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Magnetic field on a fast charged particle traversing a ferromagnet:
Random-phase approximation
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Linear response theory is applied to a calculation of the dynamic magnetic f'ield experienced

by a particle of' charge Ze when it passes through a terromagnet with a velocity u && Zup (vp is

the Bohr velocity). The wave-vector-dependent dielectric function and polarizability ot an elec-

tron gas as calculated in the random-phase approximation are used in describing the response ot

the electrons in the ferronsagnet to the Coulomb field ot' the traversing charge. The calculatioI~

results in a magnetic field acting on the moment of the charge of (0.86+0.01) 47rMpZ (vp/u),

where Mp is the magnetization of the ferromagnet.

I. INTRODUCTION

In 1968, Grodzins and co-workers reported' that
strong transient magnetic fields acted on ions just pri-

or to their being stopped in a polarized ferromagnetic
material. Since then, both experimental and theoreti-
cal work has been carried out in order to determine
the origin and magnitude of this field. This work is

reviewed by Van M.iddelkoop. Before describing the
contents of this paper, some general comments will

be made for purposes of orientation.
When an ion of charge Ze and speed v traverses a

ferromagnetic material, it is acted upon by both an

electric and a magnetic field. The electric field

which, on the average, is antiparallel to the velocity,
slows down the ion while the magnetic field at the

nucleus of the ion causes a precession of its magnetic

moment. By measuring this precession for a nucleus

of known magnetic moment, information about the

magnetic field can be gained. On the other hand, if
the field can be calibrated it can be used to measure
unknown magnetic moments of nuclear excited
states. At present, the origin of the field, and its

dependence on various parameters, such as the velo-

city of the ion and its atomic number Z, are being in-

vestigated with a variety of probes.
The problem presents us with two characteristic

velocities to which the, speed of the ion can be com-

pared. First, the Bohr velocity vo=e'/Sgives the

order of magnitude of velocities of the valence elec-

trons, both of the ion and the ferromagnetic material.

The second characteristic velocity is that of ls elec-

trons of the ion ZQp.
For fast ions u » vp, the processes determining

the magnetic field probably involve only electrons.
At present there is no hard evidence that nuclear col-
lisions play a major role at high velocities. The re-

gion»& ~p can be subdivided into two domains:
moderately high velocities vp « U & Z vp, and very

high velocities v )& Zvp. At moderately high veloci-
ties, the moving ion is partially stripped and its
remaining electron shells may become partially polar-
ized by knock-off and pick-up processes during colli-

sions with the polarized electrons in the ferromagnet.
Linhard and Winther4 (LW) developed a model to
describe this field, however they neglected the pres-
ence of bound states on the ion. Their theory
predicted a transient field which depends inversely on
the ions velocity for v & v, and is independent of v

for v & v„where v, is an average velocity of the po-
larized electrons in the ferromagnet. The depen-
dence of this field on the ions atomic number Z is

predicted to be linear. At first, these predictions
seemed to be borne out by experiments' but as
higher-ion-velocity data became available, deviations
from LW predictions became quite large. The mag-
netic field for ion velocities vp & v & Z vp appears to
be of the order of a few megagauss, several times
above the LW predictions, and increases approxi-
mately linearly with both the velocity of the ion and
its atomic number Z, Experiments on light ions
('2C, "C, '80) at velocities approaching or exceeding
ZUp suggest that while the observed field increases
with velocity for v approaching Zvp, it becomes negli-

gibly small for v = 2Z vp. These effects are thought
to be due to a polarization of inner-shell electrons oc-
curring as capture and knock-out processes compete
to produce partially unfilled inner shells'. as the ions

velocity is increased, knock-out processes dominate
those of capture and the ion becomes completely
stripped of its electrons. At this point, hyperfine in-

teractions can no longer occur and a different
mechanism must be invoked to explain the magnetic
interactions. We expect that these very-high-velocity

totally stripped ions will polarize the medium in their

vicinity and that the probability of their capturing
electrons into bound states will become negligibly

small. In this case, the field will be due to the
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enhanced magnetization density surrounding the
moving ion.

