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Collective modes and nonequilibrium effects in current-carrying superconductors
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Dynamical equations for the order parameter and the electric potential in a short-mean-free-

path superconductor near the critical temperature are derived from microscopic theory. The

effects of supercurrents and various pair-breaking mechanisms on collective modes and relaxa-

tion processes are discussed.

I. INTRODUCTION

In this paper we study the kinetics of short-mean-
free-path superconductors in situations that are not
necessarily close to equilibrium. The main aim of the
work is to use kinetic equations based on microscopic
theory to understand the spectrum of collective
modes in the presence of superflow, magnetic fields,
and various scattering mechanisms. The paper ex-
tends previous work" by each of the authors. In
Ref. 1, the basic scheme used here —a dynamical
equation for the order parameter coupled to a
Boltzmann equation for the quasiparticle distribution
function —has been discussed and used to derive phy-
sical results. This theory is based on the work of
Eilenberger, ' Eliashberg, 4 and Usadel. ' In Ref. 2, it
was pointed out that as the critical current is ap-
proached in a superconducting filament, certain col-
lective modes become progressively less stable. In
this work we show, among other things, how the
methods of Ref. 1 lead to predictions about current-
induced mode softening in various regimes of fre-
quency and scattering strength. One result of the
study is that the equations used in Ref. 2 are incon-
sistent, because of a too naive treatment of phonon
scattering. Consequently, the quantitative results
presented in that paper are modified.

In outline, the plan of this paper is as follows. In
Sec. II, we review and slightly generalize the method
of Ref. 1, leading to coupled kinetic equations for the
order parameter and quasiparticle distribution func-
tion. We allow for the presence of a supercurrent
and discuss various pair-breaking mechanisms. In
Sec. III we show how the quasiparticle distribution
function can be eliminated from the problem for
linear deviations from true equilibrium, or from a
metastable state of steady supercurrent. In the low-

frequency limit we find that the quasiparticles can be
eliminated even when the order parameter varies in
space and time, provided that these variations are
suSciently gentle. As a result we obtain a time-

dependent Ginzburg-Landau equation which is valid
for arbitrary pair-breaking. In Sec. IV, we give a re-
view of solutions corresponding to deviations from a
true equilibrium state in which no supercurrent is

flowing. In Sec. V the problem of how collective
modes are modified by supercurrent flows is exam-
ined, and several results are collected which should
be amenable to experimental test. The main result of
Ref. 2, a mode softening as the current approaches
the critical value, is found again. Also the decay of
an electric field in superconductors is investigated.
Finally, in Sec. VI the time-dependent Ginzburg-
Landau equation derived in Sec. III is used to esti-
mate the rate of current-reducing fluctuations, lead-

ing to modifications of results based on the simple
phenomenological time-dependent Ginzburg-Landau

.equation. An Appendix contains mathematical de-
tails about some integrals which occur in the reduc-
tion of the general theory to usable form.

II. KINETIC EQUATIONS

A. Fundamental equations

In this section, we will review the derivation of the
time-dependent Ginzburg-Landau equation and the
Boltzmann equation for short-mean-free-path super-
conductors close to the transition temperature. We
will carefully take into account spatial variations of
the equilibrium order parameter both in absolute
magnitude and in phase. Various pair-breaking
mechanisms will be discussed, but we will not re-
derive the electron-phonon collision operator which
appears in the Boltzmann equation. For details we
refer to Eliashberg4 and Ref. 1.

We start from the fundamental equation derived by
Eilenberger' and by Larkin and Ovchinnikov, ' in a
form obtained by Usadel, ' which applies to the dirty
limit 1/7, , &) T, i.e.,
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The notation follows Ref. 1. The Green's function G
is an angular average

i3(cu„) = 50/(~„+ d 02) 'i' (9a)

In the limit (o) ( » kp, these expressions reduce to

If the 'terms on the right-hand side of Eq. (6) can be
neglected, the solution is simply

n(~, ) = ~,/(~„'+ 502) '",

G- (m„, cv„',r) =—'
der G(cu„, r»„';r, p), (3) n(a „)=sgnco„, P(~,) = ao/(c „( (9b)

where the argument of the integral in Eq. (3) is ob-
tained after partial Fourier transformation with
respect to the relative space coordinates. The fre-
quencies ao„, co„' are Matsubara frequencies; the
difference ~0 = m„—co„' represents the external fre-
quency. U denotes a perturbation of the system, for
instance in the case of an electric potential it is given
by e4. The phonon self-energy is X,h, and 7, is the
spin-flip time. Finally, D is the diffusion coeScient
D

3
llFT p e use the short-hand notation

(AB]„„=T XA (cu„, ru„")8(co„",a)„')

V

The contracted Green's functions obey the normali-
zation condition'

(G(r) G(r)]„=(1/T) 5

B. Equilibrium solutions

In stable and metastable, i.e., supercurrent-carrying,
equilibrium the solution of Eq. (1) can be written

G (N„) = n(Ql|) r3 + J3((el|) ry

" (cq) i
X,» (co„)= — sgnao„r3 —i Aping

E

-ie(r) ~3
where we have r, = e ri (Renormaliz. ation
effects proportional to the electron-phonon coupling
parameter have been neglected. ) The absolute value
and phase of the order parameter are 60(r) and ll(r);
7'E is the inelastic electron-phonon scattering time.
The normalization condition Eq. (4) yields
n2+P2=1, which is consistent with the I component
of Eq. (1). From the r~+ i2 component we find

For arbitrary right-hand sides of Eq. (6) we find the
same limiting forms Eq. (9b) if we redefine ~„

0)„+I SgI10)„ (10)

[ —p~o - g'(0) (Q'- ~')]~.=0, (12)

where n = (T, —T)/T, and P =7)(3)/87r2T', and in
the dirty limit $2(0) = (m/8T)D.

