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Tomonaga fermions and the Dirac equation in three dimensions

A. Luther
Nordita, Copenhagen, Denmark

(Received 5 July 1978)

A boson representation for fermion operators in three-dimensional quantum systems is constructed. It
solves the bosonization problem for the electron gas, posed by Tomonaga, and has a natural extension to the
case of Dirac fermions, Two bosons are required for the two fermions of the Dirac equation. Several

applications of these results are suggested.

I. INTRODUCTION

Fascination with the construction of fermion
states from a superposition of boson states dates
back to the early years of quantum mechanics.
The pioneering attempts by Bloch, ' which were
later extended and given an intuitive foundation
by Tomonaga, ' called attention to the conceptual
simplicity that results if all excitations can be
described within a boson language. More recently,
these ideas and their logical continuations have had
a profound impact on problems in two dimensions.

In many model field theories in two dimensions,
the distinction between fermion and boson repre-
sentations becomes largely a matter of choice.
No fundamental difference between them exists.
Thus the Hamiltonian of the Thirring model, ' or
Luttinger model' can be expressed in terms of
fermion fie'lds and currents, or, equivalently, in
canonical boson fields. ' ~ ' These equivalences have
also been exploited in connection with the sine-
Gordon equation and massive Thirring model, '
field-theory equivalence of the eight vertex mod-
el, ' and SU(2) generalizations of these models. '

Beyond f inding interesting relations between
models, however, the bosonization of Fermi
fieMs has been important as a tool in finding solu-
tions' ' for these problems in two dimensions. In
higher dimensions, it is generally believed that
bosonization of fermion fields is substantially dif-
ferent or perhaps not possible at all. In answer
to this question, I report the discovery of a boson
operator satisfying the Dirac equation and obeying
anticommutation relations. These properties are
used to demonstrate that the n-point functions are
given correctly in this new representation.

The ideas behind this representation are illus-
trated in the Luttinger model of interacting fer-
mions in two space-time dimensions. For sim-
plicity, consider the free-particle case (exten-
sions to include interactions are straightforward" ).
The Hamiltonian is given by'

=2vv~ I ' g [p,(&)p,(-&)+p, ( &)p-,(&)],

where v~ is the Fermi velocity, L is the length of
the Fermi system, g, (x) represents fermions with
positive group velocity, and li),(x) represents the
negative. The product of density operators p, (x)
=:ii)i~(x)(1),(x): and p,(x) =:$2t(x)g,(x):, suitably normal
ordered, describes the free-particle kinetic energy
in boson operators. '

The Fermi field P/(x) is defined in the canonical
representation, with j=1,2, by

(1.2)

where k represents a discrete wave number, 2gL '
times an integer. The density operators satisfy
boson operator algebra

p,(x)=L 'P p,(p)e ""

and the boson operator that represents the Fermi
operator of Eq. (1.2) is given by"

(1)&(x) = (2vo) '/' exp[(t)/(x) —t(-)/k~]
(1.4)

y (x) —( )&+&2&L,-& V Q &p (Ip)e i» ()i(i)(/2-
%40

where 0. is a short-distance cutoff parameter,
which is taken to zero after calculations, and k~
is the Fermi momentum. In this representation,
the correlation functions are given by

(g/t(x, t)g, (x,'t')) = (2wu) ' exp/),' —it),(x,t) y,(x,'t')),
(1.5)

((t)/-(t)/(xi t)(t)/(x/t'))) = »
( )/( p ) ( /)
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II. TOMONAGA FERMIONS ON THE FERMI SEA

To begin the discussion of Tomonaga fermions,
consider the filled Fermi sea in three dimensions
at zero temperature, characterized by a Fermi
momentum kF (If=1) and Fermi velocity vF. The
Hamiltonian for the problem is

3c=vF p (~rY~ —I2F)al a;, (2.1)

where the operators p&, satisfy the fermion anti-
commutation r elations

(a. , aI ),= 5» .5. . .
(a», a-„),= 0.

(2.2)

Field operators are used to define the n-particle
correlation functions, and the goal of this section
is to construct a boson representation for these
field operators. In the conventional picture, the
operator is defined by

where the overall phase factor ikF(x —x') has been
suppressed. The first equation follows from the
Baker-Hausdorf formula, , the second from using
Eq. (1.4) in Eq. (1.1). It can be verified that this
boson representation also satisfies the equal-time
anticommutation relations, since x —x' —x' —x re-
sults in the appearance of ln(-1) =in in the expo-
nent. These operators have been extensively used
in problems of interacting'fermions and their gen-
eralizations to models with higher symmetry.
While there are other choices for this operator
representation, " the particular choice here makes
explicit the relation to density operators and short-
distance cutoff cz.