Theoretically, this region of very-high-ion velocities
is the easiest to handle with some confidence because
a linear-response theory can be developed. The vali-

dity of this approach will depend upon how small
ZUO/U is. This is easily demonstrated by looking at
the Bohr parameter' K = Zuo/vq, which gives an esti-
mate of thc accuracy afforded by a first-order
quantum-mechanical perturbation scheme —taking
the field of the ion as a perturbation to the almost
free electrons in the ferromagnet. In the above, vp is
the relative velocity between the ion and the polar-
ized electrons in the ferromagnct. When p is consid-
erably greater than ~o, then we have ~& = v and
SC = Zu, /~. Thus, when we have JC « I it is clear
that one can treat the presence of the ion as a weak
perturbation to the electrons. This first-order treat-
ment is tantamount to letting the (q, &u) Fourier
component of the induced charge density, be linearly

proportional to the (q, cu) Fourier component of the
ions charge density, where thc constant of propor-
tionality wi11 be related to the dielectric function of
thc medium.

The purpose of this paper is to develop this linear-
response theory to a prediction of the dynamic mag-
netic field experienced by an ion moving with
v && Z vo. As mentioned above, this theory will be
valid for fast moving ions. In Sec. II we calculate the
dynamic magnetic field 58 at the site of the ion, as-
suming that the dynamic magnetization SM (r, r) is
known. In Sec. III we relate the dynamic magnetiza-
tion to the external (ion's) charge density, and ob-
tain an expression for the dynamic field 58 at the
site of the ion, The results of numerical computa-
tions are given in Sec. IV for different va/ues of u

and fina11y, in Sec. +, a comparison with availab1e
data is made.

II. MAGNETIC FIELD ACTING
ON THE NUCLEUS

Consider a particle of charge +Ze and speed v

removing in the +z direction through a polarized fer-
romagnetic medium. %c wi11 assume that the matter
is polarized in the +x direction by a small external
field H given by H = (H, 0, 0) and that, in the ab-
sence of the ion, the magnetization density is given
by Mo ——(Mo 0, 0). In the above, both Ho and Mo are
taken to bc independent of space and time. The
geometrical situation at t =0 is shown in Fig. 1,
where the ion is located at the origin of the coordi-
nate system. In the presence of the ion, we take the
magnetization density to be given by
M (r, t) =Mo+ 5M (r, t), and the associated magnetic

field to be given by B (r, r) =Bo+SB (r, r) .Thus
SM (r, t) and SB (r, r) are the dynamic parts of the
fields which we will deal with below, while Mo and 80
are the static parts. Note that since the Coulomb at-
traction responsible for the enhanced electron density
at the site of the ion (and hence the dynamic field) is

spin independent, the fields AM and 58 will have
only x components. In what follows we will deal with
these components only. Using- classical electro-
dynamics, wc can relate thc dynamic magnetization at
t =0, SM(r"), to the field 58(0) at the site of the
ion by taking c '7 & 5 M (r ) as the source current
density responsible for 58(0). This leads to the ex-
pression

58(0) = — —,—y—SM{r) +z—SM(r)dv 8 8
r By gZ

~here the integration is carried over all space. After
using the vector identity

r7 (r SM/r') =(r VSM)/r'+SM'V (r/r')

SM(r) =-SMo(r) +SM'(r) {3a)

SM'(r) = QSMI(r)P~(cos6)
/=I

{3b)

where we have SM'(0) =0, and 9 is the angle
between r and the +z axis as shown in Pig. 1. After
placing Eqs. (3) into Eq. (2), making use of the
spherical symmetry of SMo(r), and once again con-
verting a volume integral to a surface integral which
vanishes, , we obtain

58 (0) = —8 vr SMO(0) + d V ——SM'( r )0 r3 BX

We substitute Eq. (3b) into Eq. (4) and do an in-
tegration by parts; wc obtain after a straightforward
calculation

58 (0) = ger SMO(0) ——— SMz(r)—4m dr

3 o r

The orthogonality of the Lcgendrc polynomia1s was
used in arriving at Eq. (5).

and converting the volume integral of '7. (rSM/r')
to a surface integral (which vanishes as the surface
goes to infinity) we obtain

58(0) =4~5M(0)+ tdV —--SM(r) . (2)
X

9x

It is clear physically that SM(r ) has cylindrical sym-
metry about the z axis so we can expand SM{r ) in
Legendrc polynomials in order to simplify expression
(2), i.e., we will have
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X II
which can be written

