = 1.68 A '. But the first
zero ofE ""(k)

1 „,at zero pressure is at k = 1.68 A '
and it makes the V3~"

~
„,finite.

where MWT and YM are the results of MVT" and
the present variational calculation, respectively.
Although figures are shown for g' '3)(r) and
E' '3)(k) only at n = 0.0218 A ' (which corresponds
to P, =7.4 atm}, we also obtained g( '3)(r)'s and
E' ' '(k)'s at n = 0.0196 and 0.0207 A '(which cor-
respond to Po= 0 and 4.6 atm, respectively).
From the Saam's result' and the WTM theory" it
can be shown that

C. Volume excess parameters no's
'I

The volume-excess parameter no is defined by

= («3(l+ xn, ), (48)

where v and v~ are specific volumes of the mix-
ture and pure liquid 4He, respectively. We can
estimate the ratio of effective volumes occupied
by a'He atom and a 4He atom by a method due to
MWT." no is approximately given by

»m E'""(k)~„.,= -(1+~,)+z(n),
0~0

1+ ~ [(2r(4,3) r(4, 4))/r(4 4)]3
p m m m (49)

and at 0=0
E(4,3)(0) 0 (44)

for a di jute gas model of ferm-ions in a Bose gas
[refer to Ref. 15 for the derivation of Eq. (44) and
this relation may also hold for the 'He-4He mix-
ture], where o'. , and z(n) are the volume-excess
parameter and a positive-definite function less
than +„respectively. In the present variational
calculation

iim E( "(k)
~

= -1.OO0"0
x=p

where r' '~' is the position of the first maximum
in g( ~ 3)(r) [Refer .to Ref. 13 for the detail de-
rivation. j o.,'s obtained from Eq. (49) are very
sensitive to the first maximums of pair distribu-
tion functions, go(r) and go(4 ~ 3)(r), and are only ex-
pected to give approximate results as was pointed
by MWT Equation .(41) yields a more accurate
determination of ap's, np s obtained from Eqs.
(49) (-n») and (41) (~().03) are shown in Table lo
along with M%'T's' and experimental results. ""
Since in this calculation the long-range correla, -
tions were not included, Eq. (44) may be redeter-
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TABLE III. Volume excess parameter np. Expt. are
the experimental results (Refs. 22-24). MWT is the re-
sult by Massey, Woo, and Tan (Ref. 13). YM are the
results obtained from the present variational calcula-
tion.

TABLE IV.. Effective mass. Expt. is the experimental
result by Anderson et al. (Ref. 19). WTM is the theoret-
ical result by Woo, Tan, and Massey (Ref. 10). YM are
the present results by neglecting phonon renormalization.

CYp

Pressure
(atm) Expt.

m(m,
WTM DF

Pressure
(atm) Expt. MTW Gpg

YM

~o2 Ap3 2.34 1 85
2.37

1.99 1.65

0

7.4

0.284
0.24
0.22

0.193 0.237 0.236
0.191 ... 0.171
0.192 ~ ~ ~ 0.194

4.6

'Result by neglecting phonon renormalization.
b Result by including phonon renormalization.

1.84
1.89

mined by

lim E""(k)/E, (k)'
~„,= -(1+n,),

0
(50)

E,(k) = n [g,(r) —l]e'"'dr

and we take lim~, E,(k) = -0.9237, -0.9647, and
-0.915 at n= 0.0196, 0.0207, and 0.0218 A ', re-
spectively. " no's by Eq. (50) (=—o.») are shown in
the same table.

D. Effective mass of one He atom at zero concentration

The effective mass of a 'He quasiparticle at
zero concentration is calculated by neglecting the
phonon renormalization process in WTM's re-
sults. " The approximate expression is then

V = 2s.', " (n,), „rn s'
0 + Qo)

n40
'

n40

(Befer to Bef. 15.) Numerical results by the pre-
sent variational calculation and the further cor-
rections by the paired-phonon analysis" are
shown and compared with other results in Table
V. The present result at P, = 0 agrees well with
Emery's result. ' Vo's have the same pressure de-
pendences as in other theories. " (V increases
as the pressure increases. ) V, in the present cal-
culation should be a lower bound to the actual Vo.
The proof for this is as follows: @2M"T(n„) in Eq.
(40) becomes larger (or smaller) as sM, "T(n«) in
gq. (39) becomes smaller (or larger). " There-
fore, V, (n«)'s in the present calculation are lower
bounds since sM, "T(n«)'s in the present calculation
are upper bounds. Furthermore, the k depen-
dences of this effective interaction V~ near 7.4