The logarithm of Eq. (1.5) is essential to con-
struct a boson operator that represents the Fermi
field. The representation chosen below for four
space-time dimensions also makes use of a loga-
rithmic correlation function in an exponent, which
appears to be the key to constructing anticommu-
tator algebra.

This paper begins with the Tomonaga problem in
three dimensions, that is, the boson representa-
tion for fermions in a Fermi sea. This problem
provides a bridge between one dimension, where
everything is knomn, to the three-dimensional case
of interest. After solving this problem, the Tom-
onaga problem, the extension for the Dirac equa-
tion will be clear. Finally, the paper closes with
a discussion of possible applications of this opera-
tor representation in statistical mechanics and
field theory.

with V as the volume of a box with periodic bound-
ary conditions. The correlation function of inter-
est is given by

(o ~qt(x, t)y. ,(x', t')
~
0)

c(2 ~)=v'J 'a'xa ave."~'"' '"
0

(2.5)

For large space-time separations, the integral
can be expanded about the upper limit, giving the
result

"dQexP(-tkF R)
kF ' 0 vFv'+2&—

where k~ is the unit vector at the angle 0 on the
Fermi surface. The quantity u appears because,
in evaluating the integral in Eq. (2.5), an expo-
nential cutoff has been used, rather than the k= 0
cutoff in Eq. (2.5). The remainder term, indi-
cated by O(kF'), has contributions of order n ' ap-
pearing as mell. However, these are not impor-
tant, for we mill be interested in the limit z='=k~

This limit is perfectly analogous to the contin-
uum limit of field theories on a lattice, for 0„ is
equivalent to the inverse lattice constant, and
separations are measured in units of the lattice
constant. To be absolutely precise it should be
realized that the spectrum of Eq. (2.1) is not that
of Eq. (2.6), since the latter includes states to
minus infinity, rather than to E. , as in Eq. (2.1).k=0
The difference should be understood with the Lut-
tinger model as comparison: consider the fermi-
on spectrum for fixed angle Q, ~ith the momentum
label taken to run from - to +. For any angle
0, introduce two fields, one describing states
moving to the "right, " the other to the "left."
The Hamiltonian for this situation is

F F d~ Q (~ ~F)alkA lkA (~+ ~F) 2k A xkA
k

(2;7)

y-l ~ & e-ik R+ikxvF ivF-kF& (2 4)t

k

where R=x -x', 7'= t —t',
and ~0) is the ground state. This correlation func-
tion takes a simpler form in spherical coordi-
nates. Def ining

t2'(all')-'C(R, r) = (O
i
y',(x, t) tt,(x', t')

i
0),

the result can be written

q (x t) y 1/2 g ei'k xa (t)
t

k

(2.3)
where k is now a one-dimensional label, the radial
momentum variable, and the Fermi operators
satisfy the anticommutation relations



322 A. LUTHKH, 19

(zzgaa)zz~aa =
a a a a s j

((Zg))av g a a ) v

(2 8)
the radial "phase" operators of the one-dimension-
al problem, Eq. (1.4). These are given by

8 kzz(~(I),'(x, t)g, (x', t'))

d Q exp( -ik~ R)
$~ 5 u~7+z-o.

(2.9)

the same as Eq. (2.6). The remainder, O(k~z), in

Eq. (2.9) is not equal, in general, to that of Eq.
(2.6), and the equivalence between the two pictures
is only to the leading term.

The fermion-boson duality now becomes straight-
forward to define. The definition of the Fermi
field, specified in Eq. (2.8), is, in fact, a projec-
tion from the three-dimensional world onto the
radial equation of Eq. (2.V). Since the radial equa-
tion involves only a single quantum variable k, it
is possible immediately to write down the corre-
sponding boson representation. Furthermore, it
is also clear that the Hamiltonian of Eq. (2.7) is,
in each angle, a radial one-dimensional equation.
It can therefore be written in a simple form in-
volving only boson operators,

vc = 2vvvL ' P Jdn[v, ((., o)v,(-).', ())
k&o

+ p,(-k, Q)p,(k, Q)], (2.10)

the angle 0 runs over the entire unit sphere, and

6„„,is the Kronecker symbol. This model differs
from the original model of Eq. (2.1) through the
addition of negative-energy states far below the
Fermi energy. Since we are interested in the con-
tributions from the region near the Fermi energy,
these additional states will turn out to be unim-
portant. In addition, there is an apparent differ-
ence in spin degeneracy. This is, however, only
notational. Since 0 runs over the entire unit
sphere, and there is a twofold degeneracy (the
"one" and "two" Fermi fields), it is apparent that
the "one" fermion at angl. e 0 is equivalent to spin
"plus, "while the "two" fermion at angle Q+ g is
equivalent to spin "minus" at angle Q.

