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Stiffness-constant variation in nickel-based alloys: Experiment and theory
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Recent measurements of the spin-wave stiffness constant in several nickel alloys at various concentrations

are interpreted within a random-phase approximation, coherent-potential approximation{RpA-CpA) band

model which uses the Hartree-Fock approximation to treat the intraatomic correlations. We give a

theoretical description of the possible impurity states in the Hartree-Fock approximation. This allows the

determination of the Hartree-Fock solutions which can account for the stiffness-constant behavior and the

magnetic moment on the impurity for all the investigated alloys. For alloys such as ¹iCr, ¹iV,¹iMo,and

NiRu the magnetizations of which deviate from the Slater-Pauling curve, our determination does not

correspond to previous works and is consequently discussed. The limits of the model appear mainly due to

local-environment effects; in the case of NiMn, it is found that a ternary-alloy model with some Mn atoms

in the antiferromagnetic state can account for both stiffness-constant and magnetization behaviors,

I. INTRODUCTION

The electronic structure of transition-metal al-
loys has been fairly well investigated either by
measurements of mean properties such as mag-
netization, resistivity, and specific heat or by
measurements of local properties obtained by dif-
fuse neutron scattering such as the magnetic mo-
ment on the impurity and the extension of the per-
turbation. In the case of nickel alloys, these var-
ious measurements enable one to distinguish be-
tween two classes of alloys according to whether
their magnetizations follow the Slater-Pauling
curve or not. Many theoretical models have been
developed to account for these properties by using
the Slater-Koster theory with a Hartree-Fock scat-
tering potential. For instance, the models of
Campbell and Gomes' and of Demangeat and
Gautier' may account for the different magnetiza-
tion behaviors with the assumption that the im-
purity has one of two different electronic states,
possible solutions of the Hartree-Fock equations.
These models support Friedel's concept' of a vir-
tual bound state in order to explain the important
modification of the magnetic properties when the
impurity has a very different valency from the
host. Such a study has also been extended to con-
centrated alloys by combining the Hartree-Fock
approximation and the tight-binding model with the
use of the coherent-potential approximation (CPA).'
More recently, several authors' ' have reported
the variation of the magnetic moment of the im-
purity with the atomic number for all the solutions
of the Hartree Fock equation. Hayakawa and
Yamashita' have discussed the capability of this
model to describe some magnetic properties of
dilute alloys.

In these works, attention was mostly focused on
the mean magnetization and the magnetic moment

of the impurity, and in some cases the specific
heat or the residual resistivity. '

We intend here to extend the analysis to the stiff-
ness-constant variations of these alloys. Indeed,
measurements of the D constant have been per-
formed by inelastic neutron scattering in several,
nickel alloys at various concentrations, and re-
ported in previous papers. ' ' '" They show that,
regardless of the magnetic behavior, the stiffness
constant D decreases with concentration in all the
investigated alloys. However, the decrease has
different characteristics depending on the class
of the alloy. For NiCo, NiFe, an.d ¹iln, the de-
crease is more pronounced at small concentration
and more so as the excess of charge Z in the ma-

. trix increases (from Co to Mn). For NiCr, NiV,
NiRu, and ¹iMo, D decreases linearly with con-
centration and follows the magnetization curve
with, however, a little deviation from the linearity
in the NiRu case. The close relation between the
stiffness constant and the band structure of elec-
trons is now well established, and several theo-
retical models" ' allow the calculation of its var-
iation in concentrated alloys by using the CPA. Of

course, these calculations use further approxima-
tions compared to the models developed for the
pure-metal case. For instance, it is necessary
to use a rigid-band splitting ~, a momentum-in-
dependent intra-atomic constant U, equivalent d
subbands, the classical RPA, etc. It is then of
interest to check the limits of validity of such
models.

