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Theory of Mossbauer line broadening due to diffusion of Mossbauer atoms via vacancies
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We have calculated analytically the effect of diffusion on the Mossbauer line, especially con-

sidering the correlation effects due to diffusion via vacancies. Starting from a hierarchy of rate
equations for single-particle densities, pair correlation functions, and higher-order correlation
functions we have deduced for small vacancy concentrations an effective equation for the mo-

tion of Mossbauer atoms which is similar to the well-known "encounter model". The transport
of Mossbauer atoms is described by an effective jump-frequency matrix which incorporates the

temporal and spatial correlations of the atomic jumps induced by a single vacancy, We calculate

the effective jump-frequency matrix analytically by an iteration with respect to the number of
atomic jumps. during an encounter. It turns out that the correlation of the atomic jumps dimin-

ishes the diffusion broadening of the Mossbauer line. This eliminates some of the discrepancies

between Mossbauer studies and radio-tracer experiments.

I. INTRODUCTION

The Mossbauer effect provides a possibility to
study diffusion in solids on a microscopic scale in

space and time. ' Due to diffusional motion of
Mossbauer atoms, the Mossbauer line is broadened.
From the width one can deduce. the atomic jump fre-
quency. Thus the Mossbauer technique is a supple-
mentary method to the standard tracer technique.
However, to interprete the results obtained with
Mossbauer spectroscopy one has to describe the mo-
tion of the atoms microscopically. , which has not been
done until recently. Thus discrepancies were found
when the results of the two methods were com-
pared. Knauer' and Krivoglaz and Repetsky have
first discussed the influence of correlation on
Mossbauer line broadening. More recently the diffu-
sional jumps of a substitutional Mossbauer atom via
vacancies, and the resulting correlation effects have
been considered in detail by Dibar-Ure and Flinn '
using numerical methods, and by Wolf" who applied
his theory developed for NMR to Mossbauer spec-
troscopy. In the present paper, which is a condensed
version of our earlier report, ' we present an analyti-
cal calculation of the influence of diffusion of
Mossbauer atoms on the Mossbauer line. %e restrict
our treatment to self-diffusion, i.e., we do not take
into account any disturbance of the vacancy jumps in

the neighborhood of Mossbauer atoms. The effects
of changed vacancy jump rates have been considered
to some extent by Knauer and by Krivoglaz and Re-
petsky. '

According to Singwi and Sjolander' the emission

probability of y rays from a Mossbauer atom is pro-
portional to the scattering function S(k, t») which
characterizes the motion of the atom. If the vibra-
tional and diffusional dynamics of the Mossbauer
atom can be separated, i.e., if the jump frequency is
much less than the characteristic vibrational frequen-
cies, one need only consider the diffusional motion.
Vibrations give rise to a decrease of the intensity of
the Mossbauer line by a Debye-%aller factor. The
diffusional part of the scattering function is given by

S(k, t») = ~ dt -ye "t'(e ' '+ e'"')
~0 4

&& $e '" a G~(n, t)

f }
with J dt»S(k, t») =7r—y. Here k is the wave vector

of the photon which is related to the energy has-„of
Mossbauer radiation by t&»-„= ttc

~
k ~, trt» = lr(c»0 —t»-„)

is the energy transfer to the system. If co =0 the em-
itted photon is elastically scattered and carries the to-
tal energy koo, which is the difference between the
energies of the excited nuclear state and the ground
state. y is the natural linewidth, i.e., y is the mean
lifetime of the excited state. G~(n, t) is the diffu-
sional Green's function of the Mossbauer atom
which depends on the discrete lattice site R" and the
time t. It gives the probability to find a Mossbauer
atom at time t at the site R" if it started at the site
R =0 at time t =0.

In order to discuss the effect of atomic diffusion
on the Mossbauer line one has to calculate the
Green s function of the Mossbauer atom. Singwi and
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—y+A(k)
$(k, cu) = -y

[—,'y+A(k)]'+ ' (1.2)

For a nearest-neighbor jump model, the diffusional
broadening A(k) is given by

Sjolander' have solved the problem for an uncorrelat-
ed diffusion mechanism, i.e., if the atomic jump pro-
babilities do not depend on the direction of previous
jumps. The only diffusion mechanism for which this
is true is the direct interstitial diffusion. " The un-
correlated motion of atoms can be described by a
simple rate equation and the resulting Mossbauer line
is a broadened Lorentzian'

II. DIFFUSION OF SUSSTITUTIONAL
MOSSBAUER ATOMS

Substitutional Mossbauer atoms can diffuse
through the lattice at high temperatures when the
concentration and jump frequency of vacancies is suf-
ficiently large. The Mossbauer line is influenced by
the dynamics of Mossbauer atoms on a microscopic
scale in space and time. Thus we have to describe
the diffusional motion of the atoms in detail. We
first treat the local motion due to jumps with a single
vacancy and then the macroscopic diffusion in the
presence of many vacancies. %e shall consider. the
case of self-diffusion only, i.e., we do not take into
account changes of the vacancy jump frequencies in
the neighborhood of Mossbauer atoms.

A(k) =Zr —r„$'cosk K', (1.3)
A. Dynamics of a Mossbauer atom

with a single vacancy

where I ~ is the (uncorrelated) jump frequency of an
atom and R' are interstitial sites; the summation is
over nearest-neighbor sites only. Z is the number of
nearest neighbors. The broadening (1.3) strongly
depends on the direction of the y-ray emission rela-
tive to the crystal axes.

Usually, Mossbauer atoms occupy regular lattice
sites and diffuse via vacancies. Due to this mechan-
ism correlation effects arise, i.e., successive jumps of
a Mossbauer atom are no longer independent in
space and time. Correlation effects are discussed in
detail in the book of Manning. "

In early interpretations of Mossbauer line-
broadening correlation effects were taken into ac-
count by merely scaling the atomic jump frequency
with the macroscopic correlation factor. This is not
correct as we will show in the following. In Sec. II.A
we describe the motion of a Mossbauer atom with a
single vacancy, and use an iteration. procedure with
respect to the number of atomic jumps to calculate
the distribution of the Mossbauer atom. Then in Sec.
II.B we deal with the diffusion of Mossbauer atoms
in the presence of many vacancies. In Sec. III. we
calculate the resulting Mossbauer line shape. It turns
out that in the case of self-diffusion (unaltered va-
cancy jump frequencies) temporal correlations have
no measurable effect on the Mossbauer line shape,
(this is shown in detail in the Appendix). In Sec. IV.
we compare our analytical results with earlier calcula-
tions and with experiments.

