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Nitrogen states in Ga(As, p) and the intermediate-range model
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The appearance of new single nitrogen lines in recent Ga(As, P):N photoluminescence data has been

interpreted theoretically in terms of an impurity potential that has a short-range part and a more extended

portion arising from strain effects. Two current theories have interpreted the range of the latter as either

long or intermediate: the implications for impurity-induced lattice relaxation are quite different in the two
cases. To resolve this issue, we examine the consistency of the data with a. nearest-neighbor shell model as
well. as with more extended intermediate-range models. By introducing a soluble Green's-function model, we

show that the former is inconsistent; from basic quantum-mechanical considerations, we show that

monotonic, attractive potentials are not consistent unless their ranges are greater than —20—25 A.

I. INTRODUCTION

The strong luminescence of the isoelectric im-
purity nitrogen in indirect III-V mixed-crystal
semiconductor alloys containing phosphorus [prin-
cipally Ga(As, P): N] is of considerable practical
interest in the fabrication of light-emitting diodes.

- Until recently, luminescence measurements of
Ga(As, P): N were interpreted within the tradition-
al picture in which the nitrogen electronic poten-
tial V, is concentrated in the impurity's central
cell and is presumed to arise from the difference
in core electronic structure between nitrogen and
phosphorus. "

The physical consequences of this picture hve
been calculated ' within the one-band one-site
Koster-Skater model. " In contrast to the case of
long-range (e.g. , hydrogenic) impurity potentials,
this model predicts only one nitrogen electronic
state whose eigenstate has components from all
points in k space within the first Brillouin zone
(in agreement with the Heisenberg uncertainty
principle). "These components are completely
described in terms of conduction-band parameters
(except for the Koster-Slater potential parameter,
U, =—( R„c~ U, ~ R, , c), where

~ R, , c) is a conduc-
tion-band Wannier state centered at the nitrogen
position, R,) and are proportional to [E„-E,(k)] ',
where E~ is the energy of the bound nitrogen state
and E,(k) is the conduction-band dispersion rela-
tion. Therefore, the localized impurity state has
strong k =0 components (and, consequently, lumi-
nescence) even in indirect crystals and this lumi-
nescence increases as E~-E,(k =0) =Er, where 1"

denotes F~, the central conduction-band minimum
(this increase embodies the phenomenon of band-
structure enhancement, or BSE ').

Recent data" "present evidence in support of a
more extended potential model of nitrogen in the

ternary alloy. Spectra which had been associ-
ated'" "with pairs of nitrogen atoms (in analogy
with the case of GaP') were shown to be probably
phonon sidebands of single nitrogen lines. 4 In ad-
dition, more than one single nitrogen line has been
identified. ' For x~0.30, where x is the mole
fraction of P, the lower of these lines Nx appears"
to run parallel to Er, while for x)0.30, Nx seems
to behave like the Koster-Slater state already de-
scribed (i.e., its binding energy, Ex -ENx where
E~ is the energy of the conduction-band minimum
atx,', or X, increases with increasing As con-
tent) and seems to be associated with X.~'

The next higher state N~ has more complex be-
havior. For x~0.30, it approaches E~ and appears
to become resonant for x=0.28; for 0.30 x~0.42,
it seems to follow E&, and for 0.42sxs0. 47 it
seems to parallel E~. These conclusions are sup-
ported by pressure-dependent photoluminescence
measurements. Finally, for x)0.47, N~ seems to
disappear.

Photoluminescence data, for as-grown Ga(As, P): N

are illustrated in Fig. 1."" In addition to the two
states discussed above, these data manifest the ex-
istence of a third state' N~ which had been pre-
dicted theoretically. ' 2 Corresponding data" for
samples in which nitrogen ions are implanted seem
to show no evidence of ¹j-. These discrepancies
may be a result of the difference between as-grown
and ion-implanted material.

Two features of all of the data serve to illustrate
the rather subtle issues involved in theoretical in-
terpretation: (i) One of the states, Nx, follows X
and another, Nr, follows 1' (at least for 0.30%x
&0.42) and (ii) Nx is strongly luminescent through-
out the entire range of x. It has been suggested"
that the nitrogen potential produces two states de-
scribable within the effective mass approximation, '
one (Nr) associated with I' and the other (Nx) with
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FIG. 1. Photoluminescence data indicating the con-
centration dependence of I', L, X and the peaks asso-
ciated with electronic states of isolated nitrogen im-
purities in Ga(As, P) (after Befs. 20 and 21).

X: Such a model describes feature (i) nicely. In
fact, the potential radius extracted from the data"
(= 3+40x A) is well in concert with the usual type
of long-range potential used in the effective-mass
approximation (i.e., the wave functions exhibit the
same order of localization). Unfortunately, this
approximation also predicts" that Nx would be
well-localized about X in k space, in disagreement
with feature (ii). It is clear, therefore, that any
theoretical description must involve 50M. a short-
range and a more extended part.

Two theoretical proposals based upon extended
nitrogen potentials have been made to describe this

The fjrst of these"'" attributes a
long-range potential V, , as well as the convention-
aal short-range potential V, to the nitrogen. The
long-range potential is presumed to agise from
deformation of the lattice induced by strains asso-
ciated with the presence of nitrogen. To account
for the data, the only property which is required
of V, is that it be strong enough to bind one state
associated with X and one with 1; the short-range
potential V, is presumed to produce a bound state
which is delocalized in k space as in the conven-
tional Koster-Slater picture. Since the observed
lines are associated with eigenfunctions corre-
sponding to V = V, + V, , the predictions of the the-
ory can be interpreted"'" as arising from hybrid-
ization of the states associated with V, and V, sep-
arately and result from the intrinsic nature of V

independent of specific values of potential param-
eters. These predictions. are in agreement with all
the general features of the data; that is, the the-
oretical energies display the same general x depen-
gences as the experimental data in Fig. 1. Indeed,

numerical calculations"*' show that a good ab-
solute agreement with available data~~

can be achieved. The potential parameters which
are extracted are consistent with fundamental con-
siderations; for example, the radius of V, -20-25
A, which is in accord with the long-range nature
of V, (i.e., the validity of the effective-mass ap-
proximation).

One of the general predictions of this theory is
the existence of the highest state N~ shown in Fig.
1. Although the theory is semiphenomenological
in the sense that the exact values of the potential
parameters are determined from experiment (so
that lack of observation of Nq could be explained
by its being a resonant, or unbound state not in the
gap) clarification of the above-mentioned discrep-
ancy between data, for as-grown and for nitrogen-
implanted" samples would help to determine the
validity of this theory.

A later model was suggested" to explain the data
for nitrogen-implanted specimens. This model
also associates the nitrogen impurity with an ex-
tended potential. Here, however, the potential
consists of an intermediate-range extended part
V,- as well as the short-range part V, . More spec-
ifically, the strain field is presumed to induce an
attractive impurity potential in the first shell of
nitrogen nearest neighbors as well as at the nitro-
gen site. This model predicts tzvo symmetric
states (i.e., with high k =0 probability amplitudes)
whose energies are fitted independently to N„and
Nx near x =—0.35 after some simplifications in the
calculations reported. " The limited range of the
potential causes neither of these states to be local-
ized in k space about a conduction band minimum.
The association of one state with 1 and the other
with X is, therefore, a result of fitting the data
and is not an intrinsic consequence of the mode12'
as in the Kleiman theory. "'"

Although this model" cannot reproduce some Gf

the features in the data, such as the curvature in
EN„for x-0.45 and in EN~ for x-0.30, the pre-
dictions are in reasonable agreement with lumi-
nescence strength" and lifetime" measurements
as well as with the observed energies for 0.28~x
~0.40.

It would seem at this juncture that there is little
to distinguish the predictions of the intermediate-
range's from those of thelong-range model& ' ex
cept the existence of the third state Nr '0 (which
has not been observed in nitrogen-implanted ma-
teriaP') and the curvatures in ENr and EN» (which
could be explicable, at least partially, in terms of
bound-exciton valley-valley interactions). Although
electromodulation spectroscopy 9 ~ So indicates the
existence of two states for x &0.55 (in support of
the long-range, or Kleiman theory), there would
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appear to be sufficient uncertainty to fuel a con-
troversy over the validity of the two models.