(51)

where m is the effective mass of 'He atom at zero
concentration. Present results are shown in Ta-
ble IV. These results are comparable to those of
Woo, Tan, and Massey, "and Davison and Feen-
berg. " The present results also have the correct
pressure dependence. (The effective mass of a
'He atom increases as the pressure increases. ")

Pressure
(atm) ' Emery BE

«o~p ('@
KE Corr. YM

-1.2 -1.75 -1.94 -0.11 -0.96 ~

—1.07"

TABLE V. Long-wavelength effective interaction Vp.
'The result by Emery is from Ref. 2. BE is the result
by Baym and Ebner (Ref. 3). KE is the result by Kuen-
hold and Ebner (Ref. 9). Corr. is the correction by the
paired-phonon analysis (Ref. 15); we use the same val-
ues at three pressures as at Pp=7.4 atm. YM are the
results of the present calculation using experimental
values of &pm4s (Ref. 7).

E. Long-wavelength effective interaction Vo at constant pressure

V„ the long-wavelength effective interaction of
two 'He quasiparticles, at constant pressure and
zero concentration is given by

4.6

7.4

~ Present variational calculation.
Lower bound, sum of.a and Corr.

-0,11

-0.11

-0.694
-0.804"

0 1R
-0.21b
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atm are qualitatively in agreements with those
of Landau et al. ' obtained from fitting the osmotic-
pressure data. From results of Landau et al."V„
shouldbe a concave function for small k above about

7.4 atm instead of a monotonic increasing function
as in the theory of Bardeen, Baym, and Pines'
and a monotonic increasing function for small k

below about 7.4 atm, where

2s, "T(n„)
1 ),m4s' {d(k)[s,(k)+ u), (k)]'[F{4"(k)]'

n ' n„2 nS 4{~4&(k)[s(k)' —{d(k)']

(52)

lim V'„"
~ „,= —(1+ {&.,)'&n, s'/n„. (53)

(Befer to Bef. 15.) This effective interaction by
the present calculation can be used to interpret
the solubility as a function of pressure measured
by Watson et al. and Landau et al. Here, we

give only a qualitative interpretation: The maxi-
mum solubilities can be determined by

sM, "T+ s(k~)+ n, V,

In order to render the effective interaction induced
by the phonon coupling at constant pressure,
continuous at 0 = 0, V~" should be

cal potentials of a 'He quasiparticle at zero con-
centration, gy s pave to be determined more
accurately along with 'He-atom densities. The
wave function, Eq. (11), is not, of course, the ex-
act boson-type ground-state wave function of the
Hamiltonian H Eq. (5). Therefore, in order to
use the present variational calculation as the in-
put information of the WTM theory' the WTM the-
ory" has to be slightly modified. Instead of the
procedure outlined above for V, we consider cor-
rections induced by the paired-phonon analysis. "
From Eq. (53) of the argumentthedifferencebe-
tween this system at constant pressure and at con-
stant number density comes from F{43&(k),

1 — -- kVdk (54)
»m F{'»(k)

~

0 POg x"-0 PO)X=O

where k~ is the Fermi wave vector, and p.,p and
x are, respectively, the chemical potential of a
'He atom in pure liquid 'He and the maximum
solubility of 'He atoms in the liquid 'He at P =P, .
In this calculation V~ as for small k is a negative-
ly decreasing function for P, = 7.4 atm. This qual-
itatively explains the solubility curves by Watson
et al."and I,andau et al."

IV. CONCLUSION

The results of the present calculation agree well
with those of other phenomenological theories"
except for the volume-excess parameters QO s.
To obtain accurate results for the n0's the chemi-

itm F{4 3&(k)
~

f1' X=O

x E{"&(0)
ny x=O

=0. (55)

where P, and n denote the results at constant pres-
sure and at constant number density, respectively.
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