C. Nonequilibrium equations

Nonequilibrium situations may be characterized by
deviations of the order parameter from the equilibri-
um value in magnitude (longitudinal) and in phase
(transverse), i.e.,

as long as the conditions (a&„( » 80 and T » I' are
satisfied. The pair-breaking parameter I, which is
given by

1 1 D 2 D 7~0r= +—+—Q2 ——
2tg ts 2 2 &0

includes the various pair-breaking mechanisms in su-
perconductors': electron-phonon scattering, para-
magnetic impurities, supercurrent and magnetic field,
and spatial variation of the magnitude of the order
parameter. (Gap anisotropy is not considered here. )

From the remaining components of Eq. (1) we find
2(VP) Q +P(V'Q) =0 which [see Eq. (28)] just
yields j, =const. One the other hand, if we insert
P(ru„) given by Eqs. (9) and (11) into the self-con-
sistency equation 60= ark T $ P(&o„), and use a

V

proper cutoff for the summation, we find for I && T
the Ginzburg-Landau equation for 50.

55 = Sd'~, +55'~„„&, (13)
1

07.P ~on= ——+—Q nP
1 D

2
i

+—[(~'p) -(~' )pl,
. 2 (6)

Both 55~ and Shr are real (this notation differs from
Ref. 1). The corresponding change in the Green's
function is denoted by

SG(a)„,a)„';r) =a r3+b r, +a 1+b 'fg+ ii
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The linearized form of the fundamental Eq. (I) and
the self-consistency relation

Sb, = rr & T X (b r() + b r, + ~iz) (15)

will result in a complete set of equations for these de-
viations.

The frequency coo = ao„—co„' represents the external
frequency. We have to perform the change from the
Matsubara frequency to real frequency ~0 —i co+0.

This is easily possible in those terms where co, and
~,' have the same sign. However, if we have cu„& 0
and ~„' & 0 this process needs particular care. Cor-
respondingly we split the sum in Eq. (15) into two
regular (r) contributions (pp„& 0 and ru„) rap) and
into an anomalous (a) contribution (0 & cu„& ppp).

The regular contributions yield the linearized form of
the simple time-dependent Ginzburg-Landau equa-
tion. The result is well, known and we will not re-
peat the derivation here

a

(a)

Sb, = [~—3Pbp~ —('(0) (Q' —V')]5&L —g'(0) [(VQ +2Q V) Sbr+4Qe SA hp] + m T g b
8T

(a)
~ Sg'=[a pb, j——g'(0)(Q' V'—)]Sb, '+('(0)[(VQ+2QV)Sb, L+4eSA(Vhp)]+rrT Xb' .
ST

(16)

dE
T X SG (cd„, co„) = 5ge

4mI
(17)

The remaining contributions from the anomalous
terms in Eq. (16) will turn out to be important. In
order to determine them we follow the work of
Elias hberg. 4

As becomes obvious by looking at a contribution
like

Sg (cu„, cu„) G (cal„) U(QI„, Ql„) G (~„)

the quantity SG (co„, pp„') as a function of a continu-
ous complex-variabie z (pp„z, to„' = o)„—ppp) has at
least (depending on U) two cuts in the complex

plane, one along the imaginary axis and one for
Re z= ~0. If we change from a frequency summation
to an energy integral we obtain

anomalous region we will encounter combinations of
equilibrium Green's functions, as in the following ex-
ample:

—,
' [a(~„)—a(~„')]--,' (~e+.iz —~e .n) =N&(E)

(19a)

This combination is the reduced density of states in

a superconductor. In the limit where we have
I =co=0, it-reduces to the BCS9 normalized density
of states. The effect of a finite value of I/re is to
smear out the singularities. (We will discuss this
further in Sec. III.) Similarly we define

%(E) = , (/3I+.n+ Ps-.g), -

(19b)

where

E —ru/2
AGE =5GE tanh

gA h
E +/2pp+Sg( )

an (18)

From the summation over the regions where both
co„and cu„' are positive (negative), we again obtain
regular contributions involving the retarded (ad-
vanced) Green's function. This is the result of ana-

lytic continuation ~„iE—
z

i pp+ (——)0, when we

have both Repp„, Repp„') (&)0. On the other hand
from the summation over the interior region we ob-
tain the contribution involving a different —,the
anomalous Green's function SGs . Equations (17)

" (a)

and (18) define this quantity.
When performing the analytic continuation in the

SfL, T aL, T(a)/4N (E) (20)

In the anomalous region the normalization [Eq. (4)]

Rz(E) = —.(Pe+.n Ps .n) . —-
I

For I'=pp=0 we have Ri(E) =(bp/E)N)(E). N(
and N2 are even functions of the energy, while R2 1s

an odd function.
Considering the definitions of the contracted

Green's function and Eqs. (17) and(18) we recognize
that —4N(0)(Sge))) is the change in the quasiparti-

cle density per spin direction and per unit energy.
Since, at ao-0, the contribution

~
N (0) (aE~ —aq) [ i tanh(E/2 T)]—

is due to the change N(0)SN) (E) in the density of
states [Eq. (18)] we conclude that the anomalous part
of (SGe))( is proportional to a change SfE' in the
quasiparticle distribution function, and we have
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provides the following relations between a" and
b(a).

bL ia) iR & (e ) a L(a)/N& (E)

be" = iN2(—E)a "/N&(E)
" (eq)If we set Xph i~o~p and

(21)

A

SXqa = i—(Sh~rg+ Shirr~+ i2)

(neglecting the inelastic scattering contributions for
the moment) it is straightforward to perform the ana-
lytic continuation of Eq. (1) in the anomalous region.
We finally insert the electron-phonon collision opera-
tor .derived in Ref. 1 and obtain the following Boltz-
mann equation for the quasiparticle distribution func-
tion Sf '

N ( 5f —K (5fL) —D V (M~ V5fL) + 2D V (QN2R 28f ) + QN2R 2

t

0

N) 5f +2
~
b,

~
N)5f Kr(5f')——D '7 Mr '75f+r +2D '7 (QN2R25 fL)

4 T cosh2(E/2 T)

I &lti+
4 T cosh2(E/2 T) 4 T cosh'(E/2 T)

where

ML(E) = N&& (E) —R 2 (E)

Mr(E) = N,~ (E) + N2 (E)

(23)

which in turn are assumed to thermalize immediately
with the surroundings, and consequently the elec-
tronic energy is not conserved.

Using the normalization relations (21), it is now

straightforward to perform the remaining summation
in Eq. (16) and find

Consideration of the inhomogeneous terms in the
system of Eq. (22) shows that Sfer is an even func-
tion of energy, describing changes in the particle
number, while 5fe is an odd function describing
changes in the energy distribution. The presence of a

phase gradient of the equilibrium order parameter or
a vector potential, results in a coupling of longitudi-
nal and transverse distribution functions. The colli-
sion operators K~ and K are defined in Ref. 1. We
merely mention here, that they can be written as the
sum of a "scattering-out" term

1

7T —+2ie+ 5
8T Qt

= [o.—P[A) +( (0)('7 —2ieA)2ld

where the effective potential is given by

(26)

8 p re+ao

2ee = dE [N2(E)Sfer —iR2(E) Sf~~] . (27)

—(1/r )N, (E)Sf tr~ (24)

and a "scattering-in" term which is an integral opera-
tor. Near T„ the inelastic electron-phonon scattering
rate 1/re is given by the normal-state value and is
the same for both the (L) and (T) operator. The
transverse collision operator, furthermore, satisfies
particle number conservation

dEK'(Sf') =0 . , (25)

Note, however, that due to the term 2~ 8.~N28fe,
which could be considered part of the collision opera-
tor, a conversion betwen normal and supercurrent
takes place, and the quasiparticle number is not con-
served in general processes. Furthermore, energy
can be transferred from the electrons to the phonons,

Strictly speaking we have derived here only the
linearized form of Eq. (26). However, the generali-
zation is obvious. The question of whether it is
sufficient to treat the quasiparticle distribution func-
tion in linear approximation can be answered posi-
tively, even when the order parameter changes drasti-
cally, as long as there is a strong relaxation mechan-
ism, e.g. , electron-phonon scattering and as long as
the changes evolve:sufficiently slowly in time. The
limit of negligible electron-phonos scattering with
diffusion as the only relaxation mechanism has re-
cently been studied by Larkin and Ovchinnikov. "
They also derived a nonlinear Boltzmann equation.

We complete the s'et of kinetic equations by deriv-
ing expressions for the current density and the charge
density. The expression for the current in the dirty
limit is given by6
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j =i Trr2T $ [G(V —ieA r3) G
2e

+ieA r2) (25)

j, = (rr~o—/4eT) ~S(2Q

awhile j„ is the normal current

(29)

j„=— dE Mr V8fer+
4T cosh2 E 2T

—2QN2R28fE~ (30)

Finally, the expression for the charge density

From this we obtain the linearized form of j =j, +j„,
~here we can consider j, as the supercurrent given

by

brium order parameter is of the form h(x) = hoe "".
Furthermore, only linear deviations of the order
parameter are considered. In the case of low fre-
quencies and long wavelengths we will be able to
generalize the results to the nonlinear regime. But
we also will discuss high-frequency effects like the
Carlson-Goldmann mode. "

In all but the collisionless high-frequency modes,
inelastic electron-phonon scattering is of central im-
portance in carrying a nonequilibrium distribution to
equilibrium. A simple relaxation approximation, in
which the collision operators K(8f) are replaced by
the scattering-out term Eq. (24), violates the particle
number conservation Eq. (25), and hence the con-
tinuity equation. On the other hand, the full collision
operators are too complicated to allo~ an exact ana-
lytic solution. Since a mere numerical solution is
likely to be untransparent, we replace the exact
transverse collision operator by a reduced operator'
satisfying Eq. (2S), i.e.,

p =2eN(0) —' Tr T X G(ca„, cu„') —e4 (31)
V

can be transformed into

f +oo

p 2eN=(0) J dE N&(E)5fe e4—
Note that the set of kinetic equations implies the
continuity equation

p+dlvj =0

(32)

(33)

111. REDUCTION OF THE KINETIC EQUATION

Under certain conditions, for example in the pres-
ence of suSciently strong relaxation mechanisms, or
if we consider the effect of small external perturba-
tion, we can assume that the deviation of the quasi-
particle distribution function from a local equilibrium
value is small. The equilibrium distributions may
correspond to stationary stable or metastable, homo-
geneous or gently inhomogeneous states, and even to
states varying slowly in time. Under these conditions
we can eliminate the quasiparticle distribution func-
tion from the set of coupled kinetic equations. In this
section we will first demonstrate this for the case
where the superconductor is in a homogeneous
current carrying state and where no magnetic field is
applied. In this case we can choose a gauge in which
the vector potential vanishes (A =0) and the equili-

Z'(5f') -- N, (E)8j,'+ N) E
r E 4 T cosh (E/2 T)

fa +oo

x J Nl (E ) 5fe dE (34)

I/1' = I Ql + 1/Te

we find

(35)»

where we assume v~ to be energy independent. This
reduced operator has the same lowest eigenvalue 0
and eigenfunction 8fe = 5p/4T cosh'(E/2T), describ-
ing a shift in the chemical potential, as the exact
operator. The scattering-in term of the (L) collision
operator only leads to corrections of order (b,o/T)2,
and hence is neglected.

The kinetic equations have to be completed by
Poisson's equation —'724 =4mp. As long as we con-
sider wavelengths which are large compared to the
Thomas-Fermi screening length ) ~F = 10 ' crn, we
can put p=0 in Eq. (32). This relation then provides
a convenient method to simplify Eq. (34) further.
We also can assume that the order parameter only
varies on a spatial scale which is larger or of the ord-
er of magnitude of the Ginzburg-Landau coherence
length g(T) = (I/u' ') $(0). Therefore we have
Dq' & 0(ho/T) « 60. If we Fourier transform with
respect to time ( ice) and—space (ik), and use the
notation

—l col R &I, 2iDkq (—i co) R 2N2 r 2iDkq (1/r) R 2N2Ni5 e=
2

R286- Sb e4
4 T cosh'(E/2 T) 4 T cosh'(E/2 T) Q 4 T cosh'(E/2 T) Q

(36)

QT8fr IQl
N 85 T+ I/r N g) 2IDkq( —Ical) 2 2 8/IL

4 T cosh'(E/2 T) 4T cosh'(E/2 T) 4 T cosh'(E/2 T) Qi
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where P+oo jXg= '~ dE
cosh2(E/2 T)

N;Wj
i j=1,2

Q'=(I/. )N +Dk'M'

and

Q = (I/&)Ni+25pN2+Dk M (37)

P +oo
1XL- l dE

cosh2(E/2 T)

Yti= J cosh2(E/2 T)

822

QL

82M(Wj
QLQr

(38)

It is convenient to split off a term from X~~ as fol-
lows:

Here, we neglected terms of order
Dk2Dq2N/R2 /QLQr, which are small except for en-
ergies very close to the value of the energy gap, if
this exists, and yield only negligible contributions
upon integration. %hen evaluating 2e+ and 5p
we encounter the following integrals:

4T
Xii = +Xii

1 r+Dk2

With these definitions we find easily from the linear-
ized Ginzburg-Landau equation and the equations for
5p, the following equations:

7r —I 6)8r
4i 20k'" X, +g2(0)k2+2Pa2 gxL- '~ —Y q+2 0'(0)ke I+

7r m 7T
i

(39a)

i

2I'0
I pp+ — X22 +g (0)k 56 — X„—E p 2ig (0)ki—i 1+ Y,2 55 =02 2 I co L

8T ~ 4T
(39b)

E@——( (0)kqpi Y)2gh =0 . (39c)L

4T

Rp)
[(-iE+ )2+a2]'i2 ' (40)

where we have y = i pi/2+ I—/2rE = I/2r The s—quare.
roots appearing in the retarded (advanced) quantities
have a cut in the complex plane extending from

4p + I p to lip + I y. The sign is chosen such that for
large energies E the square root goes to +I'E. On the
other hand, in the limits of large energies ~E ~

&& hp

or of strong pair breaking I )Q Ap, the approxima-
tion Eq. (9b) is valid and the spectral quantities as-

surne the simple forms

Before we can proceed to calculate the various in-

tegrals, we have to discuss the form of the spectral
quantities. According to Eq. (19a) they are defined

by the analytically continued forms aRt") and pRt").

In the limit where no other pair-breaking effect but
inelastic electron-phonon scattering is present, the
relevant quantities are

R p) iE —"y

[(—iE + y)'+ &p21'i2

(2 ) ii2

( /
' )'"

2r (2) r) 'i'

2 (I + y/2&p2g) 'i

vr 2r (2y v) 'i'

2 4i),pr (I +y/2&2r)'i2

(44)

Although we have expressions for the spectral quan-
tities only in the two limiting cases, this will turn out
to be sufhcient to determine the required integrals.
Furthermore, in the following, we will restrict our-
selves to the limit

~B/T « II/~l = [I/rE (43

which allows us to neglect the diffusive terms
Dk2ML'r) in QL'r) as long as we have k & I/((T)
and allows us to simplify Eq. (39). In the Appendix
we will calculate the integrals and also discuss the
corrections due to the diffusive terms. The resulting
values of the integrals X are

Ni(E) =1,N2(E) =
E2+ y2

R,(E) =
E2 + ~2

where y is in general defined

y = i pi/2 +I—
(41)

(42)

XL = maps [[I + (y/ap)']'" —y/ap] .

Note, that these forms are obtained. both in the case

y = I/2r, using Eq. (40), as well as for arbitrary
pair-breaking eff'ects in the limit

~ y~ && hp, using Eq.
(41). The integrals Yii in the liinit of small
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bp are more complicated. In the case where
we have y =1/2r we find

m 1

4 I + (I/2x, r)' (45)

g4 2

for 5p && ~
16 y3

The corrections, some elliptic integrals, are of order
l(I/i5 pr) lnl t5 prl l. Of Ytq it is sufficient to know that
we have Ytq & 0(lr Inldprl l). On the other hand,
the limit lyl » 4p can easily be evaluated. We find

Since we have lcorl & 1 and leo/yl & 1, we see that
the only case where the corrections due to F22 are
significant, is the limit where Eq. (45) applies. While
S'IL and 54 may be of the same order of magnitude,
the electric potential e Il' has to be compared to
(3p/T) 55r. This becomes obvious by looking at the
approximate equation Sj = Sj, —cd'74. %e, there-
fore, can in all cases neglect the e4 term in Eq.
(39a). After insertion of 56L from Eq. (39b) into
Eq. (39c), we see that in the latter equation the 55L
term can be neglected as long as we have ~ && 5p.
If we define

2
vr ~p&

for hp ))2

16 T

(46a)

rt = (2yr)' '(1 + y/2hp'r)' '

and

m ~p&3 2

for Ap (& ~2

8

m ~p&
for Ap && ~2

t
(46b)

[I + (y/tI )2] 1/2 y + I
4p . 2hpg

we obtain from Eq. (39)

t 1

0

ta) —26pr( —f (0) 7 +2Pkp 56 + 1 + Yii 2g (0) g "756 =0
ST 7r

(48a)

itp — " —g'(0)V' 56™~ e4—1+ Yii 2g'(0)q'755 =0
ST 2hpv ~ 8T m

(48b)

l OJ 'F T ~~p 1
v) 86—

7 8T 4T v

8T (i(0) Vi eh=0 (4Sc)

In deriving a similar set of equations, ' one of the
authors made an approximation equivalent to keeping
only the scattering-out term (24) in Kr. The conse-
quent violation of the conservation law makes the
equations of Ref. 2 incorrect. The main physical
point made in that work, the existence of a soft mode
at the critical moment, is present in the system (48),
and is discussed further below.

%e note that if the frequency is small, i.e.,
tp « I/re (which means pp Yiq « 1), the coupling
of the quasiparticles to the order parameter affects
only the coeScients of the time derivatives and of
the electric potential in the time-dependent Ginz-
burg-Landau equation. In this limit we can general-
ize the elimination of the quasiparticle distribution, as
discussed above, to the case where the order parame-
ter ~p varies in space and time, provided that the spa-
tial scale of this variation is large or comparable to
g(T), and that the time scale is much larger than the
inelastic electron-phonon scattering time. -In this case
we are not even restricted to a linear form of the
Ginzburg-Landau equation, whereas the conditions

« I/rE lkl /T « I/re (49)

are satisfied, the time-dependent Ginzburg-Landau
equation

7j

sT 2l~l., 8t

+ 21&lrer- li

= [a —Plhl + g (0)('7 2ieA)'lt5, —(50)

which we combine with the equation for the current j

Eq. (43) and co « /Ir geuarantee that the quasipar-
ticle distribution is close to a local equilibrium charac-
terized by the local A(x, t) and 4(x, t), and a linear
form of the Boltzmann equation is sufficient. Final-
ly, since none of the above mentioned arguments
depend on the magnitude of q for q ~ q„we can also
include a static magnetic-field H & 0,. We thus ob-
tain, as long as the conditions
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j = (rro p/4eT) Imh "('7 2i—eA) 5 —op'74 (51)

Note, that the linear form of Eq. (51) follows from
Eq. (48c) 5p =0, combined with the Ginzburg-
Landau equation (48b). In the limit where no other
pair-breaking mechanism but inelastic electron-
phonon scattering is present (y = I/2r = I/2re) Eq.
(50) has been recently derived by Kramer and
%atts-Tobin. ' A similar equation with different
coeScients describing short filaments, where spatial
derivatives are large Dk' » I/re, has been present-
ed by Golub. ' Finally, in the limit of gapless super-
conductors, r/2~h~zrE && 1, Eq. (50) reduces to the
simple time-dependent Ginzburg-Landau equation
derived for this limit before. '

IV. SUPERCONDUCTORS

WITHOUT SUPERCURRENTS

(52a)

This result is valid for arbitrary pair-breaking I « T
as long as we have I/rk « I/ie. (This condition al-
lowed us to replace I/r by I/rs, and y by I'.) On
the other hand, in the limit of negligible electron-
phonon scattering but strong pair breaking we have
r/rE ((Ap, . but I' » hp and find

(s2b)

Among others, Schuller and Gray' have investigated
this relaxation process experimentally. The tempera-
ture dependence of their result (applying to I' (( Ap)

is in good agreement with Eq. (52).
%hen examining the transverse equations, we start

with an even simpler ideal system: an uncharged su-
perconductor. In this case the time derivative of the
electric potential i u&e4 drops out—of Eq. (48b).
[Note, however, that I/ree4 was introduced formal-

'

ly replacing the scattering-in term of the reduced
collision operator, and has to be eliminated by a

In order to convey some feeling for the various
terms in the time-dependent Ginzburg-Landau equa-
tion, we start with the discussion of the case where in
equilibrium no (or only a small) supercurrent is flow-

ing. Also the equilibrium vector potential is assumed
to be small. Most of the results which we will derive
have been presented before. '" "

In the considered limit we find two independent
modes involving only changes of the order parameter
either in magnitude or in phase. From Eq. (48a) we
obtain immediately the time characterizing the decay
of a spatially homogeneous nonequilibrium value of
~4~ to equilibrium'"

1r3T

correspondingly modified form of Eq. (48c).] At'

low-frequencies co « I/r, there exists a solution'
with

«) =c k (I ia)ra)

where

c =2hpg~(0)

(53)

(s4)

and
' 1/2 r

4T &E
~R

o 21
1+

25P rE

' 1/2

(55)

The time vR is the relaxation time characteristic of
transverse processes. ' These include relaxation of a
difference between the electrochemical potential of
the quasiparticles and the Cooper pairs, which was
first investigated by Clarke and Tinkham. ' In the
hydrodynamic limit where we have covRT « 1, we
thus find a propagating mode with a phase velocity
given by Eq. (54) which can be identified to be the
velocity of hydrodynamic fourth sound
c'= c4 = (n, /n) c~'. For high-frequencies rv && I/re,
we can neglect the electron-phonon scattering and
find, if we also neglect other pair-breaking effects, a
propagating mode co = ck, where the phase velocity is

c = (2dkpD)' (56)

The presence of the charge in a real superconduc-
tor has the effect that in the low-frequency region
there exists only a decaying solution

Ql =—I
mhp n,~(
2 T n Timp

(57)

The fourth sound mode is overdamped, since the
constraint of approximate charge neutrality requires
that the normal component performs a counteroscil-
lation to compensate the charge wave of the
superfluid component. The ohmic losses of the nor-
mal component result in a damping given by Eq.
(57). At high frequencies we find the same damping
mechanism. In this frequency regime, however, pro-
pagation is still possible. Neglecting pair-breaking
effects we obtain the dispersion relation"

i- n,
GJ

2 n

1,, 1 n, 1+ cr ———
im p 2 n ~imp

(58)

where the bare phase-velocity c is the same as in the
uncharged case Eq. (56). This result is in good quan-
titative agreement with the propagating mode found
by Carlson and Goldman" in most of the range of
parameters where the experiments have been per-
formed. The agreement can even be improved' if
the integrals X& are calculated including the diffusive
terms neglected in Eq. (44) (see the Appendix).
This leads to corrections in the resonant frequencies
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of order (6/T) In(h/co), and also the damping is in-

creased by an amount of order Dk . Pair-breaking
effects, due to paramagnetic impurities for example,
lead to an additional damping of the mode given by

iI—'/2 (for small I')." We, therefore, conclude that
as soon as we have I & Redo, the mode becomes
over damped.

Finally, we find that under stationary cohditions
the spatial scale for variations of the electric potential
is given by

(59)

This is of importance in the problem of normal
metal-superconductor boundary, where a normal
current is converted into a supercurrent. ' Actually in
Eq. (59) a complication results from the fact that
within a region of order ((T), from the boundary
do(x), and I (x), and thus rsr depend on the space
coordinate. In many cases, however, we have
(Dra)'i' )) ((T) and hence this region is of minor
importance. The resulting characteristic penetration
length (D ra)'i' for the electric potential, yields a
measure for an extra resistance in the superconduct-
ing boundary region. An extension of this result to
general situations involving finite supercurrents will

be given in Sec. V.

while the damping is increased due to the pair-break-
ing effect of the supercurrent as follows from Eq.
(11):

p2 ]
4T 4

(62)

Dk'(T) 2iDkq —1+ Y» (R)
8T 1 m

2nNp Dk2
2IM(L)(T) 4Dq I +—

Y22 (R)

(63)

This effect should be observable in the order-param-
eter structure factor, which can be investigated in an
experiment of the type performed by Carlson and
Goldman, " if an additional supercurrent in the plane
of the junction is imposed.

