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Applying the method of perturbed angular distributions following the nuclear reaction" In(u, 2n}" Sb, systematic measurements have been made of the nuclear-quadrupolar relax-

ation rate R& for " Sb probe nuclei in liquid alloys of In, as a function of various parameters:

the dependence of the rate enhancement on the partner element is established in 14 equicompo-

sition alloys with Ib, IIb, IIa, IVa, and Va group elements. The composition dependence of the

rate in the In-rich domain has been recorded for IncX~ c, X = Au, Hg, As, and BI, and the

temperature dependence of the rate is presented for In058i05 and In05Hg05, On the average we

find a correlation of the rate enhancement to the valence difference between In and the partner

element. The composition dependence confirms the characteristic deviation from a simple sub-

stitutional behavior described by a C(1 —C) rule which has been found in earlier NMR work.

The temperature dependence of thy rate in In05X05 alloys with enhancement, can be

parametrized by an Arrhenius law where the activation energy is roughly a linear function of the

alloy melting temperature; the proportionality factor, however, is about one half the factor, oc-

curing in diffusion. These results are examined in the frame of the Sholl and %'arren theory for

quadrupolar relaxation which we extend to alloys in its general form in terms of partial-

dynamical structure factors taking advhntage of analogies in the formulation of electrical resis-

tivity. It is concluded from an evaluation of the formulas based upon a hard-sphere model that

quadrupolar relaxation must be governed by the long-wavelength part of the structure factors,

More specifically quadrupolar relaxation seems to be sensitive to the wave-number interval

between the thermodynamical limit and the main peak of the static-pair correlation function of
the liquid, a region which is poorly explored by other experimental techniques.

I. INTRODUCTION

It has been established in the past that nuclear qua-
drupolar relaxation in liquid metallic systems essen-'

tially originates from atomic dynamics. ' ' It is there-
fore sensitive to microscopic structure and motion,
and may be applied to complement other structural
investigations, for instance x-ray and neutron scatter-
ing experiments. For several reasons however the in-

formation obtained is complex: (i) The relevant
correlation functions, 4 which allow for structure and
dynamics, di6'er from the Van Hove two-particle
correlation functions familiar from scattering experi-
ments. (ii) The relaxation rate depends on the
strength of the electric-field gradient (EFG) produced
by neighboring atoms at the probe. %hen comparing
relaxation with scattering, the EFG function
corresponds to the form factor; in contrast to the
scattering, however, the form factor is strongly k
dependent and'not well known. (iii) The unambigu-
ous experimental identification of the quadrupolar
hyperfine interactions in metallic liquids is possible

only for a few favorable cases.
Therefore, quadrupolar relaxation in metallic

liquids has been so far a-subject of investigation for
its own sake rather than a tool to obtain information
about systems. It is the aim of the present work to
turn to more system-oriented problems, in particular
concerning binary liquids. In the following we survey
some points of view which contribute in our opinion
to a promising resumption of the subject:

(a) ¹wapproximations for correlation functions: As
has been recognized by Sholl, 4 the quadrupolar relax-
ation rate R~ measures the correlation between 1~0
particles and the probe atom, i.e., a three-particle
correlation function is involved. Considerable pro-
gress in linking quadrupolar relaxation in pure liquids
to the theoretically and experimentally well studied
pair correlations has been achieved by the work of
Sholl and Warren. They extended the Kirkwood
approximation and proposed an approximation for
the time-dependent electric field gradient, which con-
tains two time-dependent-pair correlation functions.
This model has been tested extensively for pure
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liquid metals by an analysis of the predicted tempera-
ture dependence', allowing for phononlike modes in
the pair correlations, the theory reproduces reason-
ably well the experimental temperature dependence.

(b) Theory ofAo for binary alloys: The work of
Sholl and Warren' has been motivated essentially
by the fact that the general relaxation-rate increment
in alloys over the pure liquid value reveals a strong
cancellation of contributions to the EFG from
different ions in the pure liquid. Thus, the applica-
tion of this theory to alloys is obvious. Starting from
very crude assumptions, such an extension, has been
presented by Gabriel. 9 At this point the present pa-
per continues by showing that a generalization of the
formalism cari be accomplished without any further
approximation. We take advantage of the similarity
of the theoretical expressions for the eleqtrical resis-
tivity in a liquid metal, and for the quadrupolar relax-
ation rate as derived by Sholl and Warren. As long
as the EFG can be considered. to have little or no
change, the inhuence of alloying on quadrupolar re-
laxation is allowed for by the partial-dynamical struc-
ture factors which govern many other properties of
alloys.

(c) Extensive experimental materittl for binary alloys:
In the analysis of a limited set of experimental data, '

it became apparent that the new approach is more ap-
propriate for the interpretation of R~ in alloys than
the earlier formulation. " This has motivated a test
of the theory on a larger body of experimental ma-
terial. " In the present paper we report quadrupolar
rates for 14 alloys In05X05 the isothermal composi-
tion dependence in four alloys, and the temperature
dependence in two equicomposition alloys. For the
cases studied, the quadrupolar relaxation is the dom-
inant relaxation process.

(d) Perspectives for future interpretation: The sys-
tematical inspection of the relaxation rates in alloys
supports the earlier supposition" that in a first ap-
proximation the difference in valence is responsible
for the magnitude of the alloy enhancement (i.e., the
increase of Rg over the average of the pure liquid
metal values). It will be seen that this is in accord
with the much stronger temperature dependence of
R~, observed whenever there is an enhancement. It
is also in qualitative agreement with the composition
dependence. The dependence on partner, tempera-
ture and composition suggests, that the long wave-
length part of the structure factors is heavily weighed
by the EFG form factor.

Among different definitions of partial structure fac-
tors, ' "' the formulation of Bhatia and Thornton is
the one most appropriate for the present purpose.
These structure factors are derived from the local
density and concentration in the alloy; the alloy
enhancement of Rg is related intimately to the con-
centration fluctuation term as turns out from a hard-
sphere calculation. The k 0 limits of these struc-

ture factors are connected to thermodynamical
parameters of the binary alloy. " Thus, a relation
may be established between macroscopic properties of
the liquid alloy and quadrupolar hyperfine interac-
tions. '8

(e) Treatment of the electric fteld-gra-dient problem: In
principle, the liquid structure and the EFG are not
independent since they both involve the outer part of
the electronic shell. In practice, however, the two
quantities are treated as independent; in metallic sys-
tems the main effect of the conduction electrons may
be described as a shielding of ionic charges, ' and a
local antishielding (effective Sternheimer correction).
The former effect can be estimated as long as the
nearly free electron model applies. The enhancement
data for the metallic alloys support the assumption
that this way to proceed is essentially correct, though
they seem to indicate that the procedure to derive the
EFG form factor from the asymptotic form of a
screened Coulombic potential" is too crude.

(f) Combination of experimental methods: Today
there are two methods which can be applied to study
quadrupolar relaxation in liquids —the classical
NMR on stable ground states, and perturbed angular
distributions (PAD) on nuclear isomers produced and
aligned by nuclear reactions. Each of them has its
specific advantages. From a physical point of view it
is in general a superiority of NMR that the probe
atoms are matrix atoms, while in PAD they will be
an impurity in most cases. Occasionally however, the
impurity probe is just what one needs in order to
measure a complete composition deperldence. '

It appears that for systematic studies of metallic al-

loys the impurity problem seems to be of minor im-
portance. We shall confine the discussion by consid-
ering only interactions between the probe and the al-

loy as a ~hole, and by disregarding possible effects
due to the special combinations of the Sb probe and
the respective alloy partner of In. It is an advantage
of PAD that there exist several isomeric states (for
instance "7Sb, '32Xe, and 207Po ),where the qua-
drupolar contribution to relaxation dominates strong-
ly, In this case the decomposition of the observed
rate into its magnetic and quadrupolar part is no
problem, whereas in most classical NMR cases, both
processes compete. It is also an advantage of PAD
that the alignment effect, and thus the signal-to-noise
ratio, is temperature independent in contrast to
NMR. Throughout the present work the PAD
method has been used, however, reference will be
made to classical NMR results.

The outline of this paper is as follows: In Sec. II
experimental details and results are presented, The
extension of the Sholl and Warren formulation of R~.to alloys is described in Sec. III. The experimental
material —dependence of R~ on the partner ele-
ment, composition, and temperature, is discussed in
Seec. IV. In Sec. ~ we describe and analyze a model
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calculation for R~ based upon the hard-sphere ap-
proximation for the partial-static structure factors.

II. EXPERIMENTS AND RESULTS

(a) Preparation of samples: The samples for irradia-
tion are of cylindrical size, 6 mm in diameter and 2
mm thickness. All of them have been composed
from elementary material of «99.9% purity. At
about 100'C above the melting point of the
corresponding composition, the components have
been molten together under ultrapure Ar flow at 1
atm in a graphite crucible. To attain homogeneity the
melting procedure was repeated once after crushing
the tablets. For details of target assembly, tempera-
ture calibration etc. , see Ref. 10.

(b) Admeasurement: As described previously'0 we
measured the nuclear quadrupolar relaxation of
'"Sb by observing the spin rotation patterns from
the decay of the 340- p, sec isomer which was pro-
duced and aligned by the nuclear reaction
'"In(a, 2n). The experiments have been performed
at the Karlsruhe cyclotron. During the activation
pulse (5 p, sec width, T, =1600 u, sec repetition
time) the beam intensity on the target was typically
1—5 p.A. We observed two y lines in the cascade of
the isomer (1000 and 1325 keV) and used two 2-
in x 2-in. NaI(Tl) detectors in order to collect as
much information as possible. The intensity ratio
I(1000 keV)/1(1325 keV) is roughly 2. The signal-
to-noise ratio is improved by suppressing the 3.5-min
activity ('"Sb, 1230-keV y line) by a beam on/off cy-
cle of 3.5 minutes. The measuring time for one point
in this mode of operation is about 1 h.

(c) Data handling: The time spectra are disturbed
by dead time losses in the multichannel analyzer, and
have been corrected by a procedure described else-
~here. ' To fit them we used the usual expression"
including an additional exponential background term.
In the fits, so far unexplained correlations have been
observed between the intensity of the y line and the
fitted nuclear lifetime. The resulting systematic er-
rors in the relaxation rate could be reduced by calcu-
lating the composed rate

R, =R'+RF

with the fit results for the nuclear lifetime 1/RF, and
the relaxation rate R,F. The final result for the relax-
ation rate R is then derived by

R =R, —R„

using the value 1/R„= (ln2) (340 + 20) p, sec for the
nuclear lifetime as given in the literature. 22

(d) Error considerations: The statistical error for the
relaxation time given by the fit program for each
spectrum is usually consistent with the scatter among
the results for the four spectra; the error bars plotted

in the figures represent the mean-squared errors ob-
tained from this scatter. For relaxation times, long
compared with the nuclear lifetime, the uncertainty
of the latter introduces a large systematic error into
R. According to Eq. (2), an error ET„ in the nuclear
lifetime?'„propagates into the rate in the form

d,R„=+d T„/(T„+d.'r„)'=+120 sec '

independent of the relaxation rate.
As we are interested in the variation of R with

different parameters, this systematic uncertainty is
not included into the error bars shown in the plots; it
must be taken into account additionally if absolute
rates are considered.

(e) Results: As the relaxation time of "7Sb in pure
In is long compared with the nuclear lifetime, its ac-
curate determination is diScult. Ho~ever its magni-
tude is important within this systematic investigation.
Therefore, we remeasured the total rate R (In:"'Sb )
as a function of temperature obtaining values (Table
I) which are smaller than those reported earlier. '0

One reason for this is the reduction of R, to the
literature value I/R„ for the nuclear lifetime, which
is some~hat smaller than the mean-fit results of our
measurements '[I/R~= (ln2) && 360 p.sec]. More-
over, poor statistics and any distortion of the time

-spectra tend to simulate higher relaxation rates.
The relaxation rates R& (after correcting for the

magnetic contribution, see below) are presented in
Table II column 4 for In05XO~ alloys with 14 sp ele-
ments as alloy partners L The data are taken at
T =900 K, in all cases where the alloy is liquid at this
temperature. Exceptions are X=Cu, Ge, Te (1000
K), and As (1300 K). For X =Cd and Hg, T was
720 and 300 K, respectively, to avoid decomposition
of the alloy due to evaporation. The relaxation rates
of the same systems measured near the melting point
are quoted in column 6.

For some of the systems with a large enhancement
(Ino, X05 X = As, Bi, Hg, and Au) we measured the
isothermal composition dependence in the In-rich re-
gion; these data are presented in Fig. 1.

The temperature dependence of R at fixed compo-
sition has been measured for two systems (InosBios
and InosHgos see Fig. 2), where an appreciable tem-
perature range (in units of the melting temperature
'r of the alloy) can be covered without decomposi-
tion of the sample.

(f) Correction for magnetic contributions: For pure In
the quadrupolar relaxation rate is derived from the
effective rate R, according to

Ro =R, —R„—R

At 900 'K the magnetic rate R for "Sb in In can
be estimated by the Korringa relation, after extrapo-
lating the experimental Knight shifts for Sb in
In~Sbi c alloys" down to C 1. For the electron-
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interaction factor K(a) the value 0.72 is adopted. '0

The temperature dependence of R is linear if we as-
sume the Knight shift for Sb in In to vary as a func-
tion of temperature in a similarly slight manner as is
the case for In in In. This has been tested experi-
mentally. The error assigned to R is essentially
due to the uncertainty of E(u), which we estimate to
be less than 30p/o. We find that the quadrupolar re-
laxation in pure In (Table I) is just on the limit of
being detectable; the accuracy of the measurements is
limited essentially by the large uncertainty in the nu-
clear lifetime of the isomer.

FIG. 1. Isothermal composition dependence of the total rate
R in (a) IncAsI c, (b) IncBiI —c. (c) IncAuI-c a"d (d)

IncHg~ c. The error bars represent the mean-squared error
from averaging the four time spectra belonging to each

point; the error due to the uncertainty in the nuclear life-

time is not included.

FIG. 2. Temperature dependence of the total rate R (a) in

In058i05 and (b) In05Hgp5. Error bars as in Fig. 1.

For In-X alloys magnetic contributions to
R ('"Sb ) are estimated in the alloys starting from
the Knight shift ~ on In in the respective systems.
We use again the Korringa relation and assume, that
the variation of K(Sb) with composition and tempera-
ture is of the same order as that of K(In). This may
be justified by noting that the variation of ~(A) and
~(8) generally is of the same order in metailic binary
AcBI c alloys, where both shifts have been meas-,
ured. 2 Further, we assume we have E(n) ~ I,
which is supported experimentally by the measure-
ment of Knight shifts and magnetic relaxation on Sb
in InSb (Ref. 3), and in GaSb (Ref. 25); here the
magnetic relaxation has been identified by isotopic
separation.

Knight shifts on In in liquid alloys of In are avail-
able' for the systems listed in Table II except for
X =As, Cu, Ge, and Zn. The variation of the known
shifts is less than 15% in all cases; an exception is
semiconducting In-Te, which has been considered
elsewhere. ' Thus, we estimate possible enhance-
ments of the magnetic part of R ('"Sb ) in the alloys
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TABLE I. Deduction of quadrupolar rate for "~Sb in

pure In.
Ro = (3n/40) (eg/A)2f (I, x)J(co =0)

where

(5)

Measuring

temperature

T(K) R, (sec ') R„(sec ') R~ (sec ') R~ (sec ')

434

527

878

1118

3210+1SO 2940+120 71+21 200+190
3170+120 2940+120 86+26 140+170
3090+100 2940+120 143+43 10+160
3080+100 2940+ 120 183 +55 0+170

to be at most 50% of the magnetic rate in pure In at
the same temperature. For definiteness we take the
value 8 =150+120 sec ' in Table II.

III. REPRESENTATION OF QUADRUPOLAR

RELAXATION RATES IN LIQUID ALLOYS

In the liquids of interest here the extreme narrow-

ing limit applies. The quadrupolar relaxation rate of
a nuclear spin 1 with quadrupole moment 0 is then

given by

'The rates R~ are derived according to Eq. (4). Errors:

column 2: statistical error; column 3: error quoted by

Fromm et at. 22; column 4: uncertainty in K(n); column 5:
propagated error from columns 2—4,

) () +1)[4J(t+1)—) () +1) —1]
2I2 (21 —1)2

and we have A, = 1 for NMR and X = 2 for the present
PAD measurements. " Our interest is directed to
J(co =0), which is the low-frequency limit of the time
fluctuations of the electric-field gradient at the probe
nucleus. We shall discuss J(0) as a function of the

alloy partner, composition, and temperature of the al-

loy. Its Fourier transform is the EFG time correla-
tion function which is written (notation adopted from
Ref. 4)

f
J(t) =„' J U(ro) U"(r,)P(r0, 0, r ~, t)

&&d Pod f]

assuming that the time fluctuations of the EFG ori-
ginate from atomic motions of the probe, and the
N —1 other atoms in the sample relative to each oth-
er. %e begin the discussion of Rg in alloys by con-
sidering current approximations for P in pure metals.

Sholl and Warren' proposed a representation of P
for a monatomic liquid using time-dependent total
and self-correlation functions G(r, t) and G, (r, t),
respectively, ' and the static-radial distribution func-
tion g(r),

TABLE II. Quadrupolar relaxation rates in liquid In05L05 alloys. '

Melting temperature Measuring

Alloy partner of the alloy (K) temperature (K) R~ (sec ')
Measuring

temperature (K) R& (sec ')

CU

Ag

Au

Zn

Cd

Hg

Ga

Tl

Ge
Sn

Pb

As

Sb

Bi

Te
Pure In

910
770

770

620

450

250

340

470

940

400

510
1210

800

380

970

430

1000

870

870

870

720

300

870

870

1000

870

870

1210
870

870

970

970

2450 + 200

750 + 130

2280 + 260

380 + 160

200 + 140

2570 + 160

&120
180 + 160

460 + 160

260 + 180
300+130

32SO+ 300

4490 + 180

2410 + 180

&200QO

&120

1000

870

870

680

500

275

370

510

1000

450

560

1210
800

380

97Q

430

2450 + 200

750 + 130

2310 + 260

230 + 185

200 + 170

2850 + 160

&120
400 + 250

460 + 160

750 + 160

400 + 190

3250 + 300

5850 + 230

6650 + 230

&20000

200 + 190

'After correcting for the magnetic rate, see Sec. II f, RQ is given in column 4 at constant absolute

temperature vrhenever possible (Sec. IIe), and in column 6 near the melting point. The quoted er-

rors include the uncertainty due to magnetic contributions, but not due to b, R„.
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x S (k p&p) dk d happ (9)

with the EFG form factor

V(k) =„rV2(r)g(r) j2(kr) dr (10)

S(k, pi) is the space-time Fourier transform of
G(r, t), and V2(r) is the radial part of the EFG
U(r). For pure metals, Eq. (9) has recently' been
evaluated with a variety of models for S(k, tp) and
S,(k, pi). While from the assumption underlying Eq.
(8), correlations between the probe atom and the
surroundings are not included in detailed form, Eq.
(9) can account for correlated motions of the sur-
rounding liquid through S(k, tp). Taking for S(k, tp)

and S, (k, co) single Lorentzians with equal widths,
Eq. (10) yields'

Rg ~ —Jlk V (k)S(k,
2

(@ =0) dk

We quote this formula, since it has also been taken
as a starting point for numerical calculations of abso-
lute rates, ' as well as of temperature dependences
in pure liquid metals.

We turn now to metallic alloys. The observed
enhancement of R~ in many systems' """" in-

creases smoothly to a maximum value in the inter-
mediate range independently from the existence of
intermetallic compositions in the solid state. This
supports the view that the effect is dominated by an
essentially random replacement of atoms of a pure
liquid by the alloy partner: Solute atoms destroy the
highly symmetrical arrangement around the probe as
they differ in their properties from the solvent atoms,
for example in charge or size, and therefore, in the
EFG they induce. ' The extensions of Eqs. (9)
and (11) given below account especially for this re-
placement effect.

For pure monatomic liquids the formal structure of
Eqs. (9) and (11) resembles the corresponding ex-
pressions for the scattering cross section of x rays
or of neutrons, or of electrons, as needed in the cal-
culation of electrical resistivity. ' In these cases the
scattering probability is given by an integral over the
product of a.form factor times a structure factor, and
the effect of alloying is to substitute identical scatter-
ing centers by a mixture of different ones. This is
appropriate if no change in the form factors belong-
ing to the components A, 8 (compared to the pure
materials) occur in the alloy, an approximation which
is fulfilled well for scattering of neutrons, and to a

P(r p, 0, r i, t) = pg(rp)g(ri)
I

x Jl Gs(r, t)G(r+ri r p, t) d3r . (8)

In this approximation we have

Rg ~ J(pi =0) ~ J J k V (k) S,(k, cup)

very good approximation for x-ray scattering. For
conduction electron scattering, on the other hand,
the pseudopotential enters the form factor for scatter-
ing; it also enters the intercomponent forces, which
determine the structure (and dynamics) of the liquid.
For systems where the NFE model is a good approxi-
mation, the form factors and structure factors may be
treated independently (Faber-Ziman theory). For
quadrupolar relaxation we expect much the same si-
tuation as for resistivity, since here the pseudopoten-
tial is involved in V(k), the equivalent to the form
factor for electron scattering. We assume, therefore,
the separation into form factor and structure factor to
work for R~ approximately as long as it works for
electrical transport properties. Utilizing the formal
analogy to scattering, we refer in the following to
well-known developments' " in the scattering for-
malism. The expressions for R~, which we shall give
in the following, differ in that one may either first in-
troduce approximations for S(k, tp) into Eq. (9) and
then generalize to the alloy, or vice versa.

We start from Eq. (11) and introduce the static
structure factor a (k) by the Vineyard approximation

S(k, cp) = a(k)S, (k, pp) (12)

+ Cg Cs(Vg —. Vs) JS,k dk (13)

In Eq. (13) the Faber-Ziman definition of partial
structure factors is used, which, however, cannot be
generalized directly to dynamical-partial structure fac-
tors. Therefore, we rewrite Eq. (13) in the number-
concentration structure factors S~c(k) etc. as defined
by Bhatia and Thornton' . We have

Rg ~
2 ~t [(Cg V„+Ca Vs) S~tt(k) +(Cg Vs +Ca Vs)

x ( V„—Vs) S~c(k) + (V„—Vs) Scc(k)]

x S,(k, —a) =0) k dk

(14)

One may as well start from Eq. (11), however, avoid
the Vineyard approximation and generalize the

Now the substitution of like atoms by different ones
is allowed for' 'p

by replacing a (k) by the three par-
tial structure factors a,t(k), which are multiplied by
the corresponding products of the EFG form factors
V, (k), Vt(k) belonging to the i, j =A, and 8 com-
ponent. In general, the self-function S,(k, tp) will

also be altered, which we indicate by use of S, in the
alloy instead of S,; however, S, does not break up
into several terms. One obtains " (Cq, Cs atomic

' concentrations, Cq + Cs = 1)

Rg ~
2 Jl [Cg Vga„g+Cti Vttass+2CgCs Vg Vsags
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dynamical structure factor S(k, o») directly to partial-
dynamical structure factors So(k, co) (Ref. 16), i.e.,

2 ]
Rg cc —

J [(Cg V„+Ca Va) SNn(k, —o) =0)

+ (Cg V„+Ca Va) ( V„—Va) Snc (k,
2

~ =0)

+(V~ —Va)~Sec(k, , ru=—0)]k2 dk . (15)

Finally, the transition to the alloy can be performed
already for the dynamical structure factor S(k, t»)

[Eq. (9)] which represents the motion of the sur-
rounding of the NMR atom, i.e.,

Rg(~) ~ '

J [(C~ V~ + Ca Va)'Saw (k, ~o)

+ (C„V„+Ca Va)( Vg —Va) SNc(k, p»o)

+ ( Vg —Va)' Scc(k, cop)] S,(k, o» —«)p)

d~p k2 dk

Equation (16) is obtained without any assumption for
S(k, r»), and may be considered to be the best
-description of the alloy in the sense of the theory of
Warren' and Sholl. 6 Due to poor theoretical and ex-
perimental information about dynamical-partial struc-
ture factors in alloys, the practical applicability of Eq.
(16) is limited. To our knowledge analytical expres-
sions have been given only for the hydrodynamical
limit (k 0, cu 0)." Applying these representa-
tions the Scc term in all three expressions (14)—
(16) yields the same composition and essentially the
same temperature dependence in the approximation, .

where thermal diifusion is neglected (see Appendix).

IV. COMPARISON WITH EXPERIMENT

A well suited starting point for comparison with ex-
periment is Eq. (14), with the additional assumption
that the alloy is substitutional. "Substitutional"
means that we have

a»(k) =a„a(k) =aaa(k) =Spy(k) =S(k)

and that the components differ only in their form fac-
tors. %e then obtain

Rg ~ (1 —y,n) J [(Cq Vs+Ca Va) S(k)

+ Cg Ca(V„—Va)2]S, (k, cu) ki dk

(17)

Here y,q is the effective Sternheimer factor, which up
to here was absorbed into the form factor, and S(k)
is the static structure factor. S(k) = Snn(k) is the
only partial structure factor which depends on the
wave number k because Scc(k) reduces to CqCa,

and Svc(k) vanishes. In spite of these crude
simpljfications Eq. (17) reproduces characteristic
features of the observed composition depen-
dence' " ' and temperature dependence"
of Rg.

(a) Dependence ofRg on the alloy partners: The al-

loy enhancement has been considered systematically
in liquid alloys of sp metals by Cartledge et al. '3 and
earlier occasionally by Heighway and Seymour, "and
Claridge et al. " On Ga, in five Ga alloys doped
with S% of the partner element, a linear correlation
has been observed between the alloy enhancement
and the difference of the atomic volume of Ga and of
the partner element. ' Heighway and Seymour'
found in some systems a correlation between the
alloy-partner valence difference and the enhance-
ment, however, they noticed that the correlation is
not very convincing and suspected that some other
effect must also be involved. In later work" the
conclusion was reached again, that there is no clear
relation between the valence difference and the alloy
enhancement.

As we shall see in Sec. V, the occurrence of a size-
able alloy enhancement requires that the second term
of Eq. (17) is dominant at intermediate composition.
It will be expected then that the function
[V„(k)—Va(k)]' in fact plays a decisive role.
Modifications of this view will be considered in Sec.
V. %e confine our attention to metallic systems in
the sense that the electronic transport properties can
be described by the nearly-free-electron (NFE) model
since this allows a straightforward estimation of the
EFG variations in the alloy. Then the strength of the
EFG will be given by the charge of the neighbor ion,
which is screened by conduction electrons, thus we
have V, ~ Z, /N(EF). The dependence of Von com-
position through N(EF), and the electron density of
states at the Fermi level, will be neglected; that
N(Er) is nearly constant can be seen from Hail-effect
data. ' Furthermore, within the NFE model the alloy
is characterized by only one kp and therefore the k
dependences of the EFG functions are the same. Ac-
cordingly, the relaxation is expected to be proportion-
al to the square of the difference in the valence
between the alloy partners (Zt„—Z~)'.

The data in Table II and Fig. 3 confirm these ex-
pectations in their tendency, though not in detail.
Quantitatively the average alloy enhancement for the
different groups is stronger than the squared valence
diiference at the right side (polyvalent elements), and
weaker at the left side (mono and divalent elements).
This, as well as the scatter within the groups, does
not follow the regularity predicted by the preceding
arguments. Because large alloy enhancements are ac-
companied by a considerable temperature dependence
of Rg (Sec. IV c) it may be appropriate to compare
the rates at a constant temperature in units of the
melting temperature (same "reference temperature")
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rather than at the same absolute temperature. How-
ever, also in such a comparison (Table II) the irregu-
larities within the groups are not removed.

Our observations conform essentially with the
findings of Heighway and Seymour. " The limited
data on the Ga alloys, " in fact show no correlation to
the valence. The conclusion about the lack of corre-
lations of Rg to the valence in Bi alloys" may partly
result from the difficulty of separating Rtt(Bi) from
the dominating magnetic rate, lacking the possibility
of isotopic separation,

We have tried, using different definitions of atomic
or ionic radii, "to find correlations between the
difference in atomic volume and the rate enhance-
ment. "8 There appears, however, in no case a
significant correlation. Kerlin and Clark assume in
their discussion of R0 in liquid Ga and GaSb that the
electronegativity difference between the alloy partners
causes charge transfer. However, using any of the
common electronegativity scales, no simple corre-
lations were found for the present data.

Finally, we consider the possibility of an alloy-
partner dependence of the Sternheimer factor of the
probe atom. The Sternheimer correction will contain
a contribution due to the ionic core ' Sb +, y;,„, for
which a composition independence is evident im-
mediately, and an additional contribution y, t due to
the conduction electrons. For an estimation of possi-
ble changes of y „we follow the discussion of Wat-
son et al. ~2 putting (in th-eir notation),

y .= —e'—„~(")(r ')N«)fr~a .

Changes of (r') and (r ') can be expected to be
small for the present cases, maybe of the order of
10%. In order to estimate the variation of frN one
may consider the orbital, i.e., p contribution to the
Knight shift, Kp' although strictly speaking both, Kp

and y „contain contributions from below the Fermi

Rtt(T) =b+a/D(T) (19)

It is known, 4' that D shows certain common proper-
ties for quite different simple liquids like. metallic al-
loys or salt melts: its absolute value differs only
moderately from system to system, the concentration
dependence is weak, and its temperature dependence
may be parametrized fairly well by an Arrhenius law
(kit is the Boltzmann constant), i.e.,

level, the discussion of Watson et al. 4' leads us to
consider for the changes mainly the region around
EF, as in Eq. (18). Thus, the changes of y „should
be not very different from those of Kp As an exam-
ple for large alloy enhancement of R~ we mention
the system InSb, where a sizeable p contribution to
n(Sb) has been assumed. ' There, the variation of
tt(Sb) with composition is known to be monotonous
and only 10'/o (see Ref 11.); the temperature depen-
dence of K(Sb) in InSb is also small. ' Thus, we con-
clude that large changes of Ro(Sb) with concentra-
tion, alloy partner, and temperature cannot stem
from the antishielding factor of the Sb atom.

(b) Temperature dependence of RQ at C =0 5: F. or
pure liquid metals, a proportionality of Rtt(T) to the
reciprocal diffusion constant has been suggested origi-
nally. "' However, experiments in a number of
liquid metals' ' have disproved this idea. In al-
loys, on the other hand, the existence of a different
temperature dependence becomes more and more
evident for systems with an appreciable enhance-
ment, '"" In Eq. (17) the main temperature depen-
dence enters through S,(k, cu), and within the model
of free diffusion, this is proportional to 1/D(T),
D(T) being the coefficient for self-diffusion. The
temperature dependence of the S~~ term is assumed
to resemble the weak variation observed in pure me-
tals3 4'44 [constant b in Eq. (19)]. Thus, the relaxa-
tion rate in alloys is expected to vary with T as

D(T) =Doexp( W/ktt T) (20')

ii R f10 Is)

"6
~ Bi

~Sb

Since we are interested here in general trends, the
following analysis is based on this form, where the
activation energy parameter W/ks for diffusion is re-
lated by an empirical rule" to the melting tempera-
ture T of the liquid by:

eCU
Au

~ Hg
~As

~Ag ZA 0+
~~ T( I Geipb

-2 -& 0
I

2

FIG. 3. Quadrupolar relaxation rates in Ino.5X05 alloys vs.
the valence difference between In and the alloy partner X

IV/ks =3.7 T

Using Eqs. (19) and (20) we analyzed Rtt(T), meas-
ured on Sb probe nuclei in the alloy InSb, ' InBi,
InHg (present work), GaSb, '5 and SbqTe346 Treating
a and b and the activation energy as free parameters,
reasonable fits for all systems are obtained.

We find the following trends (i): There exists a
clear correlation between the activation energy and
the melting temperature of the alloy. However, the
activation energy for R~ is about half that occurririg



SYSTEMATICAL TRENDS OF NUCLEAR QUADRUPOLAR. . . 3457

Rg = b+a/ —, [D(T) +D+(T)) (22)

The temperature dependence of interdiff'usibn may be
represented satisfactorily by an Arrhenius law with an

in diffusion, see caption to Fig. 4. This correlation is
established 'only for alloys with relaxation enhance-
ment. (ii) The density fluctuation parameter b turns
out to be zero in systems investigated by the Sb
probe nucleus. The only exception requiring a
definitely positive value b is the nonequicomposition
alloy Sb2Te3.

It will be argued in Sec. Vc that for the quadrupolar
relaxation process, the low k hydrodynamical range of
the structure factors is of main importance, which is
equivalent to saying that the alloy enhancement ori-
ginates essentially from the concentration Quctuation
contribution. Therefore, instead of starting from Eq.
(17) one may return to Eqs. (14) —(16) and intro-
duce the expressions for Scc(k, a&) derived in the hy-
drodynamical limit. The S~c term will be neglected
because it is small and the S~~ term is assumed again
to depend only weakly on temperature. As shown in
the Appendix, the temperature dependence predicted
then, is very similar to the form inferred from Eq.
(17). The only difference is the meaning to be given
to the diffusion coefFicient: if the hydrodynamical
model is introduced into Eq. (14) it is the self-
diffusion D, if it is introduced into Eq. (15) it is the
interdiffusion DN, and if it is introduced into Eq. (16)
it is the mean value of self- and interdiffusion.

Following the model underlying Eqs. (9) and (10),
it is most reasonable to insert the mean value of the
self- and interdiffusion coefficients:

activation energy which correlates with the melting
temperature of the alloy in a similar way, as in the
case for self-diffusion (see the detailed investigation"
of SbcBi& c). Therefore, one expects much the same
temperature dependence for C =0.5 [Eqs. (19) and
(20)) as derived above with more crude arguments.

(c) Composition dependence: Again we start from
the substitutional model Eq. (17). The main compo-
sition dependence expected then stems from the con-
centration Auctuation term which is proportional to
C&C&. In In&Sb& &, where the composition depen-
dence of R0 could be observed over the entire com-
position range, '0 " the above predictions are
confirmed on the whole; a maximum of the rate is
found at about C =0.5 and in the Sb-rich region the
composition dependence is compatible with the C& C&
rule. " In the In-rich region, however, the slope of
R&(C) is less than expected, if a C& Cs dependence
holds, In fact, this characteristic "sharp maximum" in
the intermediate range or "increasing slope" for small
C has been found in several other systems"' "
~here an enhancement exists. On the In-rich side, to
which our measurements are limited, the four alloys
show again an upward curvature (see Fig. 1). The
dependences of Rp(C) quoted here have been taken
at constant absolute temperature. Since the relaxa-
tion in the investigated alloys depends sensitively on
the temperature, we tried to account for this eft'ect
correcting the measured values with the empirically
found temperature dependence from above. Howev-
er, comparing, e.g. , along the liquidus curve the con-
sistency with the expected C~ C~ behavior is not im-
proved.

10

Rp

(10's')

1000 500 300

sops
Bip.5

Hgps

s Sbps

3

2

I.

10
I

1.5
I I

'
I I

20 25 3.0
I I

1/T [10 K

FIG. 4. Fit of the temperature dependence of the relaxation
rate on Sb probe nuclei in some A0 580 5 alloys according to
Eqs. (19) and (20). The fit results for W/3. 7 T~k& are 0,68
for' InSb, 0.43 for InBi, 0.50 for InHg, 0.41 for GaSb, and
0.72 for Te3Sb2. Corresponding fits of Rg(T) detected on

Bi yield 0,47, in InBi (Ref. 11) and in BiPb the values 0.54
and 0.78 (Refs. 11 and 47, respectively).

V. SIMULATION OF THE COMPOSITION AND

PARTNER-ELEMENT DEPENDENCE

OF Rg USING A HARD-SPHERE MODEL

So far we have considered a liquid mixture of
atoms with different EFG form factors V, but equal
mutual interaction and equal size. This describes
some of the essential trends, while it misses much of
the prominent particularities. It is therefore
worthwhile to attempt an ana1ysis of some of the de-
tails starting from the model used. In the following
we shall describe calculations which allow for
different atomic size in the partial structure factors.
For this purpose we use as a starting point Eq. (14)
instead of Eq. (17).

(a) Model expressions and assumptions: In order to
assess the content of Eq. (14) we need analytical
forms for the three static structure factors S&. Tract-
able expressions have been deduced from the
Percus-Yevick equation for a binary mixture of hard
spheres with different diameters. "

Three parameters enter in the hard-sphere alloy
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model: the ratio of the hard-sphere diameters of the
two species o, , the composition C, and the packing
fraction q. The latter must be chosen' close to 0.46;
in the following this quantity will be kept fixed. The
occurrence of C in the partial structure factors leads
to a complicated composition dependence of R~, in
addition to that stemming from the difference in the
form factors.

As the EFG form factor [Etl. (10)] characteristic
for the species i we adopt the pararnetrized form pro-
posed by Schirmacher' for Ga,

V, (k) = Aj (kr;) e~" ", (23)
0

where k is measured in A ', the A s are experimen-
tally and theoretically scarcely-known quantities.
However, in order to simulate the difference in

strength of the EFG originating from In and the alloy
partners, relative values will be sufhcient. The range
parameter r; is expected to correlate closely with the
size of the EFG source atom, We assume that the
V;(k) are composition independent functions for
both constituents throughout the whole composition
range.

(b) Selection ofparameters: It is convenient to intro-
duce the following ratios as parameters for model
calculations, i.e., R~ (j) =At„/AJ, for the alloy partner
j. In linear screening the variation of R~ will be
between R~ =3 for the alloy with the Ib metals, and

R& =0.6 for those with the Va elements. The aver-
age agreement with the observed alloy enhancement
suggests that this interval for R~ is reasonable.
Further, the ratio of the EFG-size parameters is
given by RsFo(j ) = rt„/tj. Since the r& depend on the
atomic size, we vary RsFo(j) with the hard-sPhere
diameter, i.e., we put REFG = e. %e estimate the re-
gion for reasonable variations of e from the atomic
radii to, as deduced from the density (rtj =3/4rr
times atomic mass divided by bulk density). Finally,
the ratio a /r is of interest which scales the EFG-size
parameter to the hard-sphere diameter. It should not
depend much on the particular element under con-
sideration. Therefore, we estimate it for Ga, where
data for both o- and r are available, and apply the ob-
tained value for all the other metals. %e find
o/r =0.82, usings' .o. = 2.3 A ands ro, = 2.8 A.
Though these absolute values of lengths refer to the
case —which is not given here —that the probe and
surrounding consist of the same atomic species this
is no objection for the present purpose since here
only ratios of such distances enter the calculations.

(c) Results: With the EFG strength factor ratio R~
proportional to the valence ratio, diameter ratios a
which vary according to the density diameter ra and
o/r =0.82, Eq. (17) yields a monotonic composition
dependence for almost all alloys (Fig. 5). Remark-
ably, R0, at C =0.5, increases or decreases from the
pure In value depending on whether the alloy partner
has a larger or smaller valence than In. This contrad-

icts the data, which never show a lowering of the rate
on the In-rich side when a valence difference is
present. Now the three contributions to R0 depend
differently on the overlap between the form factors
and the structure factors; all V's and Sgg depend
strongly on k, while Scc is only weakly k dependent
and S~c is sma11. This is displayed in Fig. 6. There-
fore, the NN term depends on details of the overlap,
and varies sensitively if the scaUng parameter o /r is
altered. As seen from Fig. 6 the NN contribution to
Ro will be weakened, if o/r is lowered, i.e., if the
form factor is compressed on the k scale. According-
ly, we performed the above calculations again adopt-
ing smaller values for a/r (o/r =0.65, 0.5, and 0.3).
Indeed, the CC term then becomes more and more
important, [see Figs. 5(a) —5(d)] and for a/r =0.3,
the typical alloy enhancement appears for all systems
with a valence difference. The maximum of the
enhancement occurs around C =0.5 within an inter-
val of AC =0.15. Deviations from the strict correla-
tion of the enhancement to the valence difference oc-
cur; the scatter of these deviations compared to the
absolute enhancement appears to be realistic (Table
III). Remarkably, the calculated increment of Ro in
thc Ib alloys is on the average somewhat smaller than
that in the Va alloys in accord with the observed ten-
dency; this is due to the more pronounced difference
in size between In and the Ib metals compared to In
and the Va elements. So at first sight the above cal-
culations suggest some relevance of this account for
atomic size effects. There are, ho~ever, obvious
shortcomings of the approach: (i) In detail the calcu-
lated deviations from the trend governed by the
valence difference do not correlate with thc observa-
tions. (ii) Even with o/r =0.3—0.5 th. e alloy
enhancement turns out to be too small. (iii) Only for
a few systems the calculated shape of Ro(C) exhibits
thc tendency of increasing slope at low C.

A more general conclusion, however, may be
drawn as the essential result of the above analysis,
namely, that the main contribution to the overlap in-
tegral for the NN term to R~ must originate from the
low k (hydrodynamical region of S»(k): as seen
from Figs. 5(a) —5(d), the integral of S» V» yields
always a monotonic composition dependence, the
slope of which depends on the valence difference
between the alloy partners. This is true in particular,
if the form factor weighs heavily the region around
the first peak of S&~which is represented reliably by
the hard-sphere model. If, ho~ever, this region is
weighed heavily, the NN term becomes strongly dom-
inating, and with some confidence, a monotonic com-
position dependence is expected for the total rate R0
in contradiction to the observation. We conclude,
therefore, that actually the form factor must weigh
preferentially in the range below the first maximum
of S~~. This fact dra~s the attention to the behavior
of the partial structure factors in the hydrodynamical



19 SYSTEMATICAL TRENDS OF NUCLEAR QUADRUPOL'AR. . . 3459

C

I 3

0
tb

0
CL

C
O

0
X0
O

0

1

] 7
/

/
/

/

] 6/

//'

(c)

/
/

/
/

/
/

/
/

~./
/

0 ~o

0
A

I

0.5
0

C 10 0
8 A

I 0 '

0.5 C ~ 1.0 0
B A

I

0.5 C~10 0
0 '

B A

0.5 C ~ 1.(
B
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TABLE III. Alloy enhancement calculated according to

Eq. (14).'

Alloy Enhancement Observed
0

Partner RD (A) e a./r =O.S a/r =0.3 rate (sec ')

Cu

Ag

Au

Zn

Cd

Hg

Ga

In

Tl

Ge
Sn

Pb

As

Sb

Bi

1.41 0.77

1.60 0.87

1.60 0.&7

1.54 0.84

1.73 0.94

1,80 0.98

1.66 0.90

1.84

1.90 1.03

1.76 0.96

1.80 0.98

1.93 1.08

1.73 0.94

1.94 1.08

2.04 1.11

1.33

1.29

1.29

1.12

1.07

1.14

1.36

1.03

1.86

1.73

1.57

3.65

2.62

2.60

2.52

2.31

2.30

2.08

1.65

1.78

2.18

1.10

2.53

2.19

1.90

6.15

3.60

3.99

2450

750

2310

230

200

2850

120

~ ~ ~

400

460

750

400

3250

5850

6650

'The results quoted in columns 3 and 4 are the quantities

RgOnp5+p5)/Rg(In). RD is the radius of the partner ele-

ment as derived from the density and we have

0(=RD(X)/RD(In). Column 5 gives the measured rates

R~(lnp 5Xp 5) at the melting temperature taken from Table

II.

range which the hard-sphere model fails to reproduce
reliably. ' Experimental data show that the k 0
limit of SN~(k), i.e. , the macroscopic compressibility
of liquid metals, is systematically smaller by a factor
3—5 than expected from the hard-sphere model. 5'

This means that the above calculations probably
overestimate S~& in the whole region below the main
peak, leading to the erroneous predominance of the
density Auctuation term.

These results ask for a modification of the earlier
view ""that the structure factor weighs most
heavily the region around 2kF, i.e., the region around
or above the main peak of S(k). According to the
work of Sholl and Warren this fact rested on the
selection of the asymptotic form of a screened
Coulombic potential for the calculation of the EFG
form factor. The difticulties to justify this special as-
sumption have been emphasized previously.
Although the function Eq. (23) for the EFG form
factor used here is the result of a more sophisticated
treatment of the EFG problem in liquid metals, ' it
seems likewise to overestimate the contributions
from large k values. We believe the present experi-
ments to prove that if indeed the atomic motions
control R~ according to the theory of Sholl and War-
ren, we are forced to modify the current expressions
for the radial dependence of the EFG functions in a
sense, that the large k region of the structure factor
becomes less heavily weighed relative to the hydro-
dynamical range.
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APPENDIX

I

I

I I

l
I

l I

I/I 1 I

C I
I (.g

CI

0

(b)

2
~NN ~N

VNc= VN ~c
2

~cc = ~c

I I We note the following relations between the S~~
terms in Eqs. (14) —(16) which apply to the region
of small k and small ru. There S,(k, ~) is represented
correctly by the free diffusion approximation

'

S, (k, ) =(Dk'/~)/[~'+(Dk')'], (Al)

where D is the coeScient for self-diffusion, ' In the
same limit the hydrodynamical model for Szc(k, u&)

will be a reasonable approximation. We start from
the hydrodynamical formula for Scc(k, 44), which in
the notation of Bhatia et al. 3' is given by

k& T' 2~7xk' 2~s ~k
Scc(k, o))=, , 4 +, 4, (A2)

5 6 7 IIA']

FIG. 6. Hard-sphere partial structure factors (a) and EFG
form factors (b) according to Eq. (23) We have

V~~=(C~ V~+Cg V~), V~g=(Cg V~+Cg Vg){V~ —Vg),
and Vcc=(V& —Vz) . The curves correspond to an

In~Sb~ ~ alloy for C =0.75. The hard-sphere to EFG di-

ameter ratio is chosen at o(r =0.&2.

with

2X=(x+ ~) + [(x+&)' —4xm]'/2

2 Y = (x+ &) —[(x+ &)' —4x&]'";
LI = D+(1 + kr2Z/ TCp) (A3)

In a recent discussion" "a predominance of the
contributions from large k values to the integral for

has been postulated explicitly, however it
is based on other reasoning. Marsden et al. "'4
focus on the temperature dependence of 80 in pure
metals which is weaker than expected from the re-
ciprocal diffusion constant. The expression they
quote for R(I contains S, (k, cu) only, instead of both.
S,(k, a&) and S (k, co). Since S,(k, co) at k values
above about 2kF has a weak temperature dependence
("ideal-gas behavior") while at low k values the
strong temperature dependence originating from
diffusion dominates, they conclude that the shape of
the EFG form factor must be such as to weigh
S,(k, co) at those high k values which correspond to
distances considerably smaller than atomic diameters.

Because quite generally partial structure factors at
k =0 are determined by thermodynamical properties
of the liquid, "we will include these in a forthcoming
analysis of data for A~ in alloys. '

Here D+ is the constant of interdiffusion. If we now
suppose the thermal diffusion ratio k~ to be small,
1.e.s

k,' «Z/TC,
I

we obtain immediately

(AS)

Thus, we srrive at

Scc = (NksT/rrZ)D+k /[ru +(D+k ) ] (A6)

This leads to the following explicit forms for the Sc~
term: in Eq. (14)

is (k)S(k 1 )
"8' Dk/m

(~/2) '+ (Dk')'

%kg T
for co 0

Z 2mDk~
(A7)

Here we inserted for Scc(k), the frequency integral
of Scc(k, cu), as given by Eq. (A2). Similarly Eq.
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'(15) contains the right-hand side of Eq. (A7), how-

ever, with D replaced by the interdict'usion constant
D+. From the convolution in Eq. (16) we obtain the
right-hand side of Eq. (A7) again, where D is now re-

placed by arithmetic mean value
2

(D + D+). Thus,

apart from the fact that di6'erent di8'usion coeScients
occur, Eqs. (14) —(16) result in the same form for

the temperature dependence. In the spirit of the
Sholl and Warren model, the expression which con-
tains the averaged diffusion coefficient —,(D + D+),
describes the dynamics of Scc(k, ~) best. Because
the composition C is contained in the stability func-
tion Z, the dependence on C is the same in all three
expressions.
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