That it is important to resolve this question is
clear from the point of view of understanding the
nature of the nitrogen potential in Ga(As, P) and
other III-V alloys. That it is more fundamentally
and generally important is, perhaps, not so clear.
In the intermediate-range model, "the strain-
induced potential is large in a small region sur-
rounding the impurity and dies away rapidly with
distance: This picture is entirely in agreement
with conventional intuition regarding impurity-
induced lattice relaxation in semiconductors. In
the long-range theory, on the other hand, the po-
tential is associated with a large region (i.e., of
radius 20—25 A), a relaxation of such magnitude
is unexpected. Should the long-range model prove
tobe correct in its essentials, therefore, it would

suggest important consequences for other impuri-
ties in other semiconductors.

In order to clarify this situation, this article ad-
dresses the problem of the consistency of inter-
mediate-range models with photoluminescence
measurements of nitrogen-derived line (i.e., Nr
and Nx) energies in Ga(As, P): N."" ~' ~" " The
fundamental nature of the question involved makes
it preferable to generalize the definition of the in-
termediate-range model, rather than restrict it to
the specific case already treated in Ga(As, P):N."
To this end, w'e posit that such models are those
in which the range of the potential is fixed to be
less than the minimum needed to localize an im-
purity k-space wave function about a conduction-
band minimum but in which the strength of the po-
tential can be varied to describe the data.

We have seen that long-range potentials whose
binding energies agree with the experimental en-
ergies '~ ~ ' 3 can be found ~22' Can inter
mediate-range models be found which manifest
similar agreement? The results of this paper in-
dicate a negative answer to this question.

This result follows from the fact that specifying
part of the bound-state energy spectrum [even two
states, as in the case of Ga(As, P): N] imposes a
severe restriction upon the potential producing
these states. In illustration, consider two states
of different energies corresponding to masses m~
and mx (i.e., mr& mx) in the effective-mass ap-
proximation. '4 For a square-well potential, the
values of these energies determine the depth and

range of the potential uniquely" ": In the case of
nitrogen in Ga(As, P), the range -20-25 A."~" In
passing, it is interesting to observe that, of all
the monotonically increasing spherically symmetric
attractive potentials (i.e., whose minimum is at
t =0) of finite range which produce two such given
energies, the square-well corresponds to the

smallest range.
By fixing the range and allowing only the strength

of the potential to vary, therefore, one cannot, in
general, reproduce states of given energies unless
the range is sufficiently long. Although we applied
these arguments to potentials for which the effec-
tive-mass approximation holds, they are more
generally true. In Sec. IIA, we discuss an impur-
ity potential restricted to the nitr'ogen ceQ and the
first shell of 12-nearest-neighbor cells surround-
ing it." In this situation, the effective-mass ap-
proximation is not valid. Nevertheless, we show
that this model is not consistent with the
Ga(As, P): N data, the reason being (in the language
of the effective-mass approximation) that the range
is insufficient. More specifically, if we fix the
value of the energy of one of the two lowest states
at the experimental value ENX then we cannot find
a set of potential parameters which give Egz for
the other energy.

The energies of these states depend upon the
conduction-band structure through the Wannier-
representation Green's-function matrix elements,
as the effective-mass energies depend upon the
band structure through the masses, mz and m~.
Because of the limited range of the potential, all
of the k-space band structure is represented. By
forcing the N~ state to follow the X minimum
through fitting to the experimental energies ENx,
the potential parameters derived thereby contain
the influence of the large density of states associ-
ated w'ith this minimum. ' " Since the higher state
is not independent, ' its energy is influenced by X
through these parameters and it cannot be made to
follow I (i.e., fit to the experimental energy ENr).

The influence of all the minima upon both states
can, therefore, be seen to be a consequence of the
local nature of the impurity potential. As more
cells are included within the range of the impurity
potential, the relevant matrix elements of the
Green's function become more local in k space.
In order to describe the experimental energies,
therefore, we must have a potential of sufficient
range that the I' and X minima are decoupled.
This condition resembles that necessary for the
effective-mass approximation to hold. Since the
effective-mass approximation can be derived as
a limiting case if enough sites are included within
the range of the impurity potential, it would seem
that long-range potentials are the only ones con-
sistent with the data. We discuss this point in more
detail in Sec. IIB.

The conclusions are presented in Sec. III. The
first of these is that the Ga(As, P):N energy
data 6' ' '" is inconsistent with the extended
Koster-Slater model used previously" as well as
with more general versions of the intermediate-
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II. CONSISTENCY OF INTERMEDIATE-RANGE MODELS

In this section, we examine critically the possi-
bility that the photoluminescence data
in Ga(As, P): N are consistent with model poten-
tials of range insufficient to localize the resultant
states in k space (i.e., intermediate range models,
according to the definition in Sec. I). In Sec. IIA,
we demonstrate that a model involving attractive
potentials localized in the nitrogen cell and in the
first shell of nearest-neighbor cells (i.e., this
model includes the extended Koster-Slater model
used previously" ) cannot be fit to the energy da-
ta.""' '" Section IIB contains arguments ex-
tending these results to more general semi, empiri-
cal intermediate-range model potentials. "

A. Nearest-neighbor shell models

In this part, we consider impurity potentials V,
which involve only the nitrogen site, R, =0, and
the first shell of its nearest-neighbor cells. We
demonstrate that such potentials cannot give rise
to the experimentally observed states in
Ga(As, P):N.

The coefficients of an impurity state I j) (in the
Dirac notation) expanded in the complete set of
Wannier states I H, , n) . corresponding to site R,
and band n are given in the following equations'4:

Ij) = g IH„n&&R„nlj&,
l, n

(la)

(R„nlj) = Q G,„(R„R7,E,).
I g~g3f

x &R„nlvlH„~&&k,~lj&,

(Ib)

range model potential. We are, therefore, left
with a long-range potential as the only semiempiri-
cal model capable of describing the data. The
strong luminescence of both Nz and Nx require a
short-range core to the potential.

In this work, we have followed the conventiona13 ~2

point of view that bands other than the, lowest con-
duction band do not contribute to the short-range
nitrogen potential matrix elements. Inclusion of
such contributions might modify some of our con-
clusions. In the absence of convergent first-prin-
ciples calculations, however, such effects are
poorly understood. " In any case, our conclusions
are valid within the context of semiempirical mod-
els for which coupling to only the lowest conduction
band is considered. "'"

G..(R, H', E) =- &R, nlGo(E) IR', n&

jk (R"R )e'
No ~ E —E„(k)+7,'5 '

G,(E)=(E+f~ e,)-'. (ld)

In Eqs. (1), the symbols E;, N, , and E„(k)denote,
respectively, the energy eigenvalue of Ij), the
number of unit cells in the pure host crystal, and
the k-space energy dispersion relation of the n
band [i.e., the sum in Eq. (1c) is restricted to the
first Briliouin zonej. The quantity G,„represents
the pure-crystal Green's function of the n band in
the Wannier representation. ~ Because of the lim-
ited range of the potentials which we consider in
this section, this representation is more appropri-
ate than that in terms of Bloch waves. The sym-
bol B, denotes the pure-crystal Hamiltonian and

0.
Although Eqs. (1) show explicitly that coupling

between bands is -involved and is expected" to be
important in the case of potentials of limited range,
definitive calculation of the effects of such coupling
has not yet been achieved. s' We follow, instead,
the semiempirical point of view, which is the tra-
ditional one applied to the problem. ' ""'"'" In
this picture, V is assumed to have no interband
matrix elements. The corresponding equation for
the coefficients of the lowest conduction band, c,
is, therefore

&H„eI j& = p G„(H„H„E,)

x&H7, cli'IRz c&&Hz, clj&. (2)

In this method, the potential matrix elements are
derived from. fitting particular experimental data.
The physical content in the theory considered is
tested by checking its predictions against indepen-
dent data, and by requiring that the theory be in-
ternally consistent.