By adding a normalized driving-force term ( 2 No)

to the right-hand sides of Eqs. (48a) and (481), we
obtain the pairfield susceptibility for arbitrary values
of ao7E, i.e. , X=X +X,

V. SUPERCONDUCTORS IN THE

CURRENT-CARRYING STATE

In a superconductor carrying a homogeneous
current, the two linear modes discussed in Sec. IV
are coupled, as follows from the set of Eqs. (48). A
nontrivial solution exists only when the correspond-
ing secular determinant vanishes, which yields

k is)260rf. +Dk —+ p&02 16T

—I co + +Dk
mhp

26 ps 4T v

—4Dq 1+i Y22
2QJ S Ap ~+Dk' =0 .

m' 4T v

(60)

(L) +2iDkq 1+ Y22 (R)
r 8T 1

2mNp Dk2
2 I QJ(L)(T) —4Dq2 I + Y22 (R)

where

(L) = i o)2gori'+D—k2 y pg&

(T) =— q+ ~+Dk',
25p7 4T

(R) = ~+Dk' .
4T 7

There always exists a solution for k =0, which is
simply the gauge transformation. From the remain-
ing equation we again find in the high-frequency re-
gion co )& I a propagating mode with a modified
dispersion relation. (In the considered limit
Y22 =+i w/4' )The velocity o.f sound is reduced to a
value given by .

From the pairfield susceptibility, the structure factor
S(k, a&) is obtained by means of the fluctuation dissi-
pation theorem

S (k, ~) = (2 T/~) Imx(k, ~)

t

Dqc2=2hoD 1
2hp

(61) In the low-frequency region a& (( I/rE, Eq. (60')
can be solved directly, i.e.,
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26pvE 1 2 1 16T
QJ , +Dk' + — Ph +Dk

2 Q rit 25QTE) 1r

+Dk2 Pb,o2+ Dk2 4D—q
n (64)

.In the limit where no supercurrent is flowing (q =0),
the solution co+ reduces to the longitudinal
relaxation-rate Eq. (52a), while the solution co is

connected with the transverse mode in this limit. In
a homogeneous current-carrying state, the order
parameter satisfies 602 = 6020(I —q2/3q, 2), where
ba2a=n/P and q, = I/3' i2(( T) is the phase gradient
corresponding to the critical supercurrent j,. We thus
find that at j„the frequency co+ for fluctuations with
zero wave vector, k goes to zer'o. This mode soften-
ing shows that at the critical current the superconduc-
tor becomes unstable against the formation of long-
~avelength fluctuations, which has the result that no
current larger than j, can be stable. '

In the most interesting case of a superconductor
with energy gap 60 )) I', the form (64) can be ex-
panded for all positive Dk and arbitrary supercur-
rents, and we find

OJ+= I
16T

pro + Dk 4Dq-
2ho~z,

(65)

nAp2
2o) = i (1 +—Dk r R)2T

Comparison with Eq. (52a) shows that the rate of
relaxation of the magnitude of the order parameter is
slowing down as the supercurrent is increased. This
effect should be directly observable in the type of ex-
periment as that of Schuller and Gray' or in the
order-parameter structure factor as a sharpening of
the central peak. The relaxation rate for fluctuations
with finite wave vector k also becomes smaller as q
goes to q, however, it remains finite. The second
solution cu is little affected by the supercurrent in
the considered parameter range.

While the softening of the homogeneous mode
shows thai supercurrents above j, are unstable, it
does not describe the experimental situations at or
below j,. If large supercurrents are imposed on a su-
perconductor, localized phase slip centers appear, "
where a part of the current is carried by a normal
current, which is driven by a gradient of the voltage.
A complete analysis of localized solutions is not pos-
sible within a linearized theory. However, by an in-

vestigation in terms of localized solutions of the form—exp( —K~x ~), we can obtain valuable information.
Since solutions of this form have an unphysical kink
at the origin, they are not acceptable in an infinite
domain. But if localized solutions of the nonlinear
equations exist, their asymptotic behavior should be
described by the exponential solution. Also, solu-
tions of this type are acceptable if we consider boun-
dary problems.

We therefore, extend our analysis to negative
values of k' =—~, and find three diferent nondecay-
ing solutions. The first cu =0 solution, which exists
for arbitrary currents j~ j„has a spatial scale given
by

2

/(~(T)
2 (66)

~~p 16T 1
Pb — 4Dq 56 =2Dq(—'7e@)

4T

which means, that the magnitude of the order-param-
eter ~h~ follows the local value of the supercurrent,
awhile the amplitude of 54 guarantees that the total
current is conserved. At a certain current j', where
we have K+ K p and the two discussed so far coin-
cide, an instability is indicated. For ~pp )) I = —,~E,
this current follows from

In the limit q = q„ this is the softening homogeneous
solution discussed above. The solution agrees with
the asymptotic form of the saddlepoint solution,
which is a bounded stationary solution of the non-
linear Ginzburg-Landau equation. Both involve no
voltage, the order parameter is locally depressed but
the current is kept constant by a corresponding in-
crease of the phase gradient. This agreement of the
exp( —K~x~) solution with an exact solution, suggests
that sensible information is also contained in the next
two solutions.

The second 0) =0 solution of the exponential type
has a spatial scale given by

~g ——I /O ra2 — T
I

This solution involves a voltage. The amplitudes of
the corresponding eigensolution satisfy the relation
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1

(2/3)' '
q, 56 $(3) hoor E

(68)
large

q2 ~ q
44'2 I 16T ~2 I

4D m ra (26ors)'$
Below j' the order-parameter

~ h~ is increased in the
region where the normal current is parallel to the su-
percurrent (positive q'Ve@), corresponding to the
resulting local decrease. of the supercurrent below its
asymptotic value. Above j', however, ~h~, is re-
duced in this region.

In a boundary problem, the last solution describes
simultaneous injection of a supercurrent and a nor-
mal current. In the limit q =0 we recover the nor-
mal metal-superconductor boundary problem dis-
cussed in Sec. !V. The characteristic decay length
(Dra)'~', and thus the extra resistance of the boun-
dary, depend only weakly on the magnitude of the
supercurrent, in as far as rj depends on A(q) and on
the pair-breaking effect of the supercurrent.

In this connection it is important to notice that Eq.
(59) is also valid for stationary situations both in the
nonlinear case and in the presence of a supercurrent
or a magnetic field. The spatial dependence of
rs(x), again requires in principle a seif-consistent
solution of Eq. (59), combined with the Ginzburg-
Landau equation for ~LL~ and the equation J =const.
However, this dependence can be neglected in most
of the range where a normal current flows, if the
length (Dry)'~' is large compared to the spatial scale
of the order parameter. This result is of some impor-
tance in the discussion of phase slip centers. Al-

though the present understanding is that phase slip
centers evolve in time, the time-averaged potential
still seems to be described by Eq. (59). Experiments
by Dolan and Jackel show that the spatial depen-
dence of the voltage is indeed given by exp( —Ky~x ~),
and they also verify the temperature dependence of
~~. Furthermore, in recent experiments Kadin
et al. '4 showed that the resistance of a phase slip
center depends on the pair-breaking effect of a mag-
netic field, in a way consistent with the expression
Eq. (55) for the relaxation-time re. A solution of
the nonlinear equations, which involves a voltage and
can be constructed by methods proposed by.Bezuglyi
et aI."is presently being investigated by the authors.

Finally, we find a nondecaying but oscillating solu-
tion of the linear equations (48) of the form
-exp( —

q~ x ~) at a value of K, where the square
bracket in Eq. (64) vanishes if at the same time the
argument of the square root is negative. This re-
quires

t 1

I 1 + v) 16Tp~2
rs (2horE)'( ~ (2&o&s)'f

and since in a superconductor with gap 50 & I one
has I/ra —D~„, & 0, the supercurrent has to be

(70)

The resonant frequency is then given by

I 16T p~2 I
I + rl

2hprsf
)

rr rs (2horE) (
$/2

x 4D (q2 qao2) (71)

\

In the limit Ap » I 1/2r& these expressions
reduce to

Kosc I/(Drs), q q"

from Eq. (68) and

7((3)~oo(2/3)'" q' —q"' '"
Cal

tE n3 ~ qc2

(72)

The eigensolution corresponding to this frequency
involves again a finite voltage. %e find

~~o
2

l. 16T P~o
2qgh = — Ve@

4T 7r 2d prE
(73)

which shows that S'IL and j„oscillate with a phase
difference of —,~. The ratio of the amplitudes can be

obtained by inserting the frequency. At the onset
current q = q'", the voltage goes to zero.

VI. TIME SCALE OF

INTRINSIC RESISTIVE FLUCTUATIONS

The time-dependent Ginzburg-Landau Eq. (50)
differs from the simple form in the- property that the
time scales for the fluctuations of the magnitude and
of the phase of the order parameter are no longer
equal. This in turn will modify the time scale for in-
trinsic resistive fluctuations. It was shown by Langer
and Ambegaokar22 that the dissipation rate of a su-
percurrent in a thin wire is essentially determined by
an exponential activation-factor e ~F/', where hF is
the difference in free energy between minimum and
saddle-point solutions. It can be'calculated from the
time-independent Ginzburg-Landau theory. In addi-
tion a prefactor Q(T), which describes the time scale
of the fluctuations of the order parameter in the
order-parameter space, was calculated by McCumber
and Halperin. In this section we will illustrate
how the modification of the time-dependent Ginz-
burg-Landau equation changes their result.
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By linearizing Eq. (50) in the limit of low-fre-
quencies o1 (( I/re we obtain

86 56
7 0 g ggT ™1ggT

1 / 1 j

(74) J=—4o2(x)e, ' . (77)

and the current J is normalized such that we have
0 ~

i
J i

~(—„)'/'. We do not specify the phase, but
merely mention

where

M)=—

a2
1 —3 1[1o2

—tto'—
QX

/

Hp" +2''
QX

1

—Hp" + 28p'
8X

82
1 —4o —go'—

QX
1

(7')
We measured x in units of ((T), Qp is the magnitude

of the order parameter b,p normalized to
bop=(a/p)' ', and r = (2r/8T)(I/n). These equa-

tions are a generalization of Eq. (48) in as far as they

describe deviations of the order parameter from gen-

eral space-dependent stationary solutions

y q(x) =go(x)e

including in particular the saddle-point solution,
which is given by following expressions:

X1 (v1)' ' P

P (v )1/2 ger
1

we obtain

(78)

In Eq. (74) we neglected the electric potential. It was
shown by McCumber and Halperin that this is al-
lowed near the minimum and the saddle point. The
operator Mi differs from their operator only by a uni-
tary transformation. On the left-hand side, however,
the factors v1 = 24pre( a11d v2 = (I/25pre) rj change
the physical picture. If these factors are unity, the
time-dependent Ginzburg-Landau equation describes
an isotropic. viscous motion of the order parameter in
the order-parameter space under the influence of a
potential given by the Ginzburg-Landau free energy.
With vi and v2 different from unity, the situation
rather corresponds to a viscous motion with an aniso-
tropic viscosity. However, by changing to the new
variables

1[1o2 (x) = [(1—3K2) tanh2y +2K2]

where

y =x[(1—3K )/2]' 2, K(1 —K2) =J

(76)

where

I

X] Xi
=—M2

Bt
(79)

1 2 &2

) 1/2
1 —3 1[/p

—ep
82 1

Bx2 ( )'/'

1

(v )'/' Bx (v )'/'
! /

+2g, 8 1

(v )'" '
Bx (v )'"

(v )'" ' Bx' (v )'/'
/

(80)

is a Hermitian operator, which allows the interpreta-
tion and procedure of calculating the transition rates
as used by McCumber and Halperin.

The following results are obtained immediately:
(i) Both for expansion around a minimum (m) as

well as a saddle point(s) there exists one solution
with eigenvalue zero, corresponding to a constant
phase shift.