The corresponding fermion field operators,
g, (x) and )1),(x), are given by the same definition
as Eq. (2.3), and can be used to calculate the fer-
mion correlation functions in the asymptotic re-
gion. The result is found to be

C,(Q, k, x}=(-)"(2~f,")g k-'p, (k, Q)
kgO

-ik(Icy. x)"lk I 0, / 2e
'

(2.12)

These steps contain the essence of the simplifi-
cation of the three-dimensional problem, and the
operators of Eq. (2.12) are of great importance.
The proof that Eq. (2.10) represents the fermion
problem of Eq. (2.7) is reduced to the original
proof for the Luttinger model. The definition of
the operators p, and p, at each angl. e 0 is a natural
generalization and can obviously be related to re-
sults known in the random-phase approximation
(RPA) picture. However, it should be emphasized
that these operators are not identical to the RPA
density operators, for these create single fermion
particle-hole states at a fixed angle. The relation
to the RPA bosonization will be discussed later,
after the complete bosonization of Fermi operators
has been formulated.

The bosonization of the Fermi f ield operator can
be split into several steps. The first step invents
the operator that gives the correct single fermion
correlation function. The second is the construc-
tion of the operator anticommutation relations,
while the third deals with the proof that multi-
fermion correlation functions are given correctly.

Proceeding with the first step, consider the op-
erators (j), and g„defined in each angle Q:

y,.(Q, k~ x) = kg8v'n)-'t'

x exp', .(Q, k~ x) —i(-)~k~] . (2.13)

It is necessary to specify the angular label 0 more
precisely. Consider placing a mesh on the unit
sphere, discretizing the angular variables, with
a uniform distribution of N points. To each point
a label 0 is attached. It is not important in what
sequence these points are labeled, and, for def-
initeness, a numbering starting at the south pole
spiralling longitude by longitude up to the north
pole can be used. The angular integrations are
then defined to be

where the operators p,.(k, Q) are defined to satisfy
the commutation relations

dQ = lim —P,~N (2.14)

[p,(k, Q), p, $. k', Q')]-
=(-)'&~ ~.5 kaLa(2w) '5. .. (2.11)

where the sum is over the mesh.
Fermion fields ((),(x) and P,(x) are defined from

the discrete operators, in Eq. (2.13), by the re-
lations

and the summation over k is one dimensional. Us-
ing these boson operators, it is helpful to define
a further set of operators, which are analogous to

g~(x}=K '~'Q (j)~(Q, k„x), (2.15)
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where the sum is over the mesh points, and the
eventual limit N- is understood. Calculation of
the single fermion functions follows from the
Baker-Hausdorf formula, for, using Egs. (2.13)

and (2.10), the problem is reduced to a free-boson
problem. The equations that summarize this cal-

. culation are

((J(x, t)g&(x', t')) = k2~(8v'a) 'N ' g (exp[-g~(n, k~ x, t)] exp[/~(n', k~ x', t')]), (2.16)

(2.17)

where the brackets indicate expectation value in Eg. (2.10), and the average of the exponential operators
on the right-hand side of Eg. (2.16) is given by

{exp[-p&(n, k~ x, t)] exp[/~(n', k~ x', t')])= exp(g,' —p~(n, k~ x, t)p,(n', k~ x', t')),

where the p& expectation value depends on none of
its arguments 0, x, or t. The time dependence of
these boson operators is given by Eq. (2.10) [or
Eq. (2.7), since they are equivalent] and is a sim-
ple

p, (n, k, t) = p,(n, k)e-'".

The complete expectation value in Ecl. (2.17) is
evaluated by standard procedures and is

(y &p {n k ~ x t)y (n k ox t )) 2&g- g k- e- A(6 &iA&k& % ~v&& 1)
k&0

ln „-,Q=Q'
+k~' R —&v~+ x e

QWQ', (2.18)

[g,(x), g, ,(x')),= &"'(x-x') 5, ,„
[4,(x), &I,.(x')],= o. (2.20)

It turns out, as might be expected on intuitive
grounds, that the boson representation discussed
here will not reproduce the 5+&(~ -x), since that
clearly involves excitations well away from the

where the upper (lower) sign is for j=1 (j= 2) with
R=x -g', w= t —t'. The divergence for 0 4Q' fol-
lows from the infrared singularity at k=0, in.the
infinite volume (I,'-~) limit. This property is
extremely crucial for the bosonization and is al.-
ready familiar in the one-dimensional case.

Collecting factors, this integral leads to the fol-
lowing result for the Fermi correlation functions

C(R, &-) = X-' P 5„„,„-

g gg k+ 8 +V++ fQ

which agrees with Eq. (2.6) in the N- ~ limit.
A similar result follows for the ($2ttj&,) expectation
value. This completes the boson representation of
the fermion correlation functions.