1. Green 's functions

The normalization is

X W(nm, tin'm') =(1 —5-„@,)O(t)

with

0, t(0
1, t)0

(2.1)

From the microscopic reversibility of the elementary
jump process follows the relation

W(nm, ti n'm') = W(n'm', ti nrn) (2.2)

This means that the same number of paths leads
from starting points (n'm') to end points (n m) as
if starting and end points were interchanged. If only
nearest-neighbor jumps are considered, the pair-
correlation function obeys the following rate equa-
tion:

We define the pair-correlation function
W(nm, ti n'rn'), which is the joint probability, to
find the Mossbauer atom at the lattice site R" and
the vacancy at R™at time t, if at time t =0 the atom
was at R" and the vacancy at R . Since the atom
and the vacancy must occupy different sites we have

W(nm, ti n'n') =0= W(nn, ti n'm')

W(nm, ti n'm') = I'vs-„-[W(mn, tin' m') —W(nm, ti n'm')] +(1 —a- )

x X(l —~,)I'ps& z„[W(nm", tin'm') —W(nm, ti n'm')]
R
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with

1, if n and rn are nearest neighbors

0, 'otherwise (2.4)

point, say n', to be the origin.
From the pair-correlation function we can get the

distribution function for the atom or the vacancy
alone. If we sum over n we find the vacancy distri-

bution function 6[, i.e.,

g W(nm, t~ n'm') = Gv(m, t~ n'm')
r, is the vacancy jump rate and Z is the number of
nearest neighbors. The*first term on the right-hand
side of Eq. (2.3) describes the exchange of sites of
Mossbauer atom and vacancy; the second term
describes the free diffusion of the vacancy in the lat-
tice without passing the site n of the atom. The pro-
duction of atom and vacancy at time t =0 is given by
the last term. Because, we assume a homogeneous-
crystal, it is always possible to choose one starting

=Gy(m, t~ m')(I —5„~.)

(2.5)

with the normalization XtsGy(m, t~ rn') =0(t). The
probability Gy(m, t~ m') =Gy(m —m', t), to find the
vacancy for t & 0 at m, if it was produced at rn' at
t =0, obeys the following equation:

Gy(m —m ', t) = QI'vs~ ~„[Gv(m" —m', t) —Gy(rn, —rn', t)] +5(t)5~~

= —$ A(m —m") Gy(m" —m', t) + 5(t) 5~ -, (2.6)

A(m —rn") = —I'ys- ~„+5~ „XIys j
7

(2.7)

A is translational invariant and we have

X~„N A(m —m") =0. Equation (2.6) can be

solved by Fourier transformation in space and time.
One obtains

fO

G (tn t) e &mr~
—'eik R Gy(k ~) (2 8)2~ ~a V~

Here the nearest-neighbor jumps are described by the
jump matrix A, i.e.,

with

Gy(k, cu) = dt ei~ixe i" R Gy(—rn t)
~l

R
1

i (o+ A(—k)

A(k) = XI'ys& &(I —cosk R )
1If

(2.9)

(2.10)

The second integral in Eq. (2.8) is taken over the
first Brillouin zone with Vs=(2m)'/V„; V„ is the
atomic volume.

In the following we need the frequency
transformed function Gy(rn —rn', ~) of
Gy(m —m', t) From Eq.. (2.6) follows:

( i cu) G y( m —rn ',—co) = X I' vs~ ~„[G y ( m
"—m ', cu) —6 y( m —m ', &o) ] + 5N ~

g II
(2.11)

with the normalization

X G v( m —rn ', ru) = (2.12)

The summation over the vacancy sites in the pair-
correlation function leads to the distribution function
T~ for the Mossbauer atom, i.e.,

g W(nm, t( n'm') = T~(n;t~ n'rn')
lYf

W(n' rnt~ nm)
lIf

(2.13)

The last equation follows from the relation (2.2).
From Eq. (2.3) we can obtain a rate equation for the
distribution function T~. Rather than solving this we
will calculate the pair-corre1ation function W from
Eq. (2.3), and calculate TM via Eq. (2.13).

In the pair-correlation function 8', the motion of
the Mossbauer atom is coupled to that of the vacan-

cy. After the first exchange, the vacancy is located
on a nearest-neighbor site. The atom can jump once
more only if the vacancy returns to the site of the
atom, %e call R the probability of return of the va-

cancy. Then 1 —R is the probability that the vacancy
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P = $P(P) =
I

R

P

and thus the average number of jumps of a
Mossbauer atom with one vacancy is

i =1+s =—1

1 —R

(2.iS)

(2.16)

We will see in Sec. III. that in three-dimensional lat-

tices, R is much smaller than one (in cubic iattices
R (0.35). Then also p is small compared to unity
and because of the exponential decrease of the return
probability the Mossbauer atom will only make very
few jumps with the same vacancy (The average
number of jumps in the cubic lattices is j ( 1.54).
So one can calculate the distribution function of the
Mossbauer atom using an iteration with respect to the
number of atomic jumps. A good approximation for
the distribution function can be obtained by taking
into account only a few jumps. %e deal with the
iteration procedure in Sec. II.A 3. Because of the

will escape from a nearest-neighbor position without
passing the site of the atom. If the vacancy returns
once (probability R) and causes another jump of the
atom, then it starts again from a nearest-neighbor po-
sition. The situation is the same as before: either
the vacancy leaves (probability 1-R) or it induces a
further jump of the atom. Therefore the probability
for exactly two jumps of the atom with the same va-

cancy (the first exchange and one return of the va-

cancy) is R (1 —R). In generai the probability for ex-
actly p returns is

(2.i4)

The distribution is normalized, X" 0 w(p) =1. The
average number of vacancy returns is

small number of jumps the Mossbauer atom will,
with large probability, remain near its starting point
after an encounter with one vacancy. Thus many va-
cancies are needed for its macroscopic diffusion; we
treat this problem in Sec. II. B.