In what follows, we shall assume that the sym-
metry group of the impurity potential is at least a
subgroup of that of the pure crystal (i.e., T„for
zinc blende). If we. label R, by its position, n, in
the shell s of equivalent sites surrounding the im-
purity, "we can define a complete set of basis
states"

I LMNs& for shell s consisting of ortho-
normal, linearly independent linear combinations
of the Wannier states I sn& which transform accord-
ing to the M row of the L, irreducible representa-
tion of the subgroup (we suppress the band index).
The L, involved are determined by decomposing the
reducible representation derived by applying the
subgroup operations to all the sites in a shell" "
into the subgroup irreducible representations '
(the presence of the index N allows for the possi-
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(klj& = Q (klLMNrs&(LMN s~j&,
I, jtINE. s

(k ( LMNr s& = P (% ( sn& ( sn
~
LMN„s)

(3a}

bility of the same subgroup irreducible represen-
tation occurring more than once).

Since the same decomposition process can be
performed with respect to T~,"and since the ir-
reducible representations of a group are fully
reducible" with respect to those of a subgroup,
under the operations of the subgroup it is always
possible to perform a similarity transformation
such that all resulting basis function

~ LMNxs& of
the same subgroup representation are among the
basis functions of just the g irreducible represen-
tation of T„." In other mords, if we decompose
the & irreducible representation of T~ into the
direct sum of the L„.. . , L~ irreducible represen-
tation of the subgroup, then the set of all these
~L, MNrs) (1&i &P) constitutes a basis for K. We
let M, therefore, denote the corresponding rom of
the K representation. The value of this result is
that these bases retain the symmetry properties of
the representati. on of T„from which they are de-
rived. This notation preserves the label g of the
corresponding representation of T„.

That me are interested in luminescence proper-
ties simplifies the discussion considerably. The
momentum amplitude of the impurity can be written

1(I', 1s
~ LMNzs& = 0=,» g (sn

~ LMNzs &x (~ 1/2

(k= 0 ~r.MN~&. (4b)

In Eq. (4b), the matrix element is taken with basis
vectors from other, distinct representations (i.e.,
KWI}. If other I', (i.e., K =1) representations exist
in the decomposition, me can always construct
them to be orthogonal to ~I', 1s)." Therefore,

(4c)

mentum% is given by ~%&, and the sums over n are
over all sites in a shell [the transformation con-
vection between Bloch and Wannier states is also
given implicitly in Eq. (3b)] .

For T„and its subgroups, we can almays" gen-
erate a completely symmetric function from the
~ sn&, "which transforms according to the trivial
one-dimensional representation I'~ (for which the
representation matrix elements are unity for all
the group elements and which we denote by K =1),"

(r, iss& -=jr, l,s) -=„,g)s~&. (4a)
1

+s n

The quantity n, denotes the number of sites in shell
s, the sum is over all sites within the shell, and
the label N=1 permits the possibility of other 1,
representations for g =1 in the shell decomposition.
The basis vector orthogonality theorem" implies
that"

=
( „„Qexp(-sk R,„)

&&(sn
~
IMN s&, (3b)

(k = 0 ) LMNrs& =,~, g (sn
~ LMNrs & . (3c)

In Eqs. (3), the conduction-band Bloch state of mo-

To describe strong luminescence, therefore, me
need to consider only those states which transform
according to 1,. We should note that the energies
of the states of other symmetries are not important
in this discussion. "

The equation for the coefficients in Eq. (3a) which
is analogous to Eq. (2) is

&LMN'r's" lj ) = p &LMNr's")Go(E) )LM1Pzs'& (LMNzs'( V [LMN, s&(LMN~s (j) .
Nq, s, N~ ~

s'
I

Since Qo is invariant under all operations of T„,
only states of the same row of identical irreducible
representations of T„enter in its matrix ele-
ments. " Matrix elements of Go vanish between
states corresponding to different I'l bases. Per-
haps the simplest may to see this is to consider
the trivial case V=C, a constant. For states of
I', symmetry, me have

(FgNgs~j) =C Q (FgN slGO(E}IF,N', s'&

x &r, N', s'~j&. (5b)

In deriving Eq. (5b), we have exploited the result
that the

~
1'&N, s& are constructed to be orthonormal.

It is clear that the only change is a rigid shift in
the bands by C and that

~ j) corresponds to a Bloch
state, ~k&. Consider the state ~k=0). From Eqs.
(3) and (4), we have

ll2
(I;N, s~%=0) = ' 5„,N, l

C I'lNlS Go E I'l 1S'

(5c)
Since Eq. (5c) is true for all shells s, we see that
it is consistent only if

«

(I' N~s [G (E) [I' 1s') =5 (I' 1s[G (E}(I',1s') .
(5d)
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The equation for the (1,1s I j&, is therefore,

&r, lsIq& = g (r, 1sIG (8) Ir ls')
IIs,s, NE

x&r, ls'IvIr, N s"&

x (r, Nrs"
I i & . (6)

The matrix elements between basis states of two
irreducible representations of the symmetry group
of V derived from Eqs. ( I) are given by

(LMNzs I V~ I
L'M'Nzs'& =C5„(n,n, )~"

x (LMNrs I I x 1s)
x (ri 1s'I L'M'Nzs'&,

(snIV, Is' n') =CD„,
(sn I V2I s'n') = V, 5„„l5„i.

(Va)

(vb)

The first of these corresponds to a potential-whose
Wannier-function matrix elements are independent
of the distance between the sites at which these
functions are centered: This would seem to be
physically unrealistic. The second corresponds
to a slowly varying potential which is the same for
all sites in a shell (i.e., a "radial" dependence).

The derivation of Eq. (6) is independent of any
specific model and is based upon symmetry ar-
guments only. For an impurity potential whose
symmetry is that of a subgroup of T„,the l",
eigenstates are admixtures of the Ir, Nrs&, in
general"; the number of states involved depends,
of course, upon the compatibility relations between
T, and the subgroup and upon each shell decom-
position. For example, for the first shell there is
only one I", which enters in the decomposition in
terms of T, ." As we lower the symmetry of the
subgroup, more I', can enter in the decomposi-
tion. "

At this point, we must use physical consider-
ations in order to proceed further. If,the matrix
elements (I",1sIVIr, Nrs'& in Eq. (6) are large,
the admixture between the strongly luminescent
Il", 1s) is strong. In this case, therefore, there
can appear several lines of comparable strength.
We should recall, however, that we set ourselves
the problem of understanding in terms of an inter- .

mediate-range model the experimental observa-
tion that only the two lowest nitrogen lines in Fig.
1 are strongly luminescent (i.e., we ignore the
strong Nz line in this study). The simplest pro-
cedure is to set(1~1sIVIr, Nzs'&-5z, 5„,: That
is, the deviation of V from T„symmetry is only a
weak perturbation and the potential produces at
least one state consisting of the Ir~ 1s) alone.
This is a strong assumption, however. Even for
potentials of T~ symmetry, (r, 1sI VII', N, s') does
not vanish, in general: The matrix elements be-
tween Wannier functions depend upon the sites in-
volved, in general.

Before considering the solutions for the nearest-
neighbor shell model in detail, it is appropriate to
discuss the matrix elements of the potential in Eq.
(6). To accomplish this, let us treat two models
corresponding to two opposite limits,

(LMNrcs I LM¹~s& =5' (8c)

If we restrict our attention to states arising from
a single shell (e.g. , the first") we see that V, will
have nonvanishing matrix elements only between
Irz ls) states: States of other symmetries cannot
exist. The potential V, , on the other hand, pro-
duces identical matrix elements between any two
states of the same-row of the samd irreducible
representation

I
i.e., we construct different bases

of the same representation to be orthogonal" so
that Eq. (Sc) applies]. It is clear, therefore, that
only for the unrealistic potential V, can we ignore
states of other bases than II', 1s) on the basis of
matrix-element arguments. " In fact, these states
are likely to be bound, as we see from consider-
ing V, . It is only because these states are weakly
luminescent that we can afford to ignore them. "

We are now in a position to examine the states
arising from the nitrogen site and its nearest-
neighbor shell. Using Eq. (6) and the fact that
there is only one I'~ state in the decomposition'
of the nearest-neighbor sheO representation, we
derive equations of the same form as Eq. (E6) of
Ref. 23 (although the interpretation of the potential
matrix elements is somewhat different)

~ + ~Goo+ b Gol bGoo+ L'Gox

G~o + b~Gix 1+bG~o+ I.G~j
-z=- &r, 1o

I vIr, lo),

f -=&r, lo
I vlr, »&,

G„.=- &r, lsIG, (z) Ir, ls'&.