The purpose of this paper is to examine (i) the
capability of the RPA-CPA model of giving a gen-
eral interpretation of the stiffness constant togeth-
er with magnetization variations of Ni alloys
(Sec. II) and (ii) the limits of the model for each
class of alloys (Sec. III), within our approxima-
tions. ,
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II. HARTREE-FOCk SOLUTIONS

A. Model

The stiffness constant of the alloys is interpreted
within the model of Riedinger and Nauciel-
Bloch. "' Since it ha. s already been described,
we only recall briefly the main equations.

As did Hasegawa and Kanamori, we adopt the
tight-binding Hamiltonian with the "d' electrons
only. Within the equivalent- orbital desci iption,
the "atomic' energies of electrons are expressed
in the Hartree-Pock approximation by

,=g o+4(U —j )N, +5U N~, ,
~=A, B, (r= 4, 4,

where the intra-atomic constants U and J are,
respectively, the Coulomb and exchange interac-
tion parameters.

Calculation at any concentration can be made by
using the coherent-potential theory"v' in which is
defined an effective uniform medium chara, cterized
by the self-energy Z, (z).

The Green's function F, of the e atom in the
effective uniform medium is related to the Green's
function F,(z) of this medium through the Dyson
equation which yields the relation

F.„(z)=F.(z)/0 —[~,.—Z.(z)]F.(g)j,
with F,(z) related to the Green's function of the

pure medium F'(z) by

)".4) =)"'4 -&.(c)I=j " sE,

where Z, (z) is given by the implicit equation

.-z.(g)
I —[~.„-Z.(z)]F,(g)

which expresses statistically that an electron
propagating in the effective medium is not scat-
tered.

Solving simultaneously the set of implicit equa-
tions (1}and (2), we get Z, (g) and F,(g), and then
the number of electrons for each site,

N, = ——Im F,(z) dz,
e DO

where the Fermi energy is obtained from the con-
dition of conservation of the total number of elec-
trons:

N'(~)= g N. .
Ov fy

The N, and E~ parameters are determined
self-consistently by a minimization method" (see
Appendix).

Once Z, (z) is calculated, the stiffness constant
& is derived through the analytical expression of
Riedinger and Nauciel-Bloch:"

1D= — Im
37rm

dE(-', [on'(E' —z, (E')) + mr, '(&' —z, (E'))] —[z, (E') —z, (E')]-'

x[OR (E' -Z, (E')) -On(E' -Z, (E'))]), E'=E+ie,

which uses the raridom-phase approximation. An
equivalent expression has been derived by Fuku
ya, ma" and Hill and Edwards. " In this formula,
on(z) is given by

M(E) = v, E(r )ds.
(g)

B. Parameters

We have used the parametrization of the func-
tions n'(E) and M(E) of pure nickel given by Rie-
dinger and Nauciel-Bloch'4 corresponding to the
band-structure calculation of Fletcher' with a
bandwidth W=0. 32 Ry (4 eV).

which is the analytical extension of the M(E) func-
tion introduced by Wakoh, "

Besides the density of states, for each alloy two
sets of parameters are needed: U +4J = U" and

5p = $gp Qgp, which are kept constant at all con-
centrations. All the others are evaluated consis-
tently. The value of U'" for pure nickel and there-
from the splitting value ~= U'"m has been deter-
mined by fitting the calculated D constant to the
experimental value (D= 540 MeV L'}""which

yields U' =0.5 Ry or 4=0.06 Ry. As already
said in previous papers, "this 4 value stands at
the maximum edge of the range of values obtained
in band-structure calculations (0.027 & & & 0, 07
Ry}' "and, therefore, is rather large This pr.o-
cedure has, nevertheless, been chosen because of
the sensitivity of the constant D, on one ha.nd to the

or 4 value (indeed D increases down to 260
meV ~' when &=0.03 Ry), and on the other hand
to the approximations of the model (the experi-
mental D value of pure nickel may be well ac-
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counted for in the more elaborate model of Cooke
and Davis, "which uses the mean splitting value
4= 0.027 Ry from the calculation of Hodges
et al. ").

Accordingly, the parameter U'" has to be con-
sidered an effective parameter of the model, and
we do not have to draw physical conclusions on the
band structure from its large value. For in-
stance, this may be responsible for too large de-
formations in the band structures, but that error
has only little effect on the mean magnetization or
the magnetic moment on the impurity obtained by
a simple integration over the band. As to the
stiffness constant, the comparison between calcu-
lation and experiment is thought to be meaningful
as far as it is extended to several alloys.

The U'" value for impurities of the first transi-
tion series has been determined so that the ratio
UN, /Us (B is the impurity) approximately corre-
sponds to the theoretical calculations of Fletcher
and Nudel. " A similar variation has been used
for impurities of the second transition series (cf.
Fig. 1). The decrease of this parameter corre-
sponds to the extension of the electronic orbital of
isolated atoms. The sensitivity of the calculation
to a change in this ratio may be appreciated by
comparing results of ¹iCrand ¹iMo in Fig. 10.
The results are similar, although the U~ value
changes by 30%. (The other parameters have the
same value since these alloys are isoelectronic. )

The parameter 5,= e~, —ez, affects more the re-
sults, and its determination is somewhat difficult.
We have chosen to determine it starting from the
calculation of the energy difference 5= e~ -e„of
the isolated atom in the paramagnetic state and
using the relation

6 = 6, + ,'(9U —4Z -) &Os - z(9U„—4J„)n,„,

Ryd

Sc Yi V Cr Hn Fe Co lO

FIG. 1. Variation of the effective intra-atomic para-
meter U' and of the parameter 6= e z- e N& in the par-
amagnetic state as a function of the impurity. The
lines U(1) and U{2) correspond to the U'f~ variation of
atoms in the first and second transition series.

where n» and n» are the numbers of electrons of
pure metals in the paramagnetic state. According
to the calculation of Herman and Skillman" on
the isolated atoms, 5 follows a linear variation
with Z providing a change of 0.8 eV for 4Z=1.
It is clear that this determination which refers to
a calculation on isolated atoms and requires an
extra equation is rather approximate. It has been,
nevertheless, adopted for the weak ferromagnetic
alloys, since it yields reasonable critical concen-
trations. The sensitivity of the results to the. 5
value is shown in Fig. 11 in the case of ¹iRu.

For the strong ferromagnets, the same proce
dure provides too large a magnetic moment on the
impurity (-1.9ps, 3.4pa, and 4.2gs on Co, Fe,
and Mn, respectively). But in these alloys the
determination of 5, is facilitated by the fact that
the magnetic moment is very sensitive to this pa-
rameter. Since the experimental values of the
magnetic moment on these impurities are now well
known in the dilute limit, it seems reasonable to
use the 50 parameter that yields the experimental
values, namely, 1.6p,» 2.6g» and 3.5p,~ on
Co,"Fe,"and Mn, "respectively. For the NiCo
and NiFe alloys this determination corresponds to
fulfill the Friedel sum rule for the 5, parameters
in the dilute limit:

5 5, ImE, (E~)
(3)

~ 1-~,Rex, (Z, ) '

as given by Clogston, "where Z is the excess of
charge in the matrix.

C. Results

As it has been already shown, the expression of
the energy ih the Hartree-Fock approximation
leads to several solutions. We have shown in Fig.
2 the variation of the magnetic moment with Z.
This curve is similar to that obtained in previous
works" if we take into account some differences
between the set of parameters, . Each 1ine segment
corresponds to atype of solution with specific
characteristics. There is one solution or three
solutions depending on the Z value. This multi-
plicity is not related to the Z, (z) determination
(obtained in a unique way by using its limit at z
infinite), but, as explained by Kanamori, ' is a
consequence of the analytical form of the Hartree-
Fock energy.

We have shown in Fig. 3 the schematic partial
densities of states rt, (E) (n=A, B; cr= i, 0) cor-
responding to each solution. The arrows indicate
the evolution of the deformation on the impurity
site at small concentration when Z is increasing.
Of course, this evolution is directly related to
that of the sign and magnitude of the self-consis-
tent 5, parameters; in particular, the partial den-
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Ni,

0

FIG. 2. Solutions of the
Hartree- Fock equation for
impurities in nickel. Mag-
netic moment of the impur-
ity vs its excess of charge
Z in the matrix.
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FIG. 3. Schematic partial densities of states in each solution: Solid line n~t {E);bold solid line, n~~ {E);dotted line,
g&g(E); bold dotted line, nz~ {E). The arrows indicate the displacement of the bound levels when Z is increasing at
small impurity concentration.
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sities of states may exhibit bound states when the
5, values go beyond some critical values which
are functions of the band shape. The variation of
the magnetic moment on the impurity,

with Z is easily predicted from these schemes by
considering the change in the deformation of ns, (E)
with Z.

Let us now comment briefly on the different sol-
utions. In.deed we have to follow their evolution
with Z at fixed concentration, which is a conse-
quence of the Hartree-Fock approximations and
their evolution with the concentration at fixed Z,
which, in its turn, is a consequence of the co-
herent-potential approximation. This will allow
us to make assumptions on the physical descrip-
tion of the behavior of the various alloys and to
compare these to interpretations given in previous
papers.

Solution (i): 54 is negative and 54 is positive.
Then the deformations occur at the bottom of
nsi(E) and the top of n~&(E). Both increase with Z
in magnitude. Accordingly, ns, (E) is always full,
while n~, (E) is progressively emptied as Z is in-
creased, which corresponds to the increase of the
magnetic moment on the impurity B atom.

When varying the impurity concentration, the
main characteristics of the solution are (a) The
alloy remains a strong ferromagnet and no mag-
netic transition occurs. (b) Themagnetization in-
creases with concentration. (c) The stiffness con-
stant decreases. We shall give more details be-
low since this solution gives a good description of
NiCo, NiFe, and NiMn, at least in some range of
concentration.

Solution (ii): 50 is small and 54 is large and pos-
itive. The former increases with Z, while the lat-
ter decreases as indicated by the arrows in Fig.
3. When Z is increasing, an up bound level is
progressively subtracted from the 0 main band and
emptied by crossing the Fermi level, which ex-
plains the decrease of the magnetic moment on the
impurity.

When the impurity concentration is varying at a
fixed Z value, the characteristics are similar to
those of solution (i); the magnetic moment remains
nearly constant at all concentrations and & de-
creases.

Solution (iii): The 5, parameters are positive
and determine a small magnetic moment on the
impurity, increasing with Z. 5, is large enough
to create an up bound state. With change in im-
purity concentration, the model predicts a transi-
tion to the paramagnetic state and a decrease of
the & constant and of the magnetization. We shall
examine in more detail this solution since it gives

a plausible description of alloys such as NiCr,
NiT, NiMo, and NiRu.

Solution (iv): 5, is positive and 5, is negative.
Both increase in magnitude with Z. Because of
the nearly empty up bound state, the magnetic
moment is negative on the impurity and decreases
as n~, (E) is progressively emptied as indicated by
the arrow.

The variations of the partial or total magnetiza-
tiohs and of the stiffness constant are reproduced
in Fig. 4 in the case of one alloy, with the corre-
sponding densities of states. The magnetic mo-
ments on the atoms remain nearly constant with
the concentration, and the total magnetization
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FIG. 4. (a) Variation of the partial and total magne-
tizations and of the stiffness constant with impurity con-
centration in the Hartree-Fock solution (iv). The set
of parameters correspond to the ¹iRu case. Q) Cor-
responding density of states at 5% and 10% Ru.
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quickly decreases. At some concentration the lat-
ter crosses the zero value leading to an unphysical
situation. On the other hand, the constant D in-
creases with concentration in relation with the oc-
currence of a large negative moment on the impur-
ity. It increases slightly when the impurity has
-3p~ moment value and more strongly for larger
negative values.

Solution (v): 5, is much larger than 5, , and both
have opposite variations when Z increases. Re-
sults for the magnetization and the stiffness-con-
stant variation with the impurity concentration are
shown in Fig. 5, in one case of alloy with the cor-

responding density of states. As in solution (iv),
the total magnetization decreases while the stiff-
ness constant strongly increases.

The comparison between the experimental be-
havior of magnetic moments and of the stiffness
constant, leads us to conclude that solution (i)
describes the NiCo, NiFe, and NiMn alloys be-
cause of the good agreement of the calculated mag-
netic-moment value on impurity with those obtained
by neutron experiments. This conclusion has al-
ready been reached in several previous works. "~
On the other hand, solution (iii) may be thought to
describe the alloys, the magnetizations of which
deviate from the Slater-Pauling curve. However,
this does not agree with previous theoretical
works"' which usually have considered solution (v)
to describe this category of alloys.

Our conclusion is based on comparison with three
main experimental results: First, solution
(iii) predicts a small moment on the impurity in-
stead of a large negative moment, as in solutions
(iv} or (v). This is in rather good agreement with
the results of diffuse neutron scattering. ""
Second, D decreases with concentration as ob-
served experimentally, while it increases in solu-
tions with a large negative moment. Third, at
larger concentrations the model predicts a para-
magnetic transition, while in other solutions no
magnetic transition occurs. Of course this last
argument can be questioned, since the CPA is not
expected to describe correctly a magnetic transi-
tion.

One of the main objections to our inference is
that it is not supported by some energy calcula-
tions. Indeed, it has been found' that both
Hartree-Fock solutions with a large positive or
negative magnetic- moment values are stable, while
the third witha small moment value is not. How-
ever, it seems to us that theoretical considera-
tions of the stability of electronic states should
take into account the complexity of the atomic
electronic orbitals and of the local atomic environ-
ment. Accordingly, we think that these results
are important but cannot constitute a definitive ar-
gument, and it would be of great interest to per-
form further calculations to clarify this problem.

111. LIMITS OF THE MODEL'

A
Kp ls ER&

FIG. 5. {a) Variation of the partial and total magne-
tizations and of the stiffness constant with impurity con-
centration in the Hartree-Fock solution {V). The set of
parameters correspond to the NiV case. {b) Corres-
ponding density of states at 5% and 10% V.

In this section we compare in more details re-
sults of the model with experiments in the two
chosen solutions.

A. 1ViCo, MFc, and MMn

In Fig. 6 we have shown D measurements ob-
tained by inelastic neutron scattering and its cal-
culated variations obtained in solution (i) with the
parameters corresponding to NiCo, ¹iFe,and
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FIG. 6. , variations of D with impurity concen-
tration in the CPA-RPA model. Comparison with ex-
periments: &iCo=+ (4. 2 K), & (293 K);ÃiFe=-k (4. 2 K),
5 (293 K); ÃiMn= ~ (4. 2 K). For each alloy, two cal-
culations have been performed, corresponding to two
different calculated values of the magnetic moment on
the impurity. These values are indicated in the graphs,
————,& variation of NiMn in the ternary model (see
Figs 8 and 9).
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NiMn alloys. For simplification, we have not in-
cluded the experimental results of other
authors" "that have already been compared in
previous works. The total density of states of the
three alloys at 5% concentration are shown in Fig.
7.

Keeping in mind all the approximations used, the
model accounts satisfactorily for the qualitative
features of the D variation, both with the concen-
tration and the Z value of the impurity. (The case
of ¹Fehas already been reported. '~) The sensi-
tivity of the calculated stiffness constant to a var-
iation of the parameters is shown in the same
figure, where are plotted two curves D(c) corre-
sponding to two different values of the magnetic
moment on the impurity.

However, the model cannot account for the large
bump observed in NiFe at about 50% Fe. It may
be invoked that the U" values have to vary with
concentration. Anyway, the peculiar behavior of
& in this alloy has obviously to be related to the
rapid decrease of the experimental magnetization
beyond 50% Fe which does not occur in the model.

Indeed, the limits of the model appear more
clearly if we look at the magnetization variation.
The calculated magnetizations which correspond
to a simple integration of the band up to the Fermi
level give the same results as does the rigid-band
model; it cannot predict any decrease in NiFe and
NiMn. This discrepancy may l.ead one to question
the agreement found for the D variation, especially
in the NiMn case, where it occurs as early as 10%
of Mn.

We can recall that the decrease of the magnetiza-

Ryd.
-'

Ni Mn

x= a.s

+o+t~ ++ ~
~ ~ ~
~ ~ ~

ERyd
I

0 0.) 0.2 Ep 0.4 0.5

FIG. 7. Density of states of NiCo (a), ¹iFe(b), and
NiMn (c) at 10% of impurity concentration:, up
band; ~ - ~, down band. The Fermi level is indicated by
Ez. The origin of energies is arbitrary.

tion in these alloys has been attributed to the entry
of the Fermi level in the up band in the pioneering
work of Hasegawa and Kanamori. This was a,

consequence of the small-U value used by these
authors. It is more usually thought now that this
decrease is, rather, related to local-environment
effects, which may induce a change of the elec-
tronic state of the impurity. Indeed, by perform-
ing an energy calculation, Jo" ha, s shown that Mn

atoms may coexist in two different electronic
states with opposite magnetic moments depending
on the Mn concentration. These states correspond
to solutions (i) and (iv) in the general curve (Fig.
2). It is then of interest to examine the conse-
quences of these antiferromagnetic states on the
calculated stiffness-constant behavior.

Such a possibibty may be introduced in a phe-
nomenological ternary model Ni, „Mn'„Mn", , where
the ratio of Mn and Mar atoms i.s arbitrarily fixed
by a probability law. Following an assumption
given by other authors, ' ' a Mn atom will have a
negative moment when surrounded by more than
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FIG. 9. Density of states of +iMn in the ternary
model.three Mn atoms, regardless of their states. In

this ternary model, the self-energy Z, (z) of the
effective medium is determined by Eq. (2), where
the summation is extended to the three types of
sites.

Results for magnetizations and stiffness con-
stants are shown in Figs. 8 and 7, with the cor-
responding densities of states in Figure 9.

In this model, the magnetic moment on Mn atoms
keeps a nearly constant value while the nickel
atoms go to the paramagnetic state near 30/& Mn.
At that concentration, the alloy may be considered
to be in a disordered antiferromagnetic state. The
calculated magnetization curve agrees qualitatively
with the experimental curve. The probability law
is, of course, oversimplified. Nevertheless, the
model can show that the stiffness constant is hard-
ly affected by the antiferromagnetic states of some
Mn atoms.

Such a, model could approximately reproduce the
decrease of magnetization in NiFe alloys, too,
with an a,ppropriate probability law to define the
relative Fe' and Fe" atom concentrations, but it
cannot account for the peculiar behavior of the
stiffness constant. In this alloy, D seems rather
sensitive to the complexity of the local perturba-
tion where clustering and ordering effects have
been revealed by neutron experiments, and it is

clear that aQ the mean-field approximations such
a,s RPA or CPA in ternary- as well as in binary-
alloy models are no longer sufficient.

B. NiV, NiCr, NiMO, and NiRu

Results obtained in solution (iii) with parameters
corresponding to NiV, NiCr, NiMo, and NiRu are
plotted on Figs. 10 and 11, and compared to the
experimental results. It appears then that the
stiffness constant and the magnetization have sim-
ilar variation with impurity concentration, as it
has been observed experimentally. The alloys
come progressively to the paramagnetic state, and
the calculated critical concentrations have the
same order of magnitude as in the experiments.

Densities, of states of ¹~Ru and NiCr are repro-
duced in Fig. 12. At small concentration, they
exhibit an up-band level half filled in the NiRu
case and nearly empty in NiCr (or ¹Vand NiMo).
The decrease of the magnetization with impurity
concentration is related to the occurrence of the
empty up states which induce an electron transfer
from the up band to the Fermi level in the down

band, and then a change of polarity, as qualitative-
ly explained by Friedel. ' The evolution of the
magnetization decrease with the change of impurity

ST II'" FN E S SC 05 STAN' VARIATION I5 VICKI I.-BASED. . .
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(for instance, from Ru to Mo) is explained by the
corresponding evolution of the empty up states of
the total densities of states with the impurity, as
shown in Fig. 12.

0,6
~ y ~

04

0,2

6 "- 0.06 Ryd.

PN~ ——5 = 0.12

= 0.18

Ru (%)

-0,2

-0,L

- 0,6 Ru

(a)
1

20 30

D(meV A )600—

500

(b)

300

100

0'--
0 10

Ru (chic, )

30

FIG. 11. Sensitivity of the calculated parameters to a
change in the parameter 6 in the ¹iRucase [solution
(iii)]: , 5 = 0.06 Ry; ———,6 = 0.12 Ry; ~ ~ ~ ~ ~,
5=.0.18 Ry. The value 5= 0.12 Ry corresponds to the
ruthenium (Fig. 1) impurity; the values 5 = 0.06 Ry and
6 = 0.18 correspond to the neighboring elements in the
variation of Fig. l.

We have to note, however, that the deviation
from the linearity of the D(c) curve observed ex-
perimentally in the ¹iRu case is not well accounted
for by the model. It may be thought that the situa-
tion is more complex at small Bu concentration,
and this can be in relation with other peculiarities
observed in this alloy.

In fact, the agreement is more qualitative than
quantitative. It may be objected indeed that solu-
tion (v) gives a better dp/dc value (g being the
mean magnetization) than in solution (iii), where
this parameter is too small. But this can be ex-
plained since the single-site approximation neg-
lects the environment effects and then is unsuited
in the dilute limit. Accordingly, the model has to
be checked for the overall results on a rather large
range of concentrations, especially in this cate-
gory of alloys where the perturbation is known to
be extended in real space.

The extension of the perturbation can be under-
stood in this solution since the scattering poten-
tials 5, obtained in the dilute limit largely disagree
with the FrieQel sum rule. These parameters
cannot conciliate Eq. (3) with the requirement that
the screening is effective on the impurity atom.
This large perturbation can explain the high resis-
tivity measured in this category of alloys, since
a great deal of perturbed atoms surrounding the
impurity may scatter the electrons.

Near the critical concentration the calculated D
and M variations become nearly parabolic. It
would be exactly parabolic if mz ——m~. We can
note that this single-site model gives the same
result as does the theory of Mathon ' or Edwards
and Wohlfarth, "which uses the Landau equations
for the second-order phase transition. Indeed,



19 ST IF F N E S SCON ST ANT VARIATION IN NICKE LBASED. . .

Ryd N(E) forbitat /spin atom ) ~0
~0
~ t4 ~
~ ~

: X =0.01
~ ~
~ ~

I I

Ni Cr
Ry4. i N (5) orbital I opin atom

~ ~
~ ~

~ ~ ~

~ ~
~ ~
~ ~
~ ~

~ ~
t

Ryd N(E)

03

0.1

0.2

0,2

ERqd

03 EF OA

Ni Cr

';. X=0.05
~ t
~ I ~
~ ~

~0 ~

;t$

Ryd

0.3 FF 0.4

(b)

Rye,
' N(Ej

Ryd. N(E)
5—

Rs

Egypt.

E ay&.

Ni Ru
' '

X = 0.l5

Ni Ru

;il X=0.IO
~ ~~ ~~ ~40 ~

Ryd N (E)
I

Ni Cr

X =O.l
JX

~ ~

o,~

1

Ryd.
' N(E)

E Ryd.

Ni Ru

X =0.20

0.1

'; Enyo
t

0.2 1.3 Ep O.l
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states of NiRu at 5%, 10%, 15%, and 20% Ru. —,up band; ~ ~ ~ ~ ~, down band.

this last theory can predict a parabolic variation
of D and M near the magnetic transition for weak
and homogeneous alloys. This behavior is not
found experimentally in these alloys, where ex-
periments have revealed magnetic clusters, but
it has been observed in some alloys like NiPt ex-
pected to be homogeneous in the critical region.
Of course, the parabolic behavior should not occur
in a more improved model (n-site CPA) which
takes into account the loca, 1 environments.

IV. SUMMARY AND CONCLUSION

By performing experimental measurements of
the stiffness constant in several nickel alloys and
giving a, theoretical description of the possible im-
purity states in the Hartree-Pock approximation,
we have tried to clarify the microscopic electronic
structure of the nickel-based alloys. Indeed, we
have found that a RPA-CPA model can give a
rather satisfactory description of the D constant
in these alloys under the following conditions:

(a) One uses a rather large value for the intra-

atomic interaction parameter of nickel (0.5 Ry)
considered here as an effective parameter of the
model. In spite of the sensitivity of D to this pa-
rameter, we think that our comparison is meaning-
ful since it is extended to several ¹ialloys.
(b) One describes the alloys in two Hartree-Pock
solutions depending on the type of impurity; in
particular, for the impurities Cr, V, Ru, and Mo
we assume that these alloys are described in a
solution that determines a small magnetic moment
on the impurity.

Within these a.ssumptions and for ea,ch category
of alloys, we could then discuss the limits of the
model. They appear to be mainly due to local en-
vironment effects.

Although the choice of the Hartree-Fock solu-
tions seems supported up to now by several exper-
imental results, it could be checked further as,
for instance, in the NiRu case by direct measure-
ment of the magnetic moment of Ru. The main
objection to the chosen description for this cate-
gory of alloys comes from theoretical considera-
tions on the stability of the electronic states, and
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it would be of interest. to investigate this point by
further calculations.
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f&~, =2 + — ReE, (Ez+ iy) dy;
0

the latter expression facilitates the numerical cal-
culation because outside the real axis E(z) is a
smooth function of z.

For each s (s=E+iy), Z, (e) is obtained by an
iterative procedure

( $-1)

tr ir ] + (tf 1)Et'x Z$-1)

APPENDIX

The parameters N, and E~ are determined
self -consistently as follows.

First, we build a function of these parameters:

&(N, E~)= Q [N -f,(Z, Ep)]
e, a

+ NQ) gx.f..(Z.,E,)

g
ImF (E') dE,1

fsqg
m 00

or, equivalently, by use of the Cauchy theorem

~=A, B, o= 0, $

where the f,( „ZzE) are the analytical expres-
sions of N

Then we look for the minimum of this function.
Indeed, it will reach its minimum value, zero,
when the set of equations will be satisfied. The
determination of the minimum is made by use of
the iterative descent method of Davidon in the
simplified version due to Fletcher and Powell. "
This met1iod needs the analytical first derivatives
of the function. It consists in locating at each step
a minimum along a line. Starting from the steep-
est descent, the choice of the line at successive
iterations is improved by calculating an approxi-
mation of the matrix inverse of that of the second
derivatives. This procedur e allows a quadratic
convergence and yields the curvature of the func-
tion at the minimum, providing excellent tests for
convergence and estimates of variance.
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