2. Return probabihty and vacancy

diffusion with absorption

F„(n,hl m') =0 (2.17)

We want to calculate the probability of one return
of the vacancy of the Mossbauer atom at site n. The
probability that the vacancy returns from a nearest-
neighbor position with the next jump to the site of
the atom is Z ', with Z the number of nearest neigh-
bors. But the vacancy can first leave the neighbor-
hood of the atom. Then there are contributions to
the return probability from all paths through the lat-
tice that lead the vacancy back to n. The vacancy
starting at a neighbor site m of the atom can diffuse
freely over all lattice sites except n, the site of the
atom. This exclusion of n can be described by an ab-
sorption condition at n, which guarantees that the va-
cancy once it has reached n, does not jump back into
the rest of the lattice. The return probability is then
given by the probability that the vacancy is absorbed
at n if it started at a nearest-neighbor site of n.

In order to describe the vacancy motion with ab-
sorption we define the Green's function F~(rn, h

l
m ').

It is the probability of finding a vacancy at site rn for
t & 0, which was produced at rn', at time t =0, if it
can be absorbed at n. F-„is different from the ideal

vacancy Green's function Gy due to the absorption
condition at n, i.e.,

The equation of motion reads

F;( rn, h I m ') = $ I'vs~ ~-(F-„(tn ".h
I

m ') —F-.(m. h
I tn ')

~
—8;,~~ ~ «) + 5«»~~ (I —8~ -.) (2.18)

(2.19)

The return probability per unit time from a nearest-
neighbor site is given by

u(h) =A~ (h)s„~ (2.20)

The terms in the sum describe the free diffusion of
the vacancy. For n = rn the additional negative term

A„(h) is the rate of absorption, i.e., the rate with

which the vacancy jumps to the site n

~ ~'(h) = gr„~ „Fpm", hl m') .

R = Jl, n(h) ch

I vs-„~„F-„(m",hl rn')s„~, ch
Af

To calculate R we solve Eq. (2.18) with the ideal
Green's function G~ yielding

F-„(tn, hl m') = Gv(m —m', h)(1 —g~, g

g Gv(ln —rn ",h
—h')

(2.2i)

and by integration over time we find 8 X5 . M (h') Ch' (2.22)
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A-, (t) is determined by the absorption condition,
Eq. (2.17). Using a Fourier transformation we obtain

tion [compare Eq. (2.6)]

0= XI ys~ @ [gv(m" —m')

Gv(0, (v)
(2.23) —gv(m —rn ')] + 5~ ~ . (2.27)

By inserting into the Fourier-transformed Eq. (2.22)
we get

Fgm, (oi m') = Gy(m —rn', o)) —Gy(m —n, t0)

Gv(n —m', au)

tlf, ll

(2.24)

For n and rn' nearest-neighbor sites, we find from Eq.
(2.20),

Especially for gv(0), i.e, m = m', we obtain
Zrygv(0) = ZI yg(Nt) +1. Now we find for R

Zr vg(0)
(2.28)

The numerical values of the stationary Green's func-
tions are listed, e.g. , in Ref. l2. For cubic 1attices we
compute' " the following values for R: sc,
R =0.3405; bcc, R =0,2822; fcc, R =0.2563.

~(~) = Gv(Nt co)IGv(0, co) (2.25) 3. Iteration procedure

Here Gy(Ni, co) is the Green's function for a
nearest-neighbor site. The return probability, which
is the integral over time of n(t), is given by the sta-
tionary limit co =0 of a(cu), i.e.,

R = &(~ =0) =gv(N&)lgv(0)

with the stationary Green's function

(2.26)

gy(m) = Gv(m, o) =0) = Gy(rn, t) dt
dp

This is the solution of the stationary equation of mo-

As discussed in Sec. II,A we want to calculate the
pair-correlation function by an iteration procedure
with respect to the number of jumps of the
Mossbauer atom. This is possible with help of the
Green's function F-„because it allo~s us to specify
the number of returns to a fixed lattice site n, which
we identify with the site of the Mossbauer atom.
Each return of the vacancy induces one jump of the
atom. The general solution of Eq. (2.3) is given by
the integral equation

W ( n tn, t
i n

'
rn

' ) = 5-„-„F-„(tn, t
i rn

' ) + J dt
'

X F-„(rn, t —t'
i m ")r vs„„,W ( m

"
n, t'

i n
'
m

' )
~tl
m

(2.29)

The first term on the right describes the distribution of the atom-vacancy pair, if the vacancy does not visit the
atomic site and therefore the atom makes no jump. The second term contains all changes of sites of the atom
with the vacancy. It has the following structure:

I „s„,W(rn "n, t'
i

n' m') dt'

I

is the rate, with which at time t' atom and vacancy change sites during the time interval dt', such that the vacan-

cy arrives at m" and the atom at n, This means that the atom jumps at least once, In the remaining time t —t'

the vacancy migrates from m" to m without passing the site of the atom again. Because the last jump of the
atom can happen at any time t' ( t, we have to integrate over t'.