(9a)

(Bb)

(9c)

(Bd)

(Be)

The asterisk in Eq. (9a) denotes complex conjug-
ation and s and s' are restricted to the values 0
and 1 in Eq. (9e).

Since this is a semiempirical model, we must
extract the potential parameters from the two ex-
perimental energies Eg~ and ENx in Fig. 1. Let
us, for the time being, neglect the intersite matrix
elements, b;" It is clear, therefore, that

(1 + JG 00)(1 + LGn ) = JLG OqGqo, (10)

(ga)

(LMNr s I V, I
L'M'Nzs') = V,b„i(LMNr s I

L'M'N s' &,
'

(gb)



must be satisfied for these two energies. This re-
sults in the following quadratic equation for I,:

AL'+aL+C =0,

&=-~u.D -~u&'

& =- Gxx~oo —&xicoo+D -D'

C =~0o -~oo

D =- Gm~u —G'ra~ox ~

(11b)

(1lc)

(11d)

(lie)
In Eqs. (11), the primed quantities are evaluated
for E =EN~ and the unprimed for EN T . There is,
of course, a physically acceptable (i.e. , real) so-
lution for L if and only if

&' - 4&G = f(G00- G.o)(GII —G'll) +Glo+Glo] '
-4(G,.G',.)"-o.

Here, we have employed the reality of the Qreen's
function in the gap. The condition in Eq. (12a) is
not satisfied (i.e. , there is no real solution for L)
if

(Glo+Glo)" (Goo —Goo)(G11 —Gil)'(Glo —Glo)' (»b)
In order to evaluate Eq. '(12b), it is necessary to
provide a calculation of the Qreen's functions de-
fined in Eq. (9e). In the Appendix, we present a
soluble model" of the Green's function based upon
a parabolic E,$) for each minimum in the conduc-
tion band. The parameters of the model are ad-
justed to be consistent with our knowledge of t;he
lowest conduction band. In contrast to other mod-
els' ' (as opposed to pseudopotential band-struc-
ture ca1culations") this model can be readily ap-
plied to calculating G„(B,R') as weil as G„(R,R)
[i.e. , in the notation of Eq. (1)]: This would be
useful in systematic comparison of N-N pair' and
single-nitrogen states, for example. The results
of the model are

1
Glo (12)1/2 Q GOC(R1o I Ro l

G„=G (R„R„E),
1

GII =
12 Goo(BI„~RI~, E),

n, m

(13a)

(13b)

(13c)

G„(B,0, E) = Pe, ,(E, B)e*'*I',
i, E

E, ,(E, B) =F(P, , I+,E, , E,-, , g, , E), (13e)

(13f)

2r 1/2
=E t~ill + il ~ill ii (13g)

The energies considered are in the gap. The quan-
tities to be calculated in the inequality in Eq. (12b)
are defined" in Eqs. (13a)—(13c) in terms of the

Wannier representation Qreen's function of Eqs.
(1), which depends upon the difference between
lattice vectors only, i.e.,

G„(B,R', E) =G„(R-B',0, E).
In Eqs. (13d) and (13e), this latter Green's func-
tion is expressed as a sum over inequivalent min-
ima (i.e., index I) associated with a particular
symmetry point in the Hrillouin zone (i.e., index i)
The sum is in terms of a negatjve-definite univer-
sal function I" of the parameters associated with
each minimum. This function, which involves the
exponential integral function of complex argument,
is discussed in the Appendix. The longitudinal
(m 1) Rlld tl'RIlsvel se (III ~

ll ) effective masses of a
general minimum are expressed through the effec-
tive mass m,*. , and an effective displacement R.E.
which differs from 8 only because of the aniso-
tropy. The energy of the i minimum is symbolized
by E,. and the quantity p,- denotes a cutoff momentum
whose magnitude is related to the number of states
associated with the minimum. The possibility of
simulating finite lifetimes of conduction-band states
is embodied in the energy width parameter g in Eq.
(»e).

In our calculations for Ga, (As, P), we divide the
Brillouin zone into three regions associated with
the l, X, and L minima, "'"respectively, as in
previous work, ' '""0&@„&0.125, 0.125&@„&0.50,
and 0.50&0„,where Q—= ka/2v, a is the lattice
constant, and the subscript r denotes a Cartesian
coordinate of the vector. This results in a value
of p,.a =(61IoV,.@/n„„.„)lio, where V,.o denotes the vol-
ume in Q of the i region and n,„,„

the number of in-
equivalent minima of the i minimum: We derive
PI a = 0.974, Pr a = 3.898, and Pza = 2.443 (in our cal-
culations, we set a=3.65 —0.20x A). The corre-
sponding values of the Ga(As, P) E, are"' "Er.
= 1.514 + 1.174x+0.186x'„E = 1.9VV + 0.144x
+0.211x', and E~ =-1.802+0.VVx+0. 16x'. In addi-
tion, our purposes here allow us to set g,. =0 (i.e.,
no finite lifetime processes).

Results for the three Qreen's functions in the in-
equality in Eq. (12b) are presented as functions of
energy in Fig. 2 for x =0.50 and an assumed iso-
tropic effective mass at X (i.e. , mrs'/mo=0. 366,
where mo is the free-electron mass, IIIII/mo =0.068
+0.052m, ng~ll /mo =0.15, and nz1i /mo =1.184)."
We relegate discussion of the comparison between
the results of this model and pseudopotential cal-
culations" to the Appendix 'and concentrate here
on our stated purpose of examining the inequality
1I1 Eq. (12b). Fol this pill'pose„ lt ls sllfflclellt to
observe that ~G»~ is considerably smaller thaII
either (Goo( or ~GII( and varies more rapidly.

In Figs. 3(R) RIld 3(b) we pl'BSBI1't R pic'tol'lRI ex-
pression of the inequality in Eq. (12b) correspond-
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FEG. 2. Green's functions (in arbitrary units) defined

in Eqs. (9) calculated from the soluble model in Eqs.
{13)and the Appendix. The effective mass at X is
assumed to be isotropic.
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FIG. 3. (a) Test of the inequality in Eq. (12b) for x
=0.35 and the parameters of Fig. 1. (b) Test of Eq. (12b)
for g= 0.50 and the parameters of Fig. 1. These
figures demonstrate that the short range of the nearest-
neighbor potential does not permit sufficient independence
of the eigenstates in k space to describe the data. The
units are arbitrary.

ing to the model in Figs. 2 (i.e. , the same choice
of masses) for x'=0.35 and 0.50, respectively. The
primed quantities Goo, Gu, and Gxo are evaluated
at the experimental energies Egx=1.85V eV for
x =0.35 and 1.944 eV for x =0.50 and the unprimed
quantities are allowed to vary as functions of en. —

ergy. Also depicted are the experimental energies
of the higher state, EN-=EN~ =1.914 eV for x=0.35
and 2.040 eV for x=0.50. It is clear from Fig. 2

that, for 0.30&x&0.50, the inequality in Eq. (12b)
is satisfied, throughout the range of energies de-
picted so that there is no choice of parameters J
and L, which can fit the experimental energies, at
least for this model Green's function. It should be
noted that this result holds even though I G,o ~

is
small. Mathematically, we obtain this result be-
cause we are examining essentially the variation
of the Green's functions G„andG„(i.e., their
relative values) and not their absolute magnitudes.

In order to illustrate the general validity of the
inequality in Eq. (12b) for the Green's functions
described in Eqs. (13), we display the Green's
functions and the quantities involved in Eq. (12b)

for x=0.50 in Figs. 4(a) and 4(b), respectively, for
a set of anisotropic X masses"'" although m~ is
the same as in Figs. 2 and 3; that is, mz~/m,
= 1.51 and mz~~ /mo =0.18,'0 and all other param-
eters are the same as in Figs. 2 and 3. Although

G„,which depends upon m,*. (i.e., i=i;X, I.) only,
is the same in Figs. 2 and 4(a), the It-dependent
Green's functions G» and Q,o are considerably dif-
ferent. In particular, the Gzo in Figs. 2 and 4(a)
are different not only in shape, but also in sign.
This result derives from the summation over min-
ima in Eq. (13d). The phases of the exponential
factors depend upon the orientation of 8 relative
to the momentum positions of the minima. Also
the F function in Eq. (13e) for each minimum de-
pends not only upon this orientation but also upon
the mass anisotropy through the R, , in Eq. (13g).
In general, the sign and magnitude of each term
contributing to the Green's function through the
sum in Eq. (13d) depends upon the orientation. The
8-dependent Green's function is, therefore, a
sensitive function of anisotropy —the degree of
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FIG. 4. (a) Green's functions defined in Eq. (9) for the
model of Eq. (13) and the Appendix in arbitrary units.
The X effective mass is anisotropic here and the other
parameters are the same as in Fig. 1. This figure de-
monstrates the band-structure sensitivity of the
Green's-function model. (b) Test of the inequality in
Eq. (12b) for the Green's functions of Fig. 4(a). This
figure illustrates the insensitivity of the inequality to
the form of the Green's functions and emphasizes its
fundamental relation to the range of the potential,

sensitivity can be appreciated by comparing Figs.
2 and 4(a).

The function G» involves only nearest-neighbor
lattice vectors [i.e. , NN, separations'j. The
contribution from the X minima is dominant be-
cause of the high density of states associated with
this minimum. Of the phase factors of the three
equivalent X minima in Eq. (13d), two contribute
factors of -1 and the third +1. In the case of iso-
tropic X masses, the g of all the X minima are
identical. The result for Go,(RN„)involves,
therefore, -I, which is positive definite, so that
G» in Fig. 2 is positive. In the case of anisotropic
X masses, the F are orientation dependent. The
two minima with negative phase factors involve
[from Eq. (13g)] Rx, =R(m»/mo)"'&R, and the
positive phase factor minimum involves A»
=R(mx~~ /mo)~ '&R. The F function decreases with
increasing g, , so that the positive-phase-factor
term dominates in the sum in Eq. (13d) and G» has

the same sign as F—negative, as in Fig. 4(a).
Similar arguments can be made to explain the be-

havior of G» in Figs. 2 and 4(a). The situation is
more complicated, however, because, from Eq.
(13c), Gu involves all the lattice vectors separat-
ing sites in the first shell, and, therefore, many
G„(R).The difference between G» in Fig. 2 and
in Fig. 4(a), however, can be seen easily if we
realize that G» can be written as a sum of G«,
G„(R») and other terms. Since, as we have
just argued, G~(R» ) is negative for the, param-NNy
eters of Fig. 4(a) and positive for those of Fig. 2,
G~, should be smaller (i.e., more negative) in the
former case than in the latter. This is indeed il-
lustrated in these figures.

The point of this technical discussion of the fea-
tures of the Green's functions presented in Figs.
2-4 is that they are sensitive functions of the band
structure (i.e., the mass anisotropy associated
with the various minima). Even though the func-
tions in Fig. 4(a) are probably a more accurate
representation of the exact Green's functions than
those in Fig. 2 (because the effective masses are
more accurate" ), the sensitivity suggests a con-
siderable uncertainty in the final result. Neve~-
thef ess, the 'inequality in Eq. (12b) is satisfied in
this case also, as manifested in Fig. 4(b). In fact,
the inequality applies for all reasonable choices of
effective mass throughout the experimental range
0.30&x&0.50 and the energy range under consider-
ation (i.e. , within -0.200 eV of the lowest conduc-
tion band edge).

In Fig. 4(b), we display the quantities involved
in the inequality in Eq. (12b) corresponding to the
same parameters as Fig. 4(a). Here, we evaluate
the primed Green's functions at the energy EN~
=1.954 eV (i.e., we add 0.010 eV to account for
bound excitons'). Because of the differences in
the Green's functions in Figs. 4(a) and 2, which
we have discussed, the energy dependences of the
quantities in Fig. 4(b) are different from those in
Fig. 3(b). It is clear, however, that Eq. (12b) is
satisfied.

It would seem that these results could be an
artifact of the model we have used. Fortunately,
independent pseudopotential calculations of Gpo,
G» and G,o have been performed. " Application of
these quantities to the inequality in Eq. (12b) yields
the same result: There axe no parameters which
allow Eq. (10) to describe the exPeximental ener-
gies. We feel, in fact, that this conclusion reflects
a fundamental mathematical and physical property
of the data which is independent of any model. The
analysis will enable us to extend these conclusions
to the solution of Eq. (9a) (i.e., when arbitrary
intershell matrix elements of the potential are in-
cluded).
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(G„+G,',)'&(G..—G'..)(G„-G,', ) .
The slower the variation in energy of G«and G»,
the wider the range of energy for which Eq. (12b)
is satisfied. For example, if G,O-G» -G,O-O (i.e.,
the energy is deep in the gap) we have G",~&G~,G~»

so that there are two solutions of Eq. (10) inthis case.
In fact, by inspecting Figs. 3 and 4(b), we observe
that the upper and middle curves approach one,
another for large enough ~E EN+~. -

More insight can be gained by examining the or-
iginal equation, Eq. (10). Since G„G„«GooG»,"
it is tempting to ignore the right-hand side of Eq.
(10) and write"

(I + ZG„)(I+L,G„)=0.

It is well known' ' ' that even a. small additional
energy-dependent component can cause a large
shift in the energy eigenvalue solutions of Eq. (14)
because G«and G» are slowly varying.

The origin and meaning of this shift can be ap-
preciated by considering an analogous equation,
corresponding to a model for N-N pairs. ~' In this
model, we juxtapose two identical impurities at
positions R = 0 and R = B, . Each impurity is de-
scribed by the same Koster-Slater parameter Vo

which produces a state at energy Eo for an iso-
lated impurity. The equation for the eigenvalues
E, and E resulting from the juxtaposition can be
written in two equivalent forms, Eqs. (15a) and

(15b),

(1 —Vo [G(0, E+ ) + G (R, E+ )] [
&& f1 —Vo [G(0, F. ) —G (R, E )])= 0,

[1—V, G(0, Z,)]' =[V,G(R, Z,)]',
1 —V, G{O,Z,) =0,

G(R, E)—:Go,(R, 0, Z) .

(15a)

(15b)

(15c)

(15d)

These equations are expressed so that the analogy

We begin by discussing the quantities involved
in Eq. (12b) and Figs. 2-4. In general, we can ex-
pect (G» ~

to be considerably smaller than ~G» (
" .

because, from Eqs. (1c) and (13a), G~o involves
interference between different conduction band
states" contributing to the k sum in Eq. (1c) (i.e.,
G„(R,0, E) varies roughly as R ' because of this).
j G» ~, on the other hand, is expected to be of the
same order as ~G»~ because it can be expressed,
from Eq. (13c), as a sum of G» and 8-dependent
terms. We can predict that

(Goo Goo)(G» —G») (Glo Glo)

is satisfied. The question of whether potential
parameters exist which solve Eq. (10) for two
states of given energy rests, therefore, upon when

with Eqs. (10) and (14) is obvious. Of the two
eigenfunctions, one is bonding (E+) and one anti-
bonding (E ), which is clear from Eq. (15a), and
their energies are split. The magnitude of this
splitting, depends upon V, . The left-hand side of
Eq. (15b) by itself produces eigenvalue E„so
that it is the right-hand side which produces the
splitting. Furthermore, from Eq. (15c), we see
that Vo is uniquely determined by the Green's func-
tion at E =ED (i.e., the band structure for all k).
Therefore, the values of E, and E are dependent
only upon the band structure and E, : In other
words, there is a minimum energy splitting of the
eigenvalues in the energy range of interest. This
result reflects the general phenomenon" that two

states of the same symmetry repel each other
when coupled by a potential of the same (or higher)
symmetry group. Here, we impose a condition on
the potential through Eq. (15c)—this condition is
implicit in a semiempirical treatment.