There remains the problem of locality, the anti-
commutation property, which in the original Fermi
representation states that

y,(x)=X-'~'p y,.(n, k, x)O„, (2.21)

where 0„is an ordering operator, defined by 0„
=e' ", with

4„=-Q [p,(n)+ p,(n)] .
Q'™1

(2.22)

The operator p&(n) is the limit k-0 of the operator
p&(n, k), and this satisfies the commutation rela-
tion

Fermi level. [In Sec. III, it will be shown how to
construct the 5"&(x -~') for the boson representa-
tion of Dirac fermions. ] However, the anticommu-
tators are important to reproduce even in the
Tomonaga case, so that the multi-Fermi correla-
tion functions will be given correctly. Obviously,
the boson representation of Eg. (2.13) is inade-
quate, because the operators commute.

It is well known in one-dimensional systems
that the conversion of commutation to anticommu-
tation relations can be effected with the Jordan-
Wigner transformation. A useful extension of this
to higher dimensions is needed here.

This extension is given by the definition
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[p,(0'), P,(Q, k~ x)]=lim2mf '

x P [p, (k', 0'), p, (k, 0) ]k '

x e ""&'"'= 5 „. , (2.23)

and this result is independent of the sign of k' in
the limit k'-0. The operator O„has the following
important properties:

[o„,o„,]= [0„,3c]=o

O„OT =1

-y(Q, k x), 0'&0

As an example of the anticommutation relations,

consider the operator relations

[P,(0, k~ x)0„,g,(0', kI~. x')0„,],= 0,
which vanishes (for fixed finite cutoff), since the
ordering operator 0„insepts a minus sign for 0
& 0' when pulled to the right or for 0&0', 0„, in-
serts the minus sign when it is pulled to the right.
For 0= 0', the operators anticommute directly,
as seen by exponentiating the product. (This'case,
Q= 0', is of course identical. to the one-dimen-
sional problem. ) This completes the construction
of the anticommuting operators using the general-
ized Jordan-Wigner transformation.

Moving on, consider the calculation of ~-point
correl. ation functions us ing this operator construc-
tion, as an example of these anticommutation
properties. An (unordered) four-fermion function
representing either a g, or a P, field is given by

8"(1)0'(2)0(3)4(4)&=k'I & '(6v'c. ) '
Q &0'„('(0„1)0'„y'(0„2)$(0„3)0„((0„4)0„&,

Gj ~ ~ ~ Q4

(2.25)

where the numerals stand for the space-time
point of the form 2—=x„t„and the parenthesis
arguments on the right of Eq. (2.25) represent
(0„,2) -=(Q„k, x„f,) in a natural way. To calcu-
late the expectation value, it is necessary to work
the operator 0„ to the right, where it operates
on the vacuum and gives unity. In the process,
the sign changes give the proper minus signs cor-
responding to the different permutations.

The most direct way to establish this result is
to recognize that only certain combinations of the

angles contribute in the summation. For example,
in Eq. (2.25), only the combination 0, = 0„0,= 0,
will. contribute. Thus calculation of an yg-point
function separates into two steps: (i) finding the
angular configuration, and (ii) evaluating the sign
of the configuration. The first part can be carried
out dropping all ordering operators O„completely
(since they give only c-numbe& contributions).
Then the correlation function is greatly simplified,
and for the example of Eq. (2.25), repeated use of
the Baker-Hausdorf formula gives

g ~(0„1)y(0„2)y'(0„3)y(0„4)&

= exp(—[ g ( ) — o o g( lt 121 12)+ Q~ ~ 0 g(01 1 Q3I 13) — 0 ~ 0 g(011R14 ~ T14)

0 ~ Dk ( 2I 239 23)+ 5Q og(02&R241 24) 0 o+( 3& 34 3 (2.26)

where
" dkg(0, R, 7') = —exp[ik(k~ R a+in)]

0

is equal to minus infinity due to the infrared sin-
gularity. Unless this singularity can be canceled
by combining with the g(0) (the result for R= v= 0)
the entire correlation function is exp(-~) and van-
ishes. The only combinations of the angles which
result in this cancellation are 0, = 0, with 0,= 04,
and 0, = 0, with 0,= 0,. (The configuration with
all equal will contribute an extra factor N ' com-
pared to the above two and is thus negl. igible in the
X-~ limit. )

The second part consists of evaluating the signs
of these two configurations. Using the commuta-
tion properties of 0„, in (2.23), it is easy to pull
the operators with identical angle labels together,
collecting minus signs along the way, finally mak-
ing use of O„O~ = 1. The result is a minus sign
for the 0, = 0„0,= 04 configuration and a plus sign
for the other. Coll.ecting finally gives

&0'(1)0'(2)4(3)y(4)) = &0'(1)4(4)&&0'(2)0(3)&

—&0'(1)4(3)&&I'(2)e(4)&, (2 2'I)

the desired result. General. ization to n-point Fer-
mi function is tedious but straightforward. It is
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found that only pairwise contractions on angles
survive the N- limiting procedure, and the op-
erators O„correctly give all signs, since they
automatically insure the operator anticommuta-
tion property. Any correlation function with an
unequal number of creation or destruction opera-

tors vanishes, due to an extra infrared singularity
in the exponent.