Now we obtain an expansion of the distribution function with respect to the number of atomic jumps by iterat-

ing the solution, Eq. (2.29), i.e. ,

Wt l(nm, t i
n'm') =h-„-„F~(m, ti m')

is the contribution to the distribution function, if the atom does not jump.
/

+1
Wt'i(n ti rnn'm') =„' dt' XF„(m,t —t'

i
m")I vs-„z ~

Wtoi(m" n t'i n'm')
!If

(2.30)

(2.31)

is the contribution of just one atomic jump. In general the contribution of exactly v+1 jumps is

pf
Wt"+ 'i ( n m, t

i
n

' m ') = dt
'

XF~( rn, t —t
'

i rn ")I' ys„~„W'")( rn
"

n, I'
i n

'
m ')

ITf

(2.32)
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The complete distribution is given by the sum

w(nm, tl n'rn') = g 8' " (nm, tl n'm')
v -0

(2.33)

The pair-correlation function is normalized to unity [t & 0, n' A m', see Eq. (2.1)]. We can use this condition to
check the quality of the approximation: taking into account v jumps the norm is fulfilled to terms of the order of

t
R"+' for t ~; for a finite time interval R is replaced by the return probability until time t, ~

a(t') dt'

Later we will need the Fourier transform W„(oi) of the distribution function W„(t) after p, jumps, i.e.,

8'„(nm, tin'rn') = $ w't' (nm, tin'm')
v -0

For p, =0 and p, = 1 this reads

Wo( n m, cu
l
n '

m
' ) = 5-„-„F-„(rn, &o

l
m ' )

@'t(nm ~l n'rn') =5-„„F~(m culm') +F-, (rn o)l n') I"ys-„-„F-, (n ~1m') (2.35)

B. Dynamics of the Mossbauer atom
vrith many vacancies

Since the Mossbauer atom only makes a few jumps with one vacancy, a long-ranged diffusion can only be
achieved by encounters with many vacancies. The vacancy density c~ in metals is typically smaller than 10~.
Thus the probability that two vacancies are in the neighborhood of the atom at the same time, which is propor-
tional to c~ is very small and these configurations can be neglected. Then the atomic motion can be considered
as consisting of successive independent encounters with vacancies. This well-known "encounter model" has al-
ready been used by several authors'6 " to describe diffusion of atoms by the vacancy mechanism. %e will

deduce this approximation for the atomic motion formally starting with a system of equations for correlation
functions of the atom with many vacancies.

1. Equations of motion

For the scattering function Eq. (1.1) we need the probability GM( n, t) to find the Mossbauer atom at the lattice
site n at time t & 0, if it was produced at n' at t =0. This probability is normalized to unity for t )0, i.e.,
Q GM ( n, t) = 0(t) . The diffusion equation reads

GM(n, t) = Q I ys ~[G2(rnn, t) —G2(n rn, t)] + 5(t) 5 (2.36)

Here G2 is the density of atom-vacancy pairs: it gives the average number of pairs with a Mossbauer atom at n

and a vacancy at rn. GM( n, t) changes in time because of atom-vacancy exchanges, it decreases by jumps of the
atom to neighbor sites m and it increases, if the atom reaches n. 5(t) 5„0 is the production term for the atom.

The pair density G2 is normalized to $ G2 ( n m, t) = Ny G~ ( n, t). It is determined by the equation

G2(nm, t) =I'ys- ~[G2(rnn, t) —G2(nm, t)] +(1 —5-~) $(1 —5„~ )I ys~ ~ [G2(nm", t) —G2(nm, t)]

+ X I' ys„~„[G3(rn
"m n, t) —G3( n m m ",t)] + 5(t) 5„0cy(I —50 ~) (2.37)

Here G3 ( n m m ', t )is the density of tri.plets, I.e, , 'the

average number of triplets consisting of the
Mossbauer atom at n, a vacancy at m, and a second
vacancy at rn '. The normalization is

$ G3( n m m ', t ) = (Ny —1)G2( n m, t ) . (2.38)

The following processes contribute to the change of
G2, Eq. (2.37): The first term describes the exchange
of sites of the indicated atom-vacancy pair, the
second describes the free diffusion of the vacancy
without passing the site n of the atom. The next
term accounts for jumps of the atom with a second
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vacancy while the first vacancy is fixed at m. The
last term describes the production of the atom at
t =0, at the origin (n=0), in the presence of
Ny = cyN homogenously distributed vacancies, where
N is the number of lattice sites.

Now we have to formulate an equation for 63
which contains a density function 64 to describe
jumps of the atom with a third vacancy. In that
manner one gets a system of coupled equations for
6;, which describes the complete dynamics of the
system from which we have to determine G~,

2. Superposition approximation

The small vacancy density cy allows to cut off the
hierarchy of equations after a few steps. Because of
cy (& 1, the average distance between vacancies is
large compared to the nearest-neighbor distance.
This means especially if one vacancy is located near
the Mossbauer atom on the average the others are far
away. But strong correlations are present only over a

range of a few jump distances and for larger distances
they can be neglected.

The roughest approximation is to consider the atom
and vacancy completely independent, i.e., to separate
the pair density function: Gq(nm, t) =cvGM(n, t).

Then from Eq. (2.36) we obtain

GM(»t) +cv QA(n —m") GM(m", t) =5(t)5„0
~ll

(2.39)

G3(nrnm ",t ) = cvG2(nm ",t ) (2.40)

Then we obtain from Eq. (2.37)

This equation of motion has the same structure as
Eq. (2.6) for the diffusion of the vacancy,
only the jump rates for the atom are scaled by cy.
Therefore the atomic distribution changes slowly
compared with the distribution of vacancies. In Eq.
(2.39) the motion of the atom is described by ran-
dom jumps to empty neighbor sites with jump rates
I M

= cyI y, here correlations are neglected.
In order to take into account correlations we only

approximate the triplet density function. In the equa-
tion of motion (2.37), G3( n m m ",t ) appears in
terms describing the exchanges of sites of the atom at
n with the vacancy at rn". Because of cy «1 the
other vacancy (at m) is far away on the average, and
we neglect its correlations with the atom-vacancy pair
at (nm"). Thus we set

G2( n rn, t ) = I" vs-„-[G2 ( m n, t ) —G2( n rn, t ) ] + (I —K„~) $ (I —5„~„)I' vs~ ~„[ Gp( n rn ",t ) —G2 ( n rn, t ) ]
R

+ cvGM(n, t ) —5(t) cv5-„050 ~ (2.41)

A general solution of this equation can be given with the pair-correlation function W, Eq. (2.3), i.e. ,

G, (nm, t) =cv dt' g W(nm, t —t'I n'm'), GM(n', t')
u {) 9t

= cv ~ dt' $ —W(n rn, t —t'I n' m ') GM(n ', t')
(2.42)

The last equation is obtained by partial integration.