The same arguments apply to Eq. (10), although

it is impossible to factor the equation as in Eq.
(15a). The right-hand side of Eq. (10) produces
splitting between the eigenvalues (i.e., they repel"
each other). The magnitude of the splitting depends
only upon the Qreen's function in the energy range
of interest (i.e. , it is a property of the band struc-
ture) and, therefore, has a minimum value. If we

try, therefore, to determine the potential param-
eters Z and I, from energy eigenvalues (i.e., the
experimental energies Eyx and EN z in Fig. 1}
whose separation is less than this minimum split-
ting, we find the task impossible —this is what the
inequality in Eq. (12b) means. If we try to fit two

energies whose separation is greater than this
splitting, we find it possible. For example, an

energy which is very deep in the gap could be fit
by a solution associated with the central cell, and

one which is shallow could be associated with the
shell of nearest neighbors —but the energy separ-
ation must be big enough. "

What insight does this give us into the data?
From this discussion, we know that the solutions
of Eq. (10}are not independent —they are linked

by a consistency relation which involves the band
structure for all k (i.e. , all the conduction band

minima). This reflects the basic nature of a poten-
tial whose range is limited. The experimental en-
ergies, on the other hand, are associated with in-
dependent conduction band minima. It is clear,
therefore, that the data is not consistent with the
intermediate-range potential we have considered
as approximated by Eq. (10).

In a, previous treatment, "similar data (whose
similarity to that of Fig. 1 is within the uncertain-
ties of our study) was fit to Eq. (14). Such a treat-
ment neglects the fundamental points we have dis-
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cussed.
In order to generalize our conclusions, we must

take the intershell potential matrix element b into
account. In this case, we derive, as in Ref. 23,
for energies in the gap

(1+«..)(I+LG„)= &LGl. + Ib I'(GRRG» —C.)
—2 Re [b]G„. (16)

In Eq. (16) we explicitly shdw the reality of the G»
and denote the real part of b by Re[b].

The similarity between Eqs. (10) and (16), al-
though striking, is hardly surprising. In view' of
our preceding discussion, we know that the first
term on the right-hand side of Eq. (16) produced
the splitting in our previous case. For J and L
positive (i.e. , attractive potentials), this term is
positive: The more positive this term, the larger
the splitting. Since G«G» Q», the 'second term
is also positive in the gap. Finally, from the def-
inition in Eq. (9d)

(00I VI ln&
1

r

where we use the I sn) notation to describe Wannier
states and the sum is over all the sites in the first
shell. Consider one term in the sum

Re[b,„[= —fR'r V(r) Re[a, (r) a(r —R,„)],
where we denote the r-space Wannier state (r I sn)
by a, (r —R,„)(i.e., c denotes the conduction band).
For negative potentials, V(r) ~0 for all r. There-
fore, the third term on the right-hand side of Eq.
(16) is not independent of J and L. In order to fit
the experimental energies, "it is necessary that
J-L, so that V varies slowly in this region and b

is small. From Figs. 8 and 4(b), we see that the
inequality in Eq. (12a) is far from being satisfied.
Therefore, inclusion of b for monotonic negative
potentials does not improve matters. We conclude
that the data in Ga(As, P):N do not arise from an
attractive potential zvhich is always negative zvhose

range is restricted to the nitrogen site and the
first shell of nearest neighbors.

This conclusion is quite strong and general. But
under what conditions can it be violated, i.e., un-
der what conditions do our arguments break down
so that it might be possible to find solutions of
Eq. (16) for the experimental energies? One ob-
vious possibility is that the sum of the second and
third terms on the right-hand side of Eq. (16) is
negative. In this case, we must have

0~lb I &2[(Re[b])/I b I] [G,./(G, .G„-Gl.)]
-2

I G,.I/«. .G„-G,'.) .
Consider first J and L positive (i.e., attractive).

From the mathematical form of Eq. (16), in order
to have two solutions w'ithin the energy range of
interest, it is necessary to have values of J and L
approximately equal to those which give eigenvalues
within this range in Eq. (14); these values of J and
L are approximately constant throughout this range
because a sm.all change in these parameters pro-
duces large shifts in the energy eigenvalues. '"
Such values of J and L have been determined" to be
J= —0.6796+0.1126x and L = —0.7959+0.5371x in
units of eV and, therefore J and L are of the same
order for 0.30&x&0.50.

Consequently, the potential must be negative and
of the same order of magnitude in the regions of
both the central cell and the first shell of nearest
neighbors [i.e. , see Eqs. (8) for limiting cases of
the potential matrix elements and Eqs. (9) for the
definitions of J, I,, and b]. A value of Reb&0 cor-
responds, therefore, to a region between the cen-
tral cell and the first shell where V is positive.
Physically, this positive barrier assists in local-
izing the eigenfunctions in regions of the central
cell and first shell, respectively —that is, it helps
to make the impurity states more independent of
each other.

There are some problems with applying this type
of potential to a model in which the range of the
potential is restricted to the first shell of nearest
neighbors. First, this potential is negative at the
origin and in the first shell, and is positive in be-
tween, i.e., it is oscillatory and, because the amp-
litudes of these oscillations are of the same order
of magnitude, it decays slowly. There is little
physical reason, therefore, to suppose that the
range of this potential is restricted to the first
shell. Another problem is that such an oscillatory
potential is very difficult to explain physically.

It should be emphasized that the potentials which
we have just discussed only represent the situ-
ations where our proof of the inconsistency of this
model and the Ga(As, P): N data breaks down. This
by no means suggests that the model is consistent
with the data in these cases —such consistency should
be investigated through calculations.

We have, therefore, shown that, except possibly
for rather pathological potentials, the experimental
energies in Ga(As, P):N cannot arise from the
nearest-nei ghbox shell model.

B. Ranges beyond the nearest-neighbor shell

In the last section, we showed that the experi-
mental nitrogen lines in Ga(As, P):N cannot arise
from an attractive, nondecreasing potential cen-
tered at the impurity site whose range does not
extend beyond the shell of nearest-neighbor cells.
In this, we argue that such a potential producing
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(H, + V') i%I&=E',. l4',.&, (18a)

where H, denotes the Hamiltonian of the perfect
crystal and l4",& and l4",& correspond, respective-
ly, to the ground state and a nondegenerate excited
bound state of the impurity potential.

We can always define a constant potential V which
is nonzero in exactly the same region as V' and
zero elsewhere. Along every equipotential sur-
face of V', Vis also constant, so that the two
potential energies have the same symmetry. The
corresponding Schrodinger equation is

(H, + v) l 4,&=E, . (18b)

where l4'0& denotes the ground state.
The point here is to show that, if we idenfify Eo

with Ez~x, then E', -Eo decreases monotonically
with increasing range until E~ =EN& if the range is
sufficiently long. We adjust V, therefore, until

these lines cannot have a range less than that of a
square-well potential to which the effective-mass
approximation is applicable (i.e., a range -20-25
A) 19,22

The logical sequence begins with the argument
that, of all nondecreasing, attractive potentials
o'f the same range, symmetry and ground-state
energy, a constant potential (i.e., a "square well"
which is not necessarily spherically symmetric)
produces. the first excited bound state of lowest
energy, (i.e., highest binding energy). Next, we
show that, of two square-mell potentials with the
same ground-state symmetry and energy, the one
with longer range produces the lower excited state.
From this, we reason that, if we can identify the
experimental energies EN~ and ENz with bound
states of a square-well impurity potential whose
range is long enough for the effective-mass ap-
proximation to be valid, '" then there is no in-
termediate-range potential of shorter range whi:ch

can fit these energies. We complete the discus-
sion by referring to the fact that the experimental
data has been described by a square-well potential
with a range of 20-25 A, ' '" so that no potential
of shorter range can produce the experimental
lines.

The argument 'rests upon the assumption that an
excited state of a given symmetry is less localized
at the "origin" (i.e., the impurity site) than is a
state of the same symmetry of lower energies (i.e. ,
higher binding energy). Also, we assume that the
experimental energies can be identified with the
nondegenerate ground and an excited state of an
impurity potential which couples only to the lowest
conduction band, as in Eq. (2).

Consider an attractive (i.e., negative) nonde-
creasing impurity potential, V' of finite range
whose eigenstates obey the following equation:

Since ED —Eo 0 the inequalities are not satisfied
if V'& V for all r. There must exist some equi-
potential surface along which V' = V. This surface
separates the range of the potential into two re-
gions. In the one closer to the impurity site, which
we denote as region I, V- V' ~0 because of the
nondecreasing nature of V'. In the exterior re-
gion, or region II, we have V- V'(0. Because
(4", l

V —V'l4',
&

~0, 4,'(r) —= (rl4",& must be more
concentrated in region I; on the other hand 4',(r)
must be more localized in region II. This is phys-
ically reasonable since a square well state must
be less localized near the origin than the corre-
sponding state of a more localized potential.