The general form for these n-point functions
with alternating creation and destruction opera-
tors, can be written

Q t(n„ 1)y(II„2) ' ' yt(II2„„zn —1)y(~2„,2n))

A finite result in the N-~ l.imit leads to the con-
straint on the angular labels 0,. that they must be
pairwise equal. The signs in the exponent are
such that no odd (even) label be equal to another
odd (even) label. Otherwise the exponent is equal
to minus intuity and the corresponding contraction
vanishes. In the original Fermi representation,
this statement is just the vanishing of ((1)~$~)-type
contractions. The signs of the contraction come
from the 0„, which are commuted through to make
use of O„O~o= 1, and Eq. (2.24) insures that the
signs are appropriate for fermions. This com-
pletes the proof that the g-point functions for the
Tomonaga fermions are correctly given by this
boson representations.

This construction can be used in applications
where interactions are present, for in the inter-
action representation, the relevant Green's func-
tions are those computed with these operators.
The boson representation provides the extra flex-
ibility in solving for correlation functions exactly
if the boson structure of the theory is known. In
Sec. III, the extension to the Dirac equation is
discussed, and applications of this result are to
be given later.

III. DIRAC EQUATIdN

It is interesting to apply the methods of Sec. II
to find a boson representation for massless Dirac
particles. At first thought, it might appear mean-
ingless to construct Dirac operators from a sys-
tem whose ground state, namely, the Fermi sea,
is obviously not Lorentz invariant. Nonetheless,
it is possible, and this implies that there is a set
of states, within the Fermi sea, which can be used
to construct I orentz invariant operators. It is
shown here how to extract this set of states and
how the boson representation can be constructed
without any reference to a Fermi sea, surely a
more appealing situation.

The key technological development of Sec. II in-
volved the use of the radial phase field, given by
Eqs. (2.12), defined for the Fermi sea. It is pos-

sible to define an equivalent field directly from an
ordinary massless boson problem, quantized in a
box,

Xe = g ~

k
~
(a a-+.p.„p.), (3.1)

e 'k' 'dk

x(pte'~' '*'+ H. c.), (3.2)

where V is the volume of the box and the angular
integration over 0 is omitted. It is necessary to
insert the cutoff ~ ' in these integrals, which is
taken to infinity in the final result. This definition
differs from the canonical boson field by a factor
of k ', and these objects do not describe local ob-
servables. It will turn out that appropriate func-
tions of these fields do.

The ca).culation of an expectation value of these
fields gives the same result as contained in Eq.
(2.18), since both have the same property,

Q;-y, (n, i x, f)y,(II', I' x', t'))

0

with an identical result for the "two" fields, except
8- -R. Consequently, these fields can be used to
construct the Tomonaga fermions of Sec. II, and
the radial excitations discussed in that section are
seen to correspond to these bosons.

It is possible to construct a similar representa-
tion for massless Dirac fermions. In a convenient
representation the massless Hamiltonian is

where

[,, a-']=i.p , p 'l-=&---., ( -, p-'j=o,

and the k vectors are defined by periodic boundary
conditions. The radial phase field in this repre-
sentation is def ined by

y 1/2
y (n, u x)= e ~~~ y ~2djp

8g

x (a.e'""*'+H. c.),
k
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(3.4) (3.12)

G(k, E)=(E+k'iy)/(E —b ) (3 5)

and the correlation functions G(R, t), which are de-
fined by

d'0
G(R r)= e'"' ' 'G(k E)

8g 2gj

where the g are Pauli matrices, the ak, (bk, ) op-
erators are two-component anticommutating spinor
fields, representing the upper (lower} two entries
in the four-component Dirac spinor. The propa-
gator G(k, E) for the a fields is given by

—g(x, t) = —i V ' (ig(x, t), (3.13)

In deriving Eil. (3.12), the contribution from g,
fields, integrated over the upper hemisphere, ex-
tends the angular integration to the lower half
sphere through the reflection b- -k.

It is seen that E(I. (3.12) is the same as Eil. (3.6),
and it can be verified that the other ordering, )pi,
is correctly reproduced by Eil. (3.11), proving the
pair functions equal. For the general functions,
it is helpful to study the equations of motion.

The ordinary Fermi operator for the upper two
components satisfies the equation of motion

dQ 1+ jp' o

«(bR ~)'
(3.6)

or, in Fourier-transform representation,

where the remaining integration is over the angles
of k. The two-component operators a and b do not
couple in the absence of a mass, and the two fields
can be treated separately. Consider the a part
separately. The Hamiltonian can be diagonalized
by a transformation

U ebs

—a- = k' o'a»,
dt

(3.14)

and the lower two components obey the same equa-
tions with a minus sign on the right-hand side.
These follow from the nondiagonalized form of the
Hamiltonian; the equations in the diagonal repre-
sentation are simply

g A

S=i ~a~ V-' oa-
2 k fr k

kate'

ky Os fy'

(3.'t) id—a-„= ko a-
dt

(3.15)

X'= P gaia'lo, a-', (3.8)

and the diagonal operators a~= Ua, U~ are related
to the original a~ through

g „= [cos(—', 8)1 —i V' o s in( —', 8) ]a-„'. (3.9)

with the vector k=k(cos8, sin8cosy, sin8sinp),
and the unit vector V-„= (8, -sing, cosy). The an-
gles 0 and cp specify the direction of the vector k.
The diagonal Hamiltonian is

I( t) e ik()& i&
k k

(3.17)

leads to

and it is this equation that is most directly related
to the boson representation. There is no funda-
mental difference between these representations,
since the solution to Eil. (3.14),

ii ( t) e i k ()iii (0) (3.16)

can be obtained from the solution to E(I. (3.15) by
applying the diagonalizing transformation, Eq.
(3.7). The solution to Etl. (3.15),

(3.10)

The boson representation is similar to this equa-
tion, and is given by

)i)(n, rr x)= e"~'~g'(n, $ x),
ii ( t) e i Se ik@3te iS+ (0)-

k (3.18)

where g'(0, b x) is defined to be the two-compo-
nent operator

exp' 3(t), (Q, k x)] )
(t)'(A, k x)=(2iio() '~' [~ (

- -)] )
(3.11)

and 0, representing the two angles 8 and p, is
restricted to be in the upper hemisphere. The ex-
pectation value (r/ri(x, t)g„(x', t')) is found using
the Baker-Hausdorf formula, with E(I. (3.3}, along
with P(x, t)= f„dQ(i)(Q, k x), integrating over the
upper hemisphere, to give

and it can be verified that e' e'~'3'e ' = e'k'' as
required.

However, the boson representation is most
understandable for this diagonal representation,
and the g' operators of (3.10) are solutions in this
representation. The transformation e'~ involves
only matrices and angles; there is no dependence
on the

~

b ~. For that reason, the Lorentz trans-
formations to the diagonalizing frame are easily
constructed for the boson representation.

The boson operator g'(0, 5 x, t) in E(I. (3.10)
satisfies the equation
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(3.19)—g'(Q, k' x, t) = io,(k v) g'(Q, k x, t),

and the transformed operator (I) = exp[i(&/2) V' &r ]g'
satisfies the equation of motion

erator for the Dirac equation, it is necessary to
use the relation between the p boson operators of
Sec. II, and the 0.- boson operators. Comparing
the commutation relations

—g(Q, k x, t)=i(k'o)(k V)g(Q, k x, t), (3.20)
[p,(-k, Q), p, (k', Q')] = k6(k —k') 6„„„
[o.„,n2] = &-„-„.= 6v'V 'k-'-6(k k')—&„„,, (3.22)

where use is made of the property

exp[i(-&)V o]o, exp[-i(-,'&)V o]=k o.
This equation of motion is the same as Eq. (3.14),
since k V=k under a Fourier transform.

Although the boson representation satisfies the
equations of motion, these operators do not anti-
commute. It is necessary to construct an addition-
al operator to correct this deficiency. The exam-
ple from Sec. II provides the key, and the correct
operator is given by multiplying $(Q, k x) from
Eq. (3.11) by the ordering operator 0„,

$(Q, k'x) = e'ev'g'(Q, k x)0„, (3.21)

where 0„is the ordering operator encountered in
the Tomonaga case, Eq. (2.22), with the following
modifications. To construct the appropriate op-

where k= (k, Q), leads to the identification

o.'.„=(Bv'/k'V)'i 'p, (-k, Q), (3.23)

with u given by the opposite sign of k ( ~k
~

in the
parenthesis). The p, (Q) operator needed in the
ordering operator 0„then follows immediately.
The result is

0„=exp(tv 3Z„),

(3.24)

with p,(Q) the limit k-0 of (k'V/8v')' 'u~, for
fixed Q. Since these definitions preserve the com-
mutation relations in the p language, it follows
that

o~oa= &

[o„,o„,]= [o„,x]=0
—exp[& 3$(Q, k'x)] Q') Q

O„,exp[&3$(Q, k x)]0~ =
+expj 3(t()Qk x, Q'&Q; (3.25)

the sign change above for 0'&0 results from the
commutator of J„with p, and is a factor of 3' in
the exponent. The steps to prove the anticommuta-
tion property are identical to those leading to Eq.
(2.25), and the conclusion is

(exp[a 3(t)(Q, k x))0„,exp[~3$(Q', k x')]0„,),=0,

(3.26)

which implies (g(x), P(x')), = 0.
This property can be used to prove that the n

point fermion expectation values age correctly'
given by the boson operator in Eq. (3.21). The
proof is exactly the same as in Sec. II, recon-
structed with the new operators. The steps are
(i) anticommutation relations are satisfied, (ii)
only pairwise contractions due to the infrared sin-
gularity, and (iii) the pai. r functions, as in Eq.
(3.12), are correct.

To conclude this section, it is necessary to re-
mark that the operators J„, used in Eq. (3.24), in

fact, include the extra degrees of freedom needed
to obtain anticommutation with the b operators-
the other two components of the Dirac spinor —of
Eq. (3.1). This can be done because in Eq. (3.12),
only the upper hemisphere of the operators was
used. The lower hemisphere is available, and the
two lower components of the spinor operator in
boson form is given by

( (x)=(2wa)' *f dD((o, k'x),
L

(3.27)

where the integral in the sense of Eq. (2.14) is
over the lower hemisphere, $(Q, k x) is given by
Eq. (3.11), and 0„ is from Eq. (3.24). This, to-
gether with the upper two components given by
Eq. (3.11), completes the boson representations
for the massless Dirac spinor. Since the mass
term or any currents are defined in terms of these
field operators and matrices, we conclude that
this representation works for the interacting mas-
sive Dirac equation, as discussed in Sec. IX.
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IV. POSSIBLE APPLICATIONS

As emphasized in the introduction, a boson rep-
resentation is useful if it provides insight, solu-
tions, or perhaps some formal rigor for problems
of real physical interest. None of these has been
yet demonstrated, and the reader is perhaps jus-
tified in retaining a residual skepticism about the
ultimate utility of this exercise. However, there
are several interesting possibilities in answer to
this, and it is the task of this section to enumerate
some of these. It is the belief of the author that
some, if not all, will provide interesting applica-
tion of the methods introduced in Secs. I-III and
that the dual. ity ideas suggested by Bloch and
Tomonaga will have a major impact on our under-
standing of fields and particles.

The constructions here have been restricted to
the massless, or gapless, fermion problem. It
is not remiss to repeat that the mass term of the
Dirac equation, or a BCS type of term giving a gap
at the Fermi level, can be written in the boson
representation. The proof that this is correct is
contained in the Sec. III, for if the n-point func-
tions are given correctly, it follows trivially that
the equations of motion including the mass term
are correct. Hence the solution of these equations
is the same as that of the conventional Fermi rep-
resentation. The mass term in this representa-
tion is given by

m, g~(-„)Pg(x )

= m, JI dQ dQ'[gt(Q, k'x)g(Q', k'x)+ H. c.],
U

(4.1)

where m, is the mass, and

and this representation is the generalization of the
sine-Gordon duality with the Dirac equation, fam-
iliar in two dimensions. It is obvious that the mass
term is not local in terms of the P fields, although
the solution of this equation certainly is local. An
impl. ication of this example is that locality of the
ultimate physical theory does not necessarily re-
quire locality at every step along the way.

The question of locality arises naturally in ex-
tensions of the simple Dirac model to more in-
teresting cases with interactions present. Just as
the mass term can be constructed in this boson
representation, so can the current operators. The
algebra from Sec. III leads to the result

J(x)= gt(x)ng(x),

dQ Jt dQ'g ~(Q, k' x )a g(Q', k' x )
U U

dO dQ' ~ 0, k'x o 0', k'x (4.2)

where

This representation for currents, of course, con-
tains no obvious advantage over the conventional
definition, for any interaction constructed from
currents is just as nonrenormalizable. However,
it could be possible to consider a larger class of
interactions, which are not constructed from can-
onical free fields, but from fields with different
dimensions. Such fields are obviously suggested
by this boson representation and involve changing
the v 3 to some more complicated function. It is
not known if it is possible to generate a new class
of theories that possess the desired properties of
Lorentz invariance, locality, etc. , from this
starting point, but certainly the intuition of two
dimensions would suggest that it would be inter-
esting to try.

An examination of the current operator, given
above, or the single fermion field, given in Sec.
III, reveal. s an interesting possibility for con-
structing composite operators with an internal
symmetry. For a given fermion field, many com-
ponents of a boson fieM can be used, as long as
the combinations are canonical. For example, a
"flavor" index on the boson field can be intro-
duced, and the various canonical combinations can
be constructed. With N flavors, there are N
orghogonal combinations, and each combination
can be used in the boson representation to con-
struct a Fermi field (along with a suitable gen-
eralization of the ordering operator, of course).
There are many more combinations of the boson
operators that give independent Fermi fields,
which suggests that an underlying algebra is nat-
urally realized with this construction.

This algebraic question is important, for the
conventional quark picture requires the introduc-
tion of an extra fermion label, the color index, in
order to construct hadrons that have the correct
Fermi statistics. Since this requires that all
states be color singlets, the prime function of the
extra degrees of freedom is to enable the construc-
tion of composite particles from some underlying
unobserved fermions.

The suggestion here is that there exist operators
satisfying the appropriate group algebra, but not
decomposable into more fundamental fields —that
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is, they cannot be mritten as a direct product of
three Fermi fields. The existence of such opera-
tors would obviate the necessity of introducing
separate quark fields, and the question of quark
confinement would be moot, for no single quark
states would exist in the Hilbert space. Nonethe-
less, the composite feature of these operators,
within the boson representation, means that many
of the desirable features of the quark picture could
remain.

A further interesting application arises from the
fact that the boson Hamiltonian of Sec. III can rep-
resent a lattice phonon Hamiltonian. The obvious
suggestion that from the acoustic phonons in a lat-
tice it is possible to construct a fermion state, has
implications for defect theory and the analysis of
nonlinear lattice theories. An example of an inter-
esting type of nonlinearity is given by the mass
term Eq. (4.1), when expressed in boson operator
language.

Here it is necessary to remark on the evidently
nonlocal nature of Eq. (4.1). .In Fermi descrip-
tion, it is obviously local. , and since the boson
language is identical to the Fermi, one must con-
clude that appearances are deceiving. To the ex-
tent that some interactions have evident desirable
properties, one must conclude that desirability is
in the eye of the beholder, that is, dependent on
representation. Despite appearances, there is
some physics underlying these observations. It
is presumably true that many realistic nonlinear
lattice problems mill have some nonlinearities
that are relevant, and others irrelevant —in the
sense of %ilson. Good candidates for those that
are relevant are those that give use to new non-
linear degrees of freedom, or solitons. Solitons
are just another word for those Fermi degrees of
freedom constructed from the boson fields.

A further application is to the interacting elec-
tron gas. The RPA. for this problem was one of
the historical. first attempts to formal. ize the con-
cept of bosonization. " It seems, at first sight, to
be related to the representation found here. How-
ever, this first sight is misleading. For the free-
particle case, the density operator spectrum dif-
fers from the boson spectrum of Sec. II. It is, of
course, trivial to calculate the particle-hole spec-
trum exactly. Since the boson construction of fer-
mion operators is exact, it follows that the par-
ticle-hole spectrum, calculated in boson language,
is also exact. At no stage does the treatment of
particle-hole pairs as bosons appear, and it is
therefore difficult to relate this bosonization to
the RPA bosonization.

To be more precise, consider the density-den-

sity correlation function (p(x, t)p) for the Fermi
sea of Sec. II. The RPA result for this is

c &

(p(x, ()((x', ('))=—,I(
'

), +(
'

),), (4.))

where C=(k+2m)', whereas, to leading order in

(k+) ' and kzr, the exact result is

(p(x, t)p(x', f))

C 1 1 2i cos2k&B~
(z ~)' (ft+r)'

As is well knomn, the BPA does not include the
correct large-momentum excitations responsible
for the phase factors. The boson representation
of Sec. II, however, reproduces Eq. (4.4), not the
RPA result.

In the purely one-dimensional Luttinger model,
a similar difference appears. The RPA repro-
duces the first term in the density-density corre-
lation function, and it is necessary to find the 2k~
processes separately. The RPA operators are of
the type:g~tg, := p, (in the notation of the Luttinger
model), while the 2k~ processes come from )1)~tp,-
type operators. Defining p=gtg where &2(I)=g, +(t)„
the Luttinger model results for RPA and exact
are, respectively,

1 1
&p(~, ~)p&-( t) +( f),

(4.5)

analogous to the case in three dimensions. In gen-
eral dimension, C=(kz/2n)~ ', and the above ex-
pression is multiplied by A '" ".

In three dimensions the separation into appro-
priate generalizations of p and /~A, is not yet
known; only the total combination summed over
angles has a simple boson representation (in one
dimension, the sum over "angl. es" has only tmo
terms, P, +P,). It would be interesting, indeed,
even helpful in generalizing beyond the RPA, if a
simple boson representation mhich separates smal';l

momentum from large momentum could be found.
In such a representation, it mould be possible to
separately parametrize, and perhaps solve, the
large-momentum-transfer part of the model. The
further development of these ideas will be reported
in future publications.
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