XI

X2 m& or s2
1

0
=COIlst

( )1/2 ( )
(81)

(ii) There exists a second eigenvalue zero for ex-
pansion around the saddle-point solution. In the lim-
it where we have vi = v2 =1, this solution describes a
translation of the saddle-point solution in x space

86 Qo
=Sx~ g,

1 1

=const 1

1[1p(x)

(1 —3K ) tanhy
,cosh'y

-K(1-K') (82)

Xi
1=const

Qo(x)

1/2 (1 —3K')' ' tanhy(V1)
cosh y

—(v2)' 'K(1 —K') (83)

This connection allows one to relate the integration
over the phase space of the corresponding fluctations
to the physical length of the system. The corre-
sponding solution in the general case (v1 N v2 W 1)
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x1 0

x2 ., " 1/cosh(x/2' ') (84)

and thus the eigenvalue is

still has the eigenvalue zero. In principle it should be
possible to relate Eq. (83) to a solution of an opera-
tor, the linear form of which is given by Eq. (80).
However, only in the limit of vanishing or maximum
current can this be easily done.

To proceed further we make two rather restrictive
simpli6cations. First, although v1. and v2 are in gen-
eral functions of the space variable and are different
for minimum and saddle-point solution, we neglect
this dependence and treat v1 and v2 as constant
parameters. In spite of this approximation„we will

be able to see.how the results change qualitatively.
Second, even with this simplification we are able to
find the eigenvalues of M2 only in the limit J 0. In
this limit M2 becomes diagonal, the eigenvalues are
those obtained by McCumber and Halperin multi-
plied by 1/vl for magnitude fluctuations, and multi-
plied by 1/v2 for phase fluctuations.

Again there exists a negative eigenvalue at the sad-
dle point, the eigensolution for J 0 is
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APPENDIX

In the following we will illustrate the calculation of
the integrals X&, XL, and Y& for temperatures close to
T„considering different physical limits. As pointed
out above we know analytic expressions for the spec-
tral quantities Nl(E) and R2(E) only if we have ei-
ther I = —,7~, i.e., no pair-breaking mechanism but

inelastic electron-phonon scattering is present, or if
we have ~E ~

+ 1' )) kp, i.e., the pair breaking is
strong or the energy is large. Nevertheless, we will

be able to give general results for these integrals.
We first assume that the inequality (43) is satisfied

which, as we will show later, allows us to neglect the
diffusive term in the denominator of Qr and QL. As
an example we investigate X12 in the limit I =

2
'lg

1 1 1(i.e., y reduCeS tO y = 2r = -2rE-2 i pl),——

( lvl 2P%1) = pq (vl=p2=1)1
1 V2

(8&) dE Nl (E)N2(E)
"-"cosh2(E/2T) (1/r)Nl(E) +26pN2(E)

Furthermore, the ratio of the products of all

nonzero eigenvalues at the minimum, and the saddle
point enters the expression for the transition rate

(Al)

where Nl and N2 follow from Eq. (40). After some
elementary transformations we obtain

"'m ~Ol

sJ's WOJ

+oo

dE —([( jE —1/2r) 2—+ g2]
4

—[( iE —I/2T)2—+6p] '
)

If all eigenvalues were different from zero, the fac-
tor v1 and v2 in numerator and denominator would
just cancel. However, since the zero eigenvalue fluc-
tuation corrresponding to the shift of the saddle point
involves magnitude fluctuations, there is one factor
1/vl missing in the denominator.

The remaining coefFicients are unmodified. We
thus find that the transition rate [see Eq. (2.36) of
Ref. 26] obtains a factor

Q(T;vl, v2 A 1) = Q(T;vl =v2=1)1

V (V ) l/2

(A2)

The convergence of the argument of the integral
allowed us to put cosh'(E/2T) =1 to lowest order in
5/T. Since 1/v has a positive real part, the second
square root is- analytic in the upper-half plane. We
close the contour of integration in the upper-half
plane and contract it to follow the cut of the first
square root, which is real and positive below the cut
and negative above. After the substitution
E —i/2r x we obtain

(2aprE) li2

~(g)'"
0 T (86)

p +dLO 1

2 "-~p (5p —x')'i' x+i/2r (A3)

where A(T) has been calculated by McCumber
and Halperin. As compared to their result we find an
increase of the transition rate and consequently of
the resistance by a factor (2hpv E)'j'/2j(()'i'.

and thus we have

X„=—,
' ~[1+(1/2~,.)2]-'j2 (A4)

On the other hand, in the limit y )& Ao, we can
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use the spectral quantities in the form given in Eq.
(41). As long as we have y, A(yr)' 2 « Twe can
again put cosh'(E/2 T) =1 and easily obtain

(2y )'"
2 (1+y/2A'T)'

The latter result includes Eq. (A4). Obviously the
detailed form of the spectral quantities for ~E ~

& Ap,

which differs in the two treatments above, is of
minor importance in the calculation of the integral.
'We therefore are allowed to use Eq. (A5) for general
values of I".

Similarly we calculate the remaining integrals. The
results are listed in Eqs. (44) —(46).

There are cases where the inequality Eq. (43) is

not strictly satisfied. An example is provided by the
resonance frequency of the Carlson Goldman mode"
in a certain range of parameters. In the experiments
of Ref. 11, which were performed in aluminum, the
inelastic electron-phonon scattering as well as other
pair-breaking mechanisms were small. In Ref. 17 the
integrals X&,XL have been calculated exactly including

the diffusive terms in the limit I =0 corresponding to
the experimental situation. The results are combina-
tions of elliptic integrals depending on co and Dk'.
By expanding these results or by directly expanding
the integrals, we find that to lowest order the correc-
tions due to the diffusive terms are of order
(Dk /hp)ln(hp/co). Although Dk /d p is small in the
experiments, the correction of the resonant frequency
is of order (Ap/T)ln(hp/a&), since when calculating
the resonant frequency as shown in Sec. IV, the lead-

ing terms in cu/Ap cancel. This accounts for the devi-
ation between experimental results and Eq. (58) in
the case of small frequencies. Also in the absence of
any inelastic scattering and pairbreaking, it is only the
diffusive term in XL which is responsible for the cen-
tral peak in the order parameter structure factor. "'

On the other hand, in the presence of inelastic
electron-phonon scattering or pair breaking the
corrections to the integrals are of order
(Dk'/Ap) ln~ 4p/y[ for

~ y[ & hp, and are of order
Dk /Ap for ~y~ && 4p. Thus, as long as condition
(43) is satisfied the diffusive terms can be neglected.
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