The difference in energies between E, and Eo ls
given by

(E, -Eg&@, l +0& = &~.IH. + v- (H. + v') I@',&

=&@,l
v- v'le,'&=o. (19c)

In Eq. (19c), we see that the larger concentration
of 40(r) in region I is exactly balanced by the lo-
calization of Co(r) in region II. Or, to put it an-
other way, if we fix V and vary V' keeping Eo
fixed, the smaller the value of V- V' (that is,
the less deep V') in region II, the more localized
4', (r) in region I.

Now, since E', )E', , the wave function 4",(r) is
more spread out than is 4t(r). This property:can,
of course, be considered a reflection of ortho-
gonality and implies a lower proportion of l4",(r) l'
in the region where l@0(r) l' is large (i.e., the re-
gion of deep potential, near the impurity site) than
in region II. We make, therefore, the physically
reasonable assumption that

&e,'Iv- v'leo&, - &e, l v v le, &, oo, (20a)

(+llv' VI+'&~- &MDIV' —vi@0&rr)0, (20b)

where the subscripts I and II denote integration
over the corresponding regions. Equations (20)
presume that the states are concentrated mostly
within the range of the potential.

As a consequence of these physically reasonable
assumptions, we have

&e', l
v' —vl e',

&
- &e', l

v' - vie', & . (20c)

E, =ED. Because V and V' are assumed to couple
only to the lowest conduction band, the l4;& and
l%", & are derived solely from conduction-band states
and form complete sets with respect to these band
states. We can, therefore, apply the variational
principle to derive

Eo~(4olHo+ vl4", &=ED+(Col v- v'i%0), (19a)

(@,l v - v'[0, &
-E, -E', (4 ',

l v —v'l 4",& .
(19b)



32lO GEOB, GE G. K LEINI AN 19

lz.(-f@~)-z]&HI+& + Q &It I v IIt'& &ll'I+& =0,

(21)

where the derivative is evaluated at lattice site R.
The assumptions we have made, however, are gen-
eral and motivated by fundamental quantum me-
chanical considerations. '

Consider a potential energy

V, —= V+g(V' —V), (22a)

where g is a coupling constant, 0&g&1. This po-
t'ential is intermediate between V and V' (i.e.,
V, = V and V, = V'). Define normalized eigenstates
I4, (g)& such that

(If. V, ) lc, (g)&=w,-(g) lc, (g)&,

Ie,(1)& =—Ie'&, w, ,(1)=z', , —

Ie,(1)& =-le', &, w, (1)-=z,'.
(22c)

(22d)

Therefore, I4~(1)& and
I 4,(0)& are derived from

the same one-dimensional irreducible representa-
tion of the symmetry group of the potential as I4',

&

(i.e., V, V', and V have the same symmetry).
For g=0, we define

I4, & =Ic,(o)&t z, -=w, (o). (22e)

The point is that if we can identify the experi-
mental energies with two- nondegenerate states E',
and E~ of an assumed potential V' then we can al-
ways make the correspondence in Eqs. (22). This
does not guarantee that I+,&

will be bound; if,
however, we can show that E, ~E', , then the cor-
respondence is well defined since I+,) will be
bound.

From an elementary theorem, 4' we know that,
since (C,.(g) I C, (g)&=1,

d W, (g)=&c,(g)lv'-Vlc, (g)&,

w, (1) -w, (o) =z', -z,

0

(23a)

The reasoning leading to Eq. (20c) is independent
of our specific choice of V and V' andonly requires
that we can divide V'- V into two regions, in
one of which (i.e., region I, in our case) V' —V - 0~

and in the other (i.e., region II) V' —V~o. Hence-
forth, we assume the validity of Eq. (20c) for any
pair of such potentials.

For an impurity potential in a crystal, these
statements make sense within the context of the
Wannier r'epresentation, as in either Eq. (2) or its
differential analog. " We have

W,(1) -W, (0) =zo-WO(0)

dg 40 g V' —V 40g
0

(23c)

z, -z, o- dg&e, (g)lv' —vie, (g)&=z, w, (0).
0

(25a)

Therefore, under the condition that the ground
states of V and V' can be derived from one an-
other through Eqs. (22) and (23) (i.e. , they have
the same symmetry), we have

(25b)

In applying these results to the physical situation
obtaining in Ga(As, I?):N, we have few restrictions.
Suppose that we can associate N~ and N„with the
ground and an excited state, respectively, of a
given symmetry (i.e., I", symmetry, as discussed
in Sec. IIA) produced by a specific nondecreasing
potential, V'. In order to study the evolution of the
states as a function of range, we construct all non-
decreasing potentials V of longer finite range which
have ground states of the same symmetry and
whose ground-state energies are equal to-EN~. By
the same argument which allowed us to divide the
range in which V' —VA0 into a positive region (i.e.,
region II) and a negative region (i.e., region I) for
a V which is constant, we can make the same div-
ision for a V which varies (but does not decrease)
and which has longer range (we consider this a
definition of V). From Eq. (25b), we see that the
excited state energies for these longer-range po-
tentials decrease with increasing range (i.e., the
longer the range, the more states which are
bound4').

From previous work, "we know that the ex-
perimental energies can be described by a spheri-
cal square well potential for which the effective-

We have refrained from discussing the evolution
of I 4o(g) & as g approaches zero. If, however, the
ground states I4', & and I%0& are derived from the
same one-dimensional irreducible representation
of the symmetry group of the potential, then I 4,(0)&
=I%'o&. This is reasonable since these are nonde-
generate eigenstates corresponding to the same
symmetry group. We can, therefore, identify
IC', (g)& with the ground state of H, +V~. From Eq.
(22a), in region I, V, -V. On the dividing surface
between regions I and II, V, = V. Therefore, the
potential V satisfies the conditions leading to Eq.
(20c), so that we can write

(4',(g) IV, —VIC', (g)& o &4',(g) IV, —Vlc',4)&, (24a)

V, —V =g(V' —V) . (24b)

Applying Eqs. (24) to Eqs. (23), we have
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mass approximation is applicable (i.e., the range
-20-25 A). In particular, N» corresponds to the
nondegenerate ground state of I", symmetry which
is associated with X and N& corresponds to a non-
degenerate excited state bound to I' [i.e., the low-
est (F,) effective-mass state associated with I'].
Any other nondecreasing potential (whose ground-
state energy is equal) of the same (long) range
must have a corresponding excited state of higher
energy, from Eq. (25b). These remarks are in-
dependent of symmetry since the square-well
states are nondegenerate and will not be split if
we add a small (e.g. , vanishing) potential of lower
symmetry. Obviously, any potential of shorter
range whose ground state has the same symmetry
and energy E&x has a yet higher excited state.
Therefore, the range of 20-25 A should be thought
of as a lozeex limit.

In deriving these results, we assumed that the
ground state of the intermediate-range potential
V' can be derived from that the "stronger" poten-
tial V (i.e., either a square-well or longer-range
potential) in the sense of Eqs. (22) and (23). If
Eq. (20c) is valid, then the states of V must keep
the same order in energy as those of V' from
which they are derived [i.e., the derivative in Eq.
(23a) is always greater for the excited state than
for the ground state, so the excited-state energy
must rise more sharply and fall less steeply than
that of the ground-state as we change g from zero
to unity]. It should be emphasized that the criter-
ion for the V which we select is that Eq. (20c) be
obeyed, i.e., that most of the probability for the
excited state be within the range of the potential-
and this is always possible. Therefore for 1",
ground states of V', Eq. (25b) seems to be valid.

The above reasoning fails if the ground state of
the intermediate range potential is not of I', sym-
metry. But, then, by Eq. (4b), this state cannot
account for Nx.

III. CONCLUSIONS

Two of the experimentally measured nitrpgen-
line energies in Ga(As, P):N (i.e., Ex» and Err
in Fig. I '0'~) seem to be associated with the in-
dependent conduction-band minima X and I', re-
spectively ' ' ' '"'" These have been ex-
plained theoretically in terms of states arising
frpm a lpng-range njtrpgen pptentjal ' and states
produced by an intermediate range nitrogen poten-
tial." The possibility of such a strain-induced
long-range potential implies important consequenc-
es for studies of impurity-induced lattice relax-
ation in semiconductors. It is fundamentally im-
portant to understand the extent to which the nitro-
gen data is consistent with intermediate-range, as

opposed to long-range (i.e., 20-25 A), potentials.
Our basic conclusion is that it is not, except, per-
haps, for potentials which are difficult to justify
physically.

In Sec. IIA, we make as general an examination
as we can of a generalized version of a model in-
troduced earlier, ' an attractive potential limited
to the nitrogen site and the first shell of nearest-
neighbor cells. We find that such a model cannot
describe the measured energies. The basic reason
is that the eigenstates are delocalized in k space
and, therefore, involve both the I' and X minima.
They cannot be independent unless their energy
separation is sufficiently large so that, in r space,
the deeper state is localized near the impurity and
the more shallow state is concentrated in the shell
(i.e., in k space, the deeper eigenstate is relatively
Qat and the shallower is peaked near the conduc-
tion-band minima —a result of the characteristic
[E -E,(k)] ' dependence). For the band structure
of Ga(As, P), we find that the experimental ener-
gies do not fulfill the energy-separation criterion
and, therefore, cannot be described by independent
eigenstates of this model. To derive this result we
introduce a new, soluble model (which we describe
in the Appendix) of the Wannier-space Green's
function of Eq. (1c) (i.e., the result also holds true
when we use a Green's function derived from pseu-
dopotential band calculations" ).

When we include physically reasonable nonzero
intershell matrix elements, we find that the two
eigenstates are again coupled, so that the above
conclusions of inconsistency apply also in this
case.

The nearest-neighbor shell model can be thought
of as. a longer range version of the single-site
Koster-Slater model, ' '"which we can think of
as producing at most one bound ground-state and an
excited state of infinitely high energy. As we
transform the latter model into the former by ad-
ding a shell, we move the excited state down to a
finite energy. .

As we increase the range still further by adding
yet more shells (always keeping the ground state
energy equal to Ex„)does the excited move down
still further? In Sec. IIB, we answer this question
affirmatively. If we can vary the potential smooth-
ly so that we transform the ground state into that
corresponding to the longer range potential (both
with the same energy), then the excited state has
a lower energy in the longer-range case. This re-
sult is intuitively obvious, but we present a rather
general proof here. One of the consequences is
that a square-well potential has the minimum range
of all nondecreasing attractive potentials which
produce two such states of fixed energy.

Since we eventua1ly reach the domain where the
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effective Inass approximation is valid by adding
enough shells, we see that if the energy difference
is still too large in this long range case, then it
never agrees with experiment for a. shorter range.
Since the data can be fit '"'"to a square-mell
potential of range 20-25 A, me see that this value
should be thought of as a louver limit. ""

The reasoning presented here breaks down if the
potential has two minima (e.g. , one at tbe impurity
site and one in tbe first shell). This type of oscil-
latory potential is hard to justify physically if one
assumes that it arises from the impurity (so that
it should decrease more or less monotonically with
increasing distance from the nitrogen). If such a
potential exists, however, it supports our con-
tention that the impurity induces large relaxation
of the lattice.

Another possibility is that such an oscillatory
potential is produced by effects not associated
with nitrogen (e.g. , such as disorder) and that the
impurity has favorable binding energy to enter
such a region. The short range core' would then
allow excited states to be observed 9'2 because
of the high (k=0) recombination probability. Since
such states have &0~ been seen with other impuri-
ties, we discard this possibility.
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verse components, respectively (note that this con-
vention is the reverse of that usually used), and

K, , represents the k position of the / inequivalent
minimum of the j type (e.g. , there are three mini-
ma at I). The quantity g represents an energy
midth 0+ in the pure crystal.

We can, therefore, express Q„asa sum of con-
tributions from each minimum,
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APPENDIX: SOLUBLE MODEL OF THE CRYSTAL
GREEN'S FUNCTION

Here we describe the model used in Sec. IIA and
Figs. 2-4 for the Green's function in the Wannier
representation [i.e., Eq. (1c)] 'or the lowest con-
duction band,

0
G~(R, O, E) =

(2 ),
elk R

F E, (k) + ig

where Q =+a' is the volume of a unit cell, and the
subscript BZ denotes integration over the first
Hrillouin zone.

We model each inequivalent minimum by a para-
bolic dispersion relation,

E,(k) =E;+k' - '+—-"
fP2 ~g Pl pJ

z, -=E,(K, ,),
q, =-(k-K, , ) K, , /A. , „

q„—= l
k —K. —(K, ,/K, ,)q, ~.

(A2a)

(A2b)

(A2c)

(A2d)

The symbols s and ll denote longitudinal and trans-

» Eq. (ASc), we display explicitly that we have
transformed from k space where the energy is el-
lipsoidal, to p space, where it is spherical. In
this transformation, the vector. R is charged into
R.. . whose magnitude is given in Eqs. (13g) and
(A3g). The definition of the p vector [i.e.,
p~ ——k (m,*. /m )"' and p~, =—k„(mP/mi)~&] involves
the masses, which accounts for the appearance of
mP, which is defined in Eqs. (13f) and (A3h).

The function Ei appearing in Eq. (A3d) is the
exponential integral of complex argument

Q

E,(Z) =- dg
z u

(A4)

where Z is a complex number.
The quantity p; is defined by the requirement that

the volume in k space contain the number of states,
N;, associated with the j point, so that, if g =0'
(as in all our calculations),

p, =1/a(247''X, /n, „)"', (A5)

where n„,.„symbolizes the number of inequivalent
minima associated with j.

Finally, the presence of the quantity g; in Eq.
(A3b) allows the possibility of phenomenologically
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accounting for scattering processes which limit the
lifetimes of states in the j minimum. Notice that if
g,. x 0, Im[G„]e0 in the gap (where Im represents
the imagine, ry part) in contrast to the case when

0+

For usefulness in possibly applying this model
to other situations we present some simple limit-
ing cases, ~2'22

Im[E(P, m, E, , E, 0, E)]= — —,—sin(s&A) e(E E,), . (Aea)

Im[F (P, m, E, , 0, 0, E)] = —2™,s,e (E-E;), (A6b)

P(P, m, &, , Og, E)=—,— PR —.&; 1n ' +1m I,
Qm I PA —t,.
51T PA+ /,

(A6c)

s, =-(2m/n')(E -E,), f, -=E(s2,. + 2fmg/I')'~2. (A6d)

Previous soluble models applied. to this prob-
lem' either readily supplied G~ for A =0, but
not for finite 8 or calculated G~ for AWO from a
free-space Qreen's function' so that the R =0 val-
ue diverged because of the infinite k-space volume
in Eq. (Al). We present the first soluble model in
which the 8 =0 and A WO values of Qo, are con-
sistently derivable from one another.

The results of pseudopotential band-structure
calculations were used to calculate Go, for
Ga(As, P)." These calculations are expected to
represent the total conduction-band density of
states much more accurately than in the simple
parabolic model of Eqs. (A2) and (A3). The latter,
however, employs the experimentally determined
effective masses and energy positions of the mini. —

ma. It should, therefore, be rather accurate close
to the edge of a minimum.

Deep in the gap, the Qreen's function is insensi-
tive to the details of the density of states. Near
the edge, its structure (e.g. , the discontinuity in
the derivative') is determined by the band struc-
ture near the bottom of the band. The transition
between these two regimes is governed by the ratio
of E -E, to the band width. In Ga(As, P) for
x-0.035, E~ -ENx&0. 2 eV and the band width -3.0
eV, so that the model presented here is probably
accurate for these energies. It should be also
noted that this model is very sensitive to the choice
of masses (i.e. , the band structure within 0.1-0.2
eV of the band edge) as shown in Figs. 2 and 4(a).
With the correct choice of masses, therefore, this
model may describe the shape, if not the magni-
tude, of the Qreen's function at these energies
more accurately than a band-structure calcula-
tion, "which is accurate on a grosser scale.
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