SM(r) = pa[Snt(r) —Snt(r)]

where p,q is the Bohr magneton and

Sn& t(r) =-nt t(r) —n/

Z

are the deviations. from the mean number density of
electrons with spin down and up, respectively. In the
above we take nt l

= kFi, 1
ii'67r' to be the equilibrium

value of the number density for a given spin orienta-

tion, and we choose the x axis as the axis of spin

quantization. Writing the Fourier-transformed ver-

sion of Eq. (6) in both space and time we obtain

SM(k, «3) = PB[Snt(k, «i) —Snl(k«i, )]

FIG. 1. Particle of charge +Ze located at the origin of the

coordinate system at t =0.

It is clear that we will know the dynamic magnetiza-
tion, once we can relate Sn& l(k, «&) to the known
quantity Sn'"'(k, «i) —the external number density
(the ion's number density). To this end we assume
knowledge of a suitable dielectric function and polari-
zability to describe the electron system. Then we ob-
tain

We have thus obtained an expression for the
dynamic field 5B at the ion in terms of the dynamic
magnetization density in the entire ferromagnet. It is

seen from Eq. (5) that actually only the! =0 and
I =2 components of SM(r) are required for a calcu-
lation of SB(0). Next, a calculation of SM(r) is

needed.

III. LINEAR-RESPONSE THEORY

It might be helpful at this point to review the phy-

sical ideas which will underlie the coming calculations
of the dynamic magnetization SM(r). We are con-
sidering an ion whose speed is much greater than any
other characteristic velocity in the problem;
»&»0. Thus, in the rest frame of the moving,
completely stripped ion, one sees an electron wind

blowing by. The energies of these electrons, moving
at speeds of about v in the negative z direction, are
very large compared to their binding energies in the
solid and so one can, in this limit, neglect band-

structure effects as being insignificant on this energy
scale. Also, since ~ is so large, the Bohr parameter E
is much less than unity and wt; can expect a first-
order perturbation calculation to yield results which

justify our re,ating the induced charge density to the
external (ion's) charge density in a linear fashion.
This relationship will involve the use of a dielectric
function and polarizability of the electrons.

Consider then the dynamic magnetization density

4n'i3. t, i(k, «i)
Snl t(k, «i) = ' Sg "'(k, «i)

e( k«i),

where al l(k, «i) is the polarizability of the electron
gas for spin-down and spin-up electrons respectively,
and

t(k, «i) ='1 +4 ir [u1 ( k, «i) + ul ( k, «i) ]

is the dielectric: function.
If we assume that, because of its high velocity, the

ion's motion is relatively unaffected by the atomic
electron collisions, we can write Sn'"'(r, r)
= ZS(r v t) and —obtain its Fourier transform

Sn'"'(k, «i) =2mZS(r» —k v)

Combining this with expressions (8) and (9) and
transforming back to (r, r) space we obtain, for r =0,

SM( ) I B if3k ~ik r kA( k, k ' v) (10)
(2m) " q(k, k ~ v)

where

is the difference between the spin-down and spin-up
polarizabilities. From Eq. (10) w'e can immediately
extract the spherically symmetric (I =0) part of SM,
which is given by

SM (0) = d'k
(2n) " e(k, k v)

The asymmetrical part (I =2) is almost as easy to get
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if we use the relation

e'"'= X(2l+1)ij'~(kr)PI(k r)
I=O \

0) PaZ
J d3k h~(k, k v)

3' e(k, k v)

x [2+ —,'P2(k v)]

(14)

along with the addition theorem for spherical har-
monics where we can replace P~(k r) with

P, (k r) =P, (r" u)P, (k u)

I

+2 y
"- "P-(.-'-). , (I+m)! '

& PP(k u) cos[m ($, —$q)]

In order to proceed from this point on, we must
decide on a particular choice for e and 4o.. In a re-
cent paper, 8 we chose for e the classical Drude dielec-
tric function and the corresponding polarizability.
With this choice, we were forced to cut off by hand
an otherwise divergent integral in k space in order to
simulate the effects of a quantum-mechanically
correct polarizability. The result obtained in that pa-

per for 58(0) was

After placing these expressions into Eq. (10) above,
and integrating the second term over @z, we are left
with

207Tp,gZ
5M, (r) =- J d'k j,(kr)(2')'

p(k)AA(k, kv)
e(k, k v)

We can perform the integration of 5M2(r) over r as
required in Eq. (5) to get

SM dr 20mpgZ' f
Jl d'k P2(k u)' r 3(2n)'

„Aa(k, k v ) (13)
e(k, k v)

When this is combined with Eq. (11) in Eq. (5) we

finally obtain

58(0) =4m'MoZ (uo/u) (15)

We will see in what follows that the use of a polariza-
bility which respects quantum requirements leads to
the result (15) modified by a factor of order unity.

Continuing, we choose for our dielectric function,
the one calculated in the random-phase approxima-
tion (RPA). In the region of high electron densities,
when the kinetic energies of the electrons in the fer-
romagnet are considerably larger than the potential
energies of interaction, the RPA dielectric function is
known to accurately describe both the single particle
and collective behavior of the electrons in the gas. 9

In ferromagnetic media, the conduction electron den-
sities tend to be high and so we expect that the RPA
values for ~ and 6n will adequately describe the
responsive properties of the electrons in the fer-
romagnet. We now calculate hn(q, o&) in the RPA.
The calculation of e(q, cu) is well known. ' The polar-
izability for spin-up electrons is given by

nl(q, a)) =- d3k 0'(I k+q
I

—k &) O~(k & —k) O~(k ' —
I k+q I) O~(k —k ~)

)kg (217) Ql + Ng olg+o + I 7I oj + oog crag ~ ill
(16)

where we have O(x) = 1 for x )0 and 0 for x (0,
and co-„—= itk2l2m; q is a positive infinitesimal which

will be set to zero at the end of the calculation. A
similar expression holds for nt(q, co), where k~ is re-
placed by kFI. Here k~~ is slightly greater than k~t

resulting in a net spin polarization in the negative x
direction (corresponding to a nonzero magnetization
density Mo in the positive x direction). These rela-
tions for at t(q, cu) are simply related to the lowest-
order polarization insertion —counting only particle-

hole excitations above the Fermi sea. Since the ex-
pression (14) for 58(0) contains hn, the difference
between down and up spin polarizabilities, it is clear
that only particle-hole excitations which originate
from states between the two Fermi spheres contri-
bute to 58(0)—,i.e., only the fraction of electrons
which contribute to the equilibrium magnetization are
involved.

After a simple transformation of the second term
in Eq. (16) is performed, we obtain for 5n

hu(q, oi) =—e2 d3k

gq' (2~)'
"" [O(kFl-k)O(Ik+qI-k)) -O(k)-k)O(Ik+qI-k))]

't

1 1

(17)
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where cu-„-, =—~„-+-—ao-„. If we assume we have k~ —kF = 5k &( k~, we can replace the difference between 0
functions in Eq. (17) by the product of Sk with S(k —kF). This simplifies the integrals considerably —the results
of which are given in dimensionless variables

Red'(z, u) = —
2

ln
X' Sk I u' —(z+1)'

32m' kF zs u2 —(z —1 2

X' gk 1

64 k, z3
—[(u —z)' —I] for~1 —z~ «u «I+z

x' bkImha(z, u) = — — for 0 «u «I —z
16 kF

0 otherwise

where z = k/2kF, u = m ru/tkFk, and X2 = e2kF/27r 6F
with eF equal to the Fermi energy; X'. is a measure of
the ratio between potential and kinetic energy of the
electrons. The RPA expression for 6(k, ~) given by
Lindhardt' is

and

—mu for z+u ~11

2

6(z, u) =I +X'/z'[f, (z, u) +if, (z, u)]

where

f2(z, u) = ' —[1 —(z —u) 2] for
~
z —u

~
«1 «z + u

8z

0 otherwise

f, (z, u) =—+—[I —(z —u)']ln1 1 2 z —u+1
2 8z z —u —1

+—[1 —(z+u) ]ln1 z+u +1
8z z +u —1

where X2, z, and u are defined above. One can now

change variables in expression (14) to the convenient
dimensionless variables to obtain

SB 1282r ZkF "
2d „dn(z u)

[
s p ( / )]4~F0 6p Sk &0 J0 0(z, u) 6 (18)

where P =- v/uF, vF is the Fermi velocity. Because the retarded 6 and ha entered in Eq. (I &), the expression is
real and can be rewritten

SB 1282r F "
2

" &n)(z, u)6, (z, u) +AA (2,zu)62(z, u) 1+ p2u p-
4nM0 6P Sk o ~o 2+62 6 (19)

where we have

and

6(z, u) = 6 t (z, u) + i 62(z, u)

Act(z, u) = Sex](z,u) +i /2. a2(z, u)
I

IV. RESULTS

The numerical evaluation of Eq. (19) was carried
out for X =0.594 (a value suitable for Fe), Z =1
and for different values of P corresponding to
values of ~ ranging from v = 5 vF to, v = 100m F. An

Since an analytic evaluation of Eq. (19) was not pos-
sible, numerical calculations were performed.

asymptotic expression for the integrand in Eq. (19)
was obtained for z )& u in order that an anayltic
result could be obtained for z ranging from zo to ~.
Here zo is a value of z, usually four or five times
larger than P, which rendered the analytic result ac-
cuate to at least 1%. Similarly, the numerical integra-
tions, which were performed with the use of
Simpson's Rule, were carried to 1% accuracy. Partic-
ular care had to be taken in the numerical work near
the region of the plasmon dispersion curve defined
by 0(z, u) =0, where the integrand in Eq. (18) has a

singularity. The results are plotted in Fig. 2 where
we show the ratio of the numerical prediction to the
classical one [see Eq. 151 versus particle velocity
v/vp, i.e. , we define a coefficient C by

(SB)oM = C(SB).o...
and plot C as a function of u/vp.
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FIG. 2. Plot of Cas a function of u/vo.

V. CONCLUSIONS

We have calculated the dynamic magnetic field at
the site of the ion by considt, ring the effect of
single-particle collisions and collective oscillations of
the electron gas on the dynamic magetization density.
From this magnetization density, we then obtained
58 by summing the contributions from all over the
ferromagnet [expression (19)]. Our numerical
results show a reduction in 58 from the results of the
classical calculation as given by expression (15). Our
final result is

dictated by our choice of dielectric function in Eq.
(14), one could ask how dependent our results are on
this particular choice. As mentioned above, our use
of the classical Drude dielectric function in an earlier
paper proved adequate only when an otherwise
divergent integral was cut off by hand; certainly then,
a quantum-mechanically correct dielectric function
must be used. On the other hand, we do not expect
our results to depend strongly on our choice for
p(q, pj) from among the various quantum-
mechanically respectable dielectric functions, since in
a recent calculation" of the dynamic field we ob-
tained 2m'MpZ apl& In this calculation we assumed
the electrons to be free and independent —responding
only to the presence of the ion. The effects of
plasmons are absent from such a theory. Neverthe-
less the result differs from the numerical results
above by a factor of about 2 and the functional
dependence on parameters Z and v is the same.
There is also experimental evidence' that the dynam-
ic field is not sensitive to the details of the band
structure of the ferromagnet. The measurement on
Fe ions traversing Fe and Gd ferromagnets are the
same once the magnetization Mo is factored out,
while the band structures of Fe and Gd are quite dif-
ferent.

Data from an experiment recently carried out by
the Rutgers-Bell group and collaborators" can be
compared with the predictions of Eq. (20). In the ex-
periment, the dynamic field was determined, which
acted on muons traveling at v =0.68C through mag-
netized iron. The field was determined to be
—0.5 +2.6 kG which is consistent with the predicted
field of -0.14 kG given by Eq. (20), where 4vrMp is
taken to be about 16 kG and vjup = 100.

5B(0) =(0.86+0 01)4vrMpZ(. apl~) (20)

The velocity dependence of the dynamic magnetic
field is similar to the LW result for v ) v~, however,
it would be incorrect to extend their results into this
velocity region since their calculation of the field at
the site of the ion was determined by the magnetiza-
tion density at the site of the ion —neglecting entirely
the anisotropic parts of SM which will contribute to
SB(0).

Since much of the work described in this paper was
t
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