Jump matrix for the Afossbauer atom

Substitution of Eq. (2.42) into (2.36) yields for GM

GM(n, t) + g Ji dt'4&(n n', t —t') GM(—n', t') =5(t)5, 0n'
(2.43)

with the matrix

4&( n n', t ) = cv Q I' vs ~ X [ W—( n rn, t
I
n '

rn
' ) —W ( m n, t

I
n '

rn ') ]

=cv $1'vs„~[TM(n', tI nrn) —TM(n', tIrnn)]
fIf

(2.44)
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Equation (2.43) has a more general structure than
the equations for jump diffusion discussed so far,
e.g. , Eq. (2.39), since the development in time of all

atomic jumps induced by one vacancy is considered.
Instead of the coupling matrix cyA(n) describing in-

stantanous jumps, here the integral operator
4(n n', t )—appears, which describes the temporal
sequence of the jumps of the atom with one vacancy.
The dimension of 4 is that of a jump rate per unit
time and it contains two factors: (i) the characteristic
jump rate I ~=c~I y that is well known from Eq.
(2.39), (ii) a term describing the spatial and temporal
correlations between the atom and a single vacancy.
Because of the symmetry opera'tions (translation and

inversion) of the lattice, 4 depends only on the
difference + (n —n') of the starting and end posi-
tions of the atom. The relation

$ C(n —n', t) =0
n —n'

(2.45)

is satisfied, which guarantees the conservation of the
number of particles.

Fourier-transformation t cu of Eq. (2.43) yrelds

(2.46)

(—ia))GM(n, ~)+ Xq (n —n', (o) G~(n', ~) =5-„, .

Here we have

&b(n —n ', co ) = cy X I ys„~ X [(—i t0) W(n rn, ~
~
n

'
m ') —( i cu—) 8'( rn n, r0

~
n '

rn ')]
S S

(2.47)

which is a frequency dependent, generalized (effec-
tive) jump matrix, which in general is a complex
quantity.

C. Approximations for the
effective jump matrix

gent integral. " Then the equation of motion reads

G~(n, t ) + g A" ( n n') GM(n', t ) = 5(t) k. ,
(2.49)

with the effective jump matrix for the atom

A'"(n —n') = Jj dr e(n —n', r)
0

=4(n-n', (v =0) (2.50)

1. Instantaneous atom transfer

The time dependence of the matrix 4(n —n', t) is
determined by the time dependence of the distribu-
tion function TM of the Mossbauer atom due to
jumps with a single vacancy. Because the vacancy
leaves the neighborhood of the atom with large pro-
bability already after a few jumps, the time depen-
dence of the atomic distribution and thus of 4 is res-
tricted to times of the order of magnitude of I ~'.
During this time interval, the vacancy performs rela-
tively many (=Z ) jumps and covers relatively large
distances, whereas the atom practically remains at its
site because of its much smaller jump rate
r„=c,r, . So for times t » I y' it is a good ap-
proximation to neglect the time dependence of 4 and
use the stationary limit t ~ for the term describing
the atomic transfer in the equation of motion (2.43).
Thus we obtain from the integral

J) dt'd (n —n', t —t') G~(n', t')
OO

dr 4(n —n', r) G~(n', t), (2.48)
!

where for small r = t —t' we replaced G~(n', t ) by
Gtyt(n', t ). A consistent Taylor expansion is not pos-
sible here, since the term linear in 7 leads to a diver-

fD llllcoff fc D (2.51)

Here f is the correlation factor and

is the diffusion coefficient of the vacancy. D~"""
would be the diffusion coefficient of the atom if no
correlations were present. d is the nearest-neighbor
distance.

A' ' still contains all spatial correlations. It is deter-
mined by the total broadening of the atomic distribu-
tion caused by a single vacancy. In this limit all
jumps between n' and n contained in A'" are con-
sidered as happening instantaneously. Such a time-
independent approximation for the atomic transfer
has already been used by several authors for the
description of diffusion via vacancies. """

Since in the case of continuum diffusion only the
effective displacement of the diffusing atom is impor-
tant and not its temporal development, we can calcu-
late from A'".the diffusion coefficient D~" of the
Mossbauer atom. It is defined as the second moment
of the jump matrix'

DM'" = ,
' g (r ')'A'"'( l)——

7
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2. Expansion of the effective jump matrix

with respegt to the number

of atomic jumps

In order to calculate the distribution of an atom
diffusing via vacancies D. Wolf, ' and Dibar Ure and
Flinn' have used numerical integration methods.

%e obtain analytical results for the distribution func-
tion G~ of the Mossbauer atom by expanding the
generalized jump matrix C (n —n', ao) with respect to
the number of the atomic jumps. %e make use of
the iteration procedure for W described in Sec. IIA 3.

In a zero-order approximation we calculate
@o(n —n', co) with the help of Wo from Eq. (2.34)
and obtain

t

@o(n —n', co) =cv Xl vs-„L,-„,X( i&a)F—-„(rn ~l m') —I'vs-„-„g(—ice)F-, (n. ~1m')
Af

(2.52)

4p describes the atomic transfer from n
' to n by one jump with a vacancy, %e can express 4p by the Green's

function Gv(n, cu) of the vacancy which can be calculated numerically. '2 2o Using Eqs. (2.11), (2.12), and (2.24)
we get

bo(n —n', o)) =cvA(n —n') [I —a((u)] (2.53)

with A(n —n') given by Eq. (2.7) and a(cu) by Eq. (2.25). The structure of the matrix bo is the same as that of
the jump matrix A, i.e., it includes nearest-neighbor jumps only. The jump rates of the atom are proportional to
the vacancy density cv. The factor [1 —n(ru)] is due to the fact that only such vacancies contribute to io which
induce a single (uncorrelated) jump of the atom.

As a next step we use Wt from Eq. (2.35) to compute 4~, and as a function of Gv we eventually obtain

4, ( n —n', a)) = cvA(n —n') [I —a(ro)] + cv[1 —a(o))] [a((o)I'vs-„-„—a (n —n') I"
v

x [Gv(n —n', ru) —6(«)) Gv(Nt, o&)]]

(2.54)

a(n —n') = gs„~s~ „
ITf

a"'s" n —n' (2.55)

The matrix 4~ contains two jumps of the atom with- (&) .
the same vacancy. The additional term 4 in Eq.
(2.54) describes jump rates to sites, which the atom
is able to reach with exactly two jumps. Here we

have

lation of 4 the jump probabilities to all sites which
are reached by the previous approximation are
changed and the range of 4 is extended by one more
jump distance, The corrections to 4 decrease with

the number p, of jumps considered proportional to
[n(cu)]" +'. The condition of particle conservation,
Eq. (2.45), is fu.fille'd for any order of iteration, i.e.,

X q, (n —n', oo) =0.
n —n

which is the number of lattice sites which are mutual

nearest neighbors of n and n'. %e have. decomposed
it into contributions from different coordination
shells i: a' is the number of nearest-neighbor sites
of n and n' if n is in the ith shell with respect to n'.
The functions st ~(n —n') describe the coordination
of n and n', i.e.,

I, if n and n' are ith neighbors

~0, otherwise

e.g. , s (n —n') =L„.-„~ and a o =Z. s ' (n —n') is

identical with s-„~ from Eq. (2.4). The terms

described by a (n —n') have a longer than nearest-
neighbor range, e.g. , as far as the 5th neighbor in bcc
lattices. "

If one includes one more atomic jurnp in the calcu-

III. SHAPE OF THE MOSSBAUER LINE

A. General result for
the line shape

According to Eq. (1.1) the scattering function is

given by the Fourier transform of the Green's func-
tion, of the Mossbauer atom, i.e.,

f oo

5'(k ~) —
l~ di ye v&i2(e '~&+ e&'~)—

Jp 4

x ge '" ""G~(n)'r,
= —,y[G~(k, -u)+i ) y) + G~(k, co+ —,

'
y)]

(3.1)
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Equation (2.43) yields

G~(k, cu) = [ ice—+C(k, cu)] ' (3.2)

Im@(k, co+i —,
'

y) is odd, i.e. ,

Re%(k, ~+i y)—=Rec'(k, —co+i y)—;

with a complex 4(k, cu). It can be shown'2 that the
real part of 4&( k, co +i

2 y), Re&6( k, co + i y)—is an

even function of co awhile the imaginary part,

1m 4&( k, co + i
2 y) = —Im 4( k, —ca + i

2 y) . (3.3)

After some rearrangements we thus obtain for the
scattering function

2
y+Red&(k, ru+i y)—

S(k, ~) = —,
'

y
[—y+ReC&(k, co+i

2
y)]2+ [Im@(k, co+i , y) ——ro]'

(3.4)

B. Diffusion broadening
(frequency-independent jump matrix)

In the case of the instantaneous transfer of the
atom we get from Eq. (2.49)

G~(k, o)) =[—i(a+A'"'(k)] ' (3.5)

and the scattering function reads

—,
' y+ A'"'(k)

S(k, ~) =~
2 [—'y+A'""(k)]'+~'

2

(3.6)

Here S(k, co) describes a Lorenzian spectral line with
total width y+2A'"(k). The broadening due to dif-
fusion is given by 2A'"(k).

Because of the frequency-dependent jump matrix the
Mossbauer line is, in general, not a Lorenzian. To
calculate the line shape we need the frequency-
dependent vacancy Green's function G~(m, co),
which is discussed in detail in Ref. 12. In the Appen-
dix we show that the ~ dependence of 4 has no

- measurable effect in the case of self-diffusion, i.e.,
temporal correlation can not be detected. So it is suf-
ficient to use the frequency-independent jump matrix
(encounter model, Sec. II.C 1). Of course for jump
frequencies I ~ = c~I ] small compared to the natural
line width y, i.e., at low temperatures, Eq. (3.4) sim-
plifies to the scattering function of a Mossbauer atom
bounded at a single site in the lattice, i.e.,

S(k, co) =(y'/4)(y'/4+co') '

R is given by Eq. (2.26) and A(k) is given by Eq.
(2.10). The broadening (3.7) consists of three
characteristic factors. The jump rate of the
Mossbauer atom I ~ = col"

1 determines the order of
magnitude of the broadening, and thus the possibility
of detecting the diffusional motion in the spectrum.
The factor A(k) I'~' determines the anisotropy of the
broadening, i.e., the dependence of the width on the
direction of y-ray emission relative to the lattice axis.
In &bo(k, cv =0) we only consider one jump of the
atom with a single vacancy. Thus the k dependence
is determined by the geometry of the atomic jumps to
the nearest neighbors. The third factor 1 —R is the
reduction factor due to the neglect of further jumps
of the atom with each vacancy. Calculating the
second moment of Ao'"' according to Eq. (2.51) we
fiqd that 1 —R is the value of the correlation factor in
this zero-order approximation. In this approximation
the effect of correlations only consists in scaling the
uncorrelated jump rates I"~= cyI" y by the correlation
factor f. Numerical values of 1 —R and f for cubic
lattices are listed in Table I. We see that 1 —R is a
good approximation for the correlation factor, devia-
tions are largest for the fcc-lattice by about 5%.

The anisotropy of the broadening is demonstrated
in Figure 1. It shows the values of 2AO'""(k) I"~' for
different orientations of the k vector in a stereographic
projection. We have plotted contour lines for a bcc
lattice with the absolute value of the wave-vector

i k i
=7.3 A ' and the lattice constant a =2.86 A.

These values apply to diffusion of "Fe in o.-iron.
The width varies between 23I ~ for k approximately
in the (311) direction and 1.11 M in the (111) direc-
tion.

l. Zero-order approximation

TABLE I. Correlation factor in zero-order approxima-
tion.

The zero-order approximation 40 for the jump ma-
trix, Eq. (2.53), yields for the diffusion broadening

2AO""(k) =2&&0(k, co=0) =2c~(1 —R)A(k) . (3.7)

Lattice type

1 —R

f

sc

0.6595
0.6531

bcc .

0.7178
0.7272

fcc

0.7437
0.7815
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2. irst-order ar approximation
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(311) direction we find 2A~ '"(k) =16I ~, i.e., a
reduction of about 30%. However, there remains a
remarkable difference between the maximum value
close to the (311) direction and the minimum in the
(111) direction.

We do not expect that further approximations will

modify the results essentially, because the corrections
are of the order of 8' which is small since R is about
0.3.

We have analytically calculated the shape of the
Mossbauer line taking into account the diffusion of
substitutional Mossbauer atoms via vacancies. We
have only considered self-diffusion in single crystals.
The line shape is determined by an effective jump
frequency matrix which we have derived using a mi-
croscopic description of the motion of an atom via
vacancies, and taking into account spatial and tem-
poral correlations of the jumps. We have shown that
for self-diffusion, temporal correlations are not
detectable. Thus the Mossbauer line is only
broadened which can be measured at high tempera-
tures when the atomic jump rate is at least of the
same order of magnitude as the natural line width.
The anisotropy of the broadening due to the discrete
jurnp distances in a lattice is modified by the spatial
correlations of the jumps.

We have calculated the diffusion broadening in two

approximations, In our zero-order approximation in
which we taken into account one atomic jump with
each vacancy, the anisotropy is determined by the
geometry of the nearest neighbors just as for an un-
correlated diffusing vacancy. In this approximation
the effect of correlations only consists in a scaling of
the atomic jurnp rate by the macroscopic correlation
factor. In the first-order approximation, in which two
atomic jumps with one vacancy are considered, the
anisotropy is changed and the particular geometry of
the correlated atomic jumps enters explicitly. A pure
scaling of the atomic jump rates by a k-independent
factor is no longer possible even though the general
features of the aniotropy remain the same (see Figs.
I and 2). We expect the same to be true for any
further approximation.

Our results are in general agreement with the nu-
merical results obtained by Dibar-Ure and Flinn. '0

They simulated the atomic jump diffusion in sc and
bcc lattices numerically and found that the main ef-
fect of the correlation for the line broadening is a
reduction of the atomic jump rates by the Bardeen-
Herring correlation factor. But they also found devi-
ations from the nearest-neighbor anisotropy in some
k directions. Our analytical results in general give
larger deviations, For example, Dibar-Ure and Flinn
found deviations of about 10% in the (7 100) direc-

with

—(SA(k)- 5A(k))
/ + (A' (k—))

(4.1)

BA(k) =A'"(k) —(A'"(k))

We will estimate the polycrystalline broadening by
averaging the effective jump matrix. With

sin[k f f
K"

/

we obtain from the zero-order approximation, Eq.
(3.7),

1

(Ap'"(k)) = I ~Z(I —R) I ——
kd

(4.2)

For Mossbauer spectroscopy, the product kd is always
much larger than unity (e.g. , kd = 21 for "Fe in a-
Fe), so we obtain from Etl. (4.2)

tion where we obtain deviations of about 20%. In the
(310) direction, we find in agreement with these au-
thors, only small deviations (about 4%). A more de-
tailed comparison with these numerical results is not
possible because the authors give numbers only for a
few k directions. Wolf" has recently specialized his
work on the influence of diffusion on NMR to
Mossbauer spectroscopy, producing essentially the
same results as ours. He also finds deviations from
the simple scaling of the atomic jump rates by the
correlation factor which are due to the specific way in
which the jumps of a Mossbauer atom with a single
vacancy ("encounter") enter the linewidth. In earlier
papers' he calculated the distribution function of an
atom after such an encounter. Our iteration pro-
cedure gives a prescription on how to calculate this
distribution up to a certain order in the return proba-
bility R (see Sec. II A).

The anisotropy of the diffusion broadening can .

only be measured in experiments with single crystals.
However, so far only polycrystalline or powder meas-
urements have been reported. To compare our
theoretical results with these experimental data we
have to average the scattering function over the
orientations of the crystallites. The technique is
described, e.g. , by Dibar-Ure and Flinn. 9 They per-
formed the averaging for a nearest-neighbor jump
model. A rough estimate for the averaged (S(k, ca))
can be obtained by using the averaged width
(A'""(k)). This approximation can be improved by a
cumulant expansion. " According to Etl. (3.1),
(S(k, c )) is determined by the averaged Green's

A . 1
function (G~(k, + co+i—,y). The first-order cumu-

lant approximation reads
r

(G~(k, o))) = i rp+ (A'—"(k))
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(4.3)

Following Wolf" one can interprete this as the in-

verse of an effective mean residence time for a
Mossbauer atom: (I MZ) ' would be the mean
residence time for an uncorrelated random walk and
(1 —R) ' is the mean number of jumps of an atom
during an encounter with a vacancy (see Sec. II.A).

The first-order approximation, Eq. (3.8), yields

Lattice Type sc bcc fcc

first-order

approximation

for f
0.6073 0.6936 0.7518

TABLE 11. Scaling of (A' (k)) and correlation factor in

first-order approximation.

(1 —R ) [1 —(1.+ R )/Z] 0.4735 0,5828 0.6549

The broadening 2 (At'"(k)) is always smaller than
2(Ap'"(k)). The additionai factor (1 —I+R/Z) & 1

accounts for the fact that in this approximation the
Mossbauer atom has a finite probability, given by
(1+R)/Z, to return to its original site. Similar argu-
ments have been presented by Knauer. ' The reduc-
tion depends on the type of lattice, it is 22.3/o in sc,
16.3% in bcc and 10.5% in fcc lattices. Note that the
scaling factor (1 —R) [1 —(I +R)/Z] in Eq. (4.4) is

not identical with the correlation factor in first order
[whereas (1 —R) is for the zero-order approxima-
tion]. The respective values are listed in Table II.

For the interpretation of experimental data of line
broadening mostly the diffusion model of Singwi
and Sjolander has been applied using a jump fre-
quency scaled with the correlation factor. The po-
lycrystalline width was approximated by the averaged
width. The values of the width calculated with this
model using parameters obtained from tracer experi-
ments were a factor of 2 larger than the measured
width for diffusion of "Fe in Fe,' Cu, ' and Au. '
This discrepancy has stimulated a lot of discussions
(see, e.g. , the review of Janot22). Dibar-Ure and
Flinn have shown that proper averaging of the
scattering function instead of the width leads to
smaller values for the polycrystalline width, e.g. , for
' Fe in iron by a factor of 0.85. Taken into account
properly, the correlated motion yields a further
reduction of the width as we have shown above and
was also found by Wolf" and Knauer'.

A reason for the remaining discrepancies may be
the disturbance of vacancy jumps in the neighbor-
hood of substitutional Mossbauer atoms like "Fe in

Cu and Au. Such disturbances have beeen con-
sidered, e.g, , by Krivoglaz and Repetsky' who have
shown that due to local motion of the vacancy
Mossbauer atom pair the intensity of the Mossbauer
line decreases. In our approach, these disturbances
can be included by considering changed vacancy jump
rates in the equation of motion for the correlation
function W. We are currently considering this.
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APPENDIX

A. Change of the Mossbauer line shape
due to the frequency dependence

of the jump matrix

In this Appendix we will discuss the effect of the
frequency dependent jump matrix on the scattering
function, especially considering consequences for the
shape of the detectable Mossbauer spectrum. For
simplicity, we use the zero-order approximation
cp, (k, cp). Then the scattering function reads

2
y+Re4&p(k, ca+i

2 y)
S(k, cp) =~

[2 y+Recpp(k, ca+i
2

y)]2+ [Imcpp(k, ca+i
2 y) —cp]2

From Eq. (2.53) we obtain for the real and imaginary part of kp(k, ca+ i-, y)

Re@,(k, ca+i
2 y) cyA(k) [I —Rea(ca+ i2 y)]; Imkp(k, ca+i

2 y) - cAt(k)I mn( c+ai y2) (A2)
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where cc(cu+i , y—) is given in Eq. (2.25) in terms of the vacancy Green's function. Thus we have

Recc(cu+i , y—) =. 1
ReGv(0, cu+i —,

'
y)ReGv(Wl, cu+il y) —ImGv(0 cu+il y)ImGv(% cu+il y)

[ReGy(0, cu+i —,
' y)]'+ [ImGy(0, cu+i ,

' y)-)'

ReGv(0, cu+i 'y)Im—Gy(Nc, cu+i 'y) ——ReGy(Act, cu+i y)I—mGy(0, cu+i 'y)—
Ima(cu+i ,

'
y) =-

[ReGy(0, cu+i ,
' y}—)'+[ImGy(0, cu+i ,

' y))'-

Since the diffusion broadening is visible only if it is
at least of the same order of magnitude as the natural
linewidth y we can neglect the natural linewidth in
the following discussion. Frequencies cv smaller than
about 0.1(—, y) are not detectable with Mossbauer

spectroscopy, and the intensity of the line decreases
quickly for high frequencies cu & 10 cvt v ))ReC'p. .

Thus we restrict our discussion to the frequency
range

0.1(l y) & cu & 10'cyI'y or 0.1 y « 10lcy
2IV Iv

(A4)

Because we have cv & 10 4, the frequency ratio
cu/I" y in Eq. (A4) always is much sma8er than unity.
For cu/I y « I we are able to calculate the frequency
dependence of kp(k, cu) explicitly with the help of
the frequency-dependent vacancy Green's function
Gy(m, cu) for low frequencies which is discussed in
detail in our earlier report. ' Here we only list the
important results. For cu/I y « I one finds, neglect-
ing terms of higher order than cv' 2,

Qp
ReGy(m, cu) =gy(nl) ——,', cu'i';

ItllGv(lll, cu) = — cu
Qp

I 3 2

ap is a constant depending on the lattice structure

ap = (2)' 'm'/ Vs(Zd'/6)' '

Taking into account only terms of the order of
(cu/r v)' l « 1 we obtain from Eqs. (A3) (with

y =0) the following frequency dependence for
cPp( k, cu):

Re@,(k, ~) =A, ""(k) I+Z(1 —Z)ap

'i 1/2

X — — + 0(cu)
I v

' ]/2

Im@p(k, cu) = —Ap'"(k)Z(l —R)ap +O(cu)
(
I'y

. with Ap'"(k) =cv(1 —8)A(k). This yields for the
scattering function

1/2

A, "(k) I + Z(1-Z) a, ",
I V

c

1/2 2

+ A, '"(k)Z(I —'W)a, -„"
V

S(k, cu) =~
i/2 2

A ''(k) 1+Z(1 —R)a
(A7)

This scattering function does generally not describe a
Lorenzian spectral line. Especially for very small fre-
quencies, cu/ry « I, S(k, cu) becomes

S(k, c») —
l yAp""(k) '[1 —Z(1 —R)ap(cu/ry)' ]

(Ag)
However, this decrease proportional to cv' ' near
co =0 cannot be detected in Mossbauer experiments
as we will show now. The cu'il terms in (A7) can be
neglected if the following conditions are fulfilled:

(i) Z(1 —R)ap(cu/r v)'i' « I

Therefore co must be limited to

A, '"'(k) I'v
Z (I —8)ap I v « cu «I"

v Z I —8 apl

(Alo)

As a numerical example we consider a bcc lattice for
which we have a« =(2)'il/16m and the maximum
value of Ap'"(k) is 16r~(I —8) with r~=cvI y.
Thus we obtain

and
1/2

(ii) Ap'"'(k)Z(I —R)ap
Iv

(A9) cvI w && cv &( 36I v

This frequency range includes the interval given in
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Eq. (A4), if we consider that I'~ = c~l ~ certaiinly is

less than 10(
2 y) and c~ ( 10 4. The limits do not

change essentially for other cubic lattices. Thus the
ao dependence of the jump matrix 40(k, cu) can be
ncglcctcd In thc scattering funct1on ln the frequency
interval relevant for Mossbauer spectroscopy. This is

also valid for other approximations of the jump ma-
trix. So for self-diffusion of Mossbauer atoms via
vacancies the influence of the cor'related atomic mo-
tion consists in broadening of the Mossbauer line,
which can bc calculated analytically as d('.scribed in
Sec. III. 8.
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