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vvith a reconstructed silicon vacancy
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We have extended our pseudopotential method and carried out a self-consistent calculation of electronic
states associated with a single vacancy in silicon, with a particular emphasis on the problem of lattice
reconstruction in the vicinity of the defect. We find that the vacancy with three dangling electrons, i.e.,
Vs+, has a localized state close to the valence-band edge. We show that the nonspherical part of the vacancy

potential, which is related to the rearrangement of the electron charge density along the bonding directions,

plays an important part in the quantitative assessment of the position of the bound state in the gap. The
lattice reconstruction consists of a symmetric, outwaI'd displacement of the nearest-neighbor silicon atoms by
about 0.1 A, and a similar tetragonal displacement that gives rise to a characteristic splitting of the

degenerate t, state in the gap. The final lattice configuration is deduced from minimum-energy

considerations. The net reduction in the total energy associated with the lattice reconstruction is about 1 eV.
A critical discussion of the results is given in the light of existing theoretical and experimental evidence.

I. INTRODUCTION

There are several ways in which the regularity
of a perfect lattice may be destroyed. If wIE. , for
instance, remove a host atom and replace it with
a foreign one, we can model such an event by writ-
ing the total Hamiltonian as H, + V, where H, rep-
resents the perfect-crystal part and V is the con-
tribution of the defect. In the limit V-1/e, r, the
effect of Ho i.s to engage primarily contributions
from a small fraction of the Brillouin zone near
the principal. band minima and the solution of the
Schrodinger equation resembles that of a hydrogen
atom immersed in a dielectric medium. ' How-
ever, in the presence of a strong, short-range po-
tential V, the Schrodinger equation must' be solved
numerically. The dominant role of the short-range
forces in the formation of localized states cannot
be modeled by assuming that the properties of the
defect are determined by those of the free atom,
with the effect of lattice environment taking part
only as a perturbation. Calculations based on
cluster schemes show that in covalent crystals like
silicon it is not sufficient to describe the charac-
teristics of the defect by surrounding it with a few
nearest-neighbor atoms in the lattice. ' ' It has be-
come apparent that the effects of Ho and V should
be treated on an equal footing. Just as the success
of the hydrogenic model lies in a skillful exploita-
tion of the long-range character of V, the theory
of localized ("deep" ) states must benefit in full
from the short-range nature of V, and the present
knowledge of the band structure of perfect crystals.
Recently, we have performed pseudopotential cal-
culations which demonstrate that given Ho and V,
a convergent solution of the Schrodinger equation
can be obtained. ' ' Our findings compare favor-

ably with subsequent calculations carried out by
other authors in a similar spirit. " The short-
range interactions also affect the electron distri-
bution in the vicinity of the defect and a self con-
sistent calculation of the total charge density, al-
lowing for lattice relaxation, must be performed.
From a change in the total energy of the system,
the most energetically favorable conf iguration can
be found. This part of the calculation is much less
understood, although some insight has been pro-
vided' by Louie et al. ' These workers computed
the electronic structure -of a vacancy in Si within
the self -consistent-pseudopotential approach, using
a large-unit-cell model. Although the method of
Louie et al. does not allow for a very accurate de-
termination of the position of bound states in the
gap, it does show that the average vacancy poten-
tial. is not very different from that of a neutral
pseudoatom extracted from band-structure calcu-
lations.

The vacancy problem in Si is an ideal one to
study because it is relatively well understood ex-
perimentally. In a series of elegant ESR experi-
ments, Watkins and Elkins and %atkins" "have
shown that a vacancy in Si has at least three dif-
ferent charge states, Vsi Vsi and Vs& with lev-
els in the gap separated by about 0.2 eV. The
nearest-neighbor silicon atoms relax from their
perfect-lattice positions and the spectra indicate
an angular displacement of -7' from the perfect
(ill) to (100) directions. The stress dependence
of the ESR signal points to a Jahn-Teller splitting.
The bound state associated with V,', appears to be
lying very close to the top of the valence band. '~'"

In this paper we present a study of the vacancy
in silicon, with particular emphasis on the prob-
lem of lattice distortion. We have extended our
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pseudopotential scheme and carried out a self-con-
sistent calculation of the electronic states in the
reconstructed silicon lattice. We compute the
changes in the total energy of the system in order
to assess the minimum-energy configuration.

In Sec. II we outline our approach. We define our
objectives in quantitative terms and argue that it
may be advantageous to divide the problem into
several parts and tailor the methods of dealing
with them separately. In Sec. III, we present the
results of our calculation concerning a positively
charged vacancy in silicon. In Sec. IV, a critical
assessment of the results is given, and the paper
is concluded with a brief summary.

II. SELF-CONSISTENT DEFECT CALCULATIONS
IN A RECONSTRUCTED LATTICE

The problem of solving a Schrodinger equation,
(H, + V)4= e4', with a strong short-range potential
V, can be divided into three parts. (i) The band
structure of the host crystal is generated and a
trial potential V chosen. The- bound states in the
gap are then computed. (ii) The total energy and
charge density in the presence of V are calculated.
(iii) The potential V is readjusted and the calcu-
lation repeated until a self-consistent result is ob-
tained. The reconstruction of the lattice is then
allowed for and the process is reiterated until a

. minimum-energy configuration is found.

A. Localized states

It has been shown how to solve the Schrodinger
equation, given the perfect-crystal band structure
and a localized potential V. The details of the
method of calculation have been published' ' and
will not be described here. We begin with the one-
electron Schrodinger equation,

(2.1)

where H is split into two terms,

grating we obtain a set of linear equations,

A„,-„,(E„,-„,—e)

Je z dk A„-„dr 4 „*,1,(r }V4„-„(r) = 0,

0@n' k' n' k'@n' ]c' ' (2.5)

A complete set of localized functions g is em-
ployed so as to rewrite the matrix elements in
(2.4)." Since for such a set we can writ. e

dr'6 r —r' = ' dr'g* r'g„r
m

E(l. (2.4) is replaced by

A„,g,(E„,-„,—e)

(2.6)

~ g P JdkA„ f"(n', k')f (n, k)=0, (0.7)

where

f„(n,k)= f drd"(r)k'r'(r)0„((r). (2.8)

The impurity potential V'enters in a factorized
form, i.e. , as a product ViP2VxP' or, more gen-
erally,

V= V,.V~. (2.9)

For a multicenter defect several sets of functions
may have to be used. Let us now define

dkd„ f (n, k)
BZ

(2.10)

so that E(l. (2.7) becomes

(2.4)
where E„,-„,represents the relevant energy asso-

t
ciated with a reduced wave vector k' and band n'
such that

B=Ho+ U. (2.2) A„,q,(E„,-„,—c)+ Q a f (n', k')=0. (2.11)

A„kC„gdk
n

"BZ (2.3)

where the integration extends over the volume of
the first Brillouin zone; n indicates summation
over all bands. Inserting the expansion of (2.3) in
(2,1), multiplying from the left by C*„,-„,, and inte-

Here H, represents the perfect-crystal Hamilton-
ian and U stands for the extra potential introduced
by the imperfection and its environment. The wave
function 0 is represented in terms of an expansion
in the complete set of host-crystal eigenfunctions
4„q

If we look for states with energies & in the for-
bidden gap of the host crystal, i.e. ,

E„,-„,-&+0 (2.12)

The bound states must occur at energies e such
that

we can divide (2.11) by E„,-„,—z, multiply byf„,(n', k'), and sum over all n', k' to obtain a, new
set of equations for the g 's:

dk
f*(n k)f rd&n k) 0 (2 13)

z
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det II„, +Q f dk ' f ' ' =D. (214)
B7 n% —&

The wave function 4 in the wave-vector space is
determined via the expansion coefficients of Eq.
(2.13) which are related to g„,c,.:

f*(m, k)
nyk ~ m

fn n~k
(2.15)

The wave function at a particular point r, in real
space is generated numerically by computing

e(r~) = Q ) dkA„-„e„-„(r~).
BZ

(2.16)

Symmetry considerations greatly reduce the
amount of computation.

It has been shown that typically ten bands and 41
x 48 general points in the first Brillouin zone con-
stitute an adequate sample to produce a convergent
solution. About ten functions g are required. They
were chosen to be represented by products of the
associated Laguerre polynomials and spherical
harmonics. The convergence in g's is optimized
by varying the range of the polynomials according
to the range of the potential V."

As the Eqs. (2.13) and (2.14) indicate, the
Green's-function formulation does not remove the
sums over the wave-vector space. Indeed, each
element in (2.14) contains such a sum, i.e. , the
sum over all sampling points and all bands. As a
computational exercise, these sums can be eval-
uated in seconds and because g's are basicaliy
polynomials, the sums are in fact evaluated only
once for each power of r and each angular momen-
tum component. This formulation greatly simpli-
fies the convergence procedure in comparison with
the requirements normally present in techniques
similar in spirit (e.g. , Koster-Slater" method).
In the presence of a strong potential V, the inte-
grals f (n, k) are large numbers. Also the sum

Q»1/(E„1-e) is very slow to converge. "'"
Fortunately, the terms under the sum in (2.14}
must, to a large degree, cancel as we add con-
tributions from valence and conduction bands, and
from various sampling points, reflecting differ-
ent symmetry relationships between the localized
functions and the Bloch states.

The large numbex of bands required shows quite
clearly that the "binding energy" &, normally de-
fined with respect to the nearest band edge, is a
result of cancellati. ons of terms much larger than

The composition of the wave function 4 also
exhibits this trend. '~ It follows that the localiza-
tion of the wave function is &0t necessarily a sen-
sitive function of the actual magnitude of &, since
the localization cannot be thought of in terms of

(H, + V)4= ~4

can also be written as

(
V I 4')(4" I

(0 '
I V I @')

Expanding 4 in Bloch states (2.3) leads to

(2.17)

(2.18}

1 l(4 -„IVI@') I'
(O'I Vi@') ~ E„-„—e

n~k

(2.1S)

which is automatically satisfied if 4 -4. Having
established 4' and &, we can seek &+ 6e associated
with V+ 5V by repeating (2.18) until after the nth
iteration 0"=4"' and q"= &" '. The procedure in

(2.18) is so easy to execute that practically any
number of iterations with any 5V are possible.

the magnitude of & only. Indeed, the wave function
is made up of a large number of coefficients A„-„,
coming from an area of a width of -30 eV.'

Let us suppose that we wish to solve (2.1), al-
lowing for lattice reconstruction. It means that V
becomes a multicenter ter'm and the length and
complexities involved in executing the above equa-
tions increase dramatically. These difficulties
are amplified even further by self-consistency re-
quirements which introduce more angular struc-
ture into the potential and demand that the whole
calculation be repeated many times. Much of the
complexity is closely related to the choice of the
functions g and it may well be that functions of a
more sophisticated form would give an improve-
ment. However, the completeness requirement is
an important one and makes a suitable mathemat-
ically vigorous substitute for our g 's difficult to
find. It means that more or less plausible approx-
imations would have to be made at this stage, by
choosing a new set of functions g in a semiempiri-
cal way, and restructuring the procedure accord-
ingly.

It is borne in mind that the overall strength of
the corrections to V due to self-consistency and
lattice distortion, 5V, must be typically small
compared to U. Since it has been shown" that
changes in the binding energy measured from the
band edge, caused by a small adjustment of the
potential V, do not drastically alter the form of
the wave function 4, such a proposition is an at-
tractive one. For one can simply take the domi-
nant, one- or two-center part of V and solve the
Schrodinger equation with great accuracy follow-
ing the established procedure [Eqs. (2.1) and

(2.14)]. Having found z and a set of A„-„'sasso-
ciated with a particular bound state, we can com-
plete the calculation following a different, much
simple~ and still quite rigorous procedure. '»

The Schrodinger equation.
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B. Self-consistent potentials

In the absence of translational symmetry, the
methods normally used to generate self-consistent
pseudopotentials do not apply and the problem of
finding a satisfactory solution may be a difficult
one. For periodic systems, dielectric screening
(i.e. , perturbation theory) has been quite a suc-
cessful substitute for exacting and more laborious
procedures. The pseudopotential representation
of potentials for atoms in perfect lattices are
smooth and weak, and they add together in such
a way that the final crystal potential is rather
flat. "'" Also, the relevant contributions partici-
pating in ihe screening process for such a system
are the Fourier components of the potential at the
first few reciprocal-lattice vectors only. In par-
ticular, the large components near k=0 are not

(@„., ),. l V I C,- ),-) 4n„~„@n,~, + C.C.
n& g& nsit t

(2.20)

In the notation of Eqs. (2.1) and (2.13), we would
write this as

needed. In the vicinity of a defect, the perfect
crystalline symmetry is broken and matrix ele-
ments of the impurity potential V are in principle
finite at any point in the wave-vector space. All
those terms then enter the screening formalism.
If V is strong and of short range, the total poten-
tials change abruptly and the perturbation formal-
ism might be expected to break down. The elec-
tron screening potential is related to a change in
the valence charge density 5p which is proportional
to 23

(2.21)Qf"(n', k')f„(n",k") E —E„„„..-„„.,.)e„„-„„c„,)+f:.c.
nl gt n)l

'klan

t

Here z', k' and z",k" refer to occupied and unoccupied states, respectively. If we decided to use the
Green's-function technique to compute the change in the valence-electron charge density, the leading term
directly comparable to those in (2.20) and (2.21) becomes

n" k" n' k" n" k" n' k'tPf (n", k")(f'(n k')+Y A ',,;f„(nk)„,
n' 0'n" k" n~Q

(2.22)

It is apparent that although each contribution in
the sum over z, k may be large because of the
strength of V, the sum should reflect the cancel-
lations familiar from our observation in the above
paragraphs, and the final. result should not be too
different from that given by the approximate ex-
pressions in (2.20) and (2.21).

The wave -vector -dependent dielectric function
e(q) has been studied extensively. '4 " In spite of
these efforts, e is probably not known with more
than 101-15~/o accuracy. It is doubtful that we
could aim at obtaining charge densities in imper-
fect systems with much greater precision. Even
if much of the calculation can be done in the wave-
vector space, the results must be processed at
several stages and an additional error is inevit-
able. It is with these considerations in mind that
we must approach any assessment of numerical
calculations involving the charge density in the
presence of a localized potential.

The most detailed study of self-consistency was
performed by Louie et a/. ' who employed a large
unit cell of 54 atoms to compute the sil. icon vacancy
potential. The average potential associated with

a neutral vacancy in the unrelaxed lattice came out
very similar to that of a neutral pseudoatom. The
changes in the charge density outside the nearest-
neighbor distance were small. This suggests that
a similar result could be obtained with much sim-
pler means. In Fig. 1, we compare the potential
of Louie et al. with that. obtained from our calcu-
lation in which every primitive cell of Si contains
one vacancy. Since the procedure for generating
the potential was exactly the same in both cases,
the comparison may be taken to indicate that at
least the dominant contribution to the change in
the charge density comes from within the Wigner-
Seitz cell of the defect.

The calculation of the electron charge density
requires that a sum of all changes in the valence
band be evaluated. The localized potential can
give rise to states degenerate with the solutions
of the perfect-crystal Hamiltonian. These reso-
nances must also be taken into account since their
contribution to the total charge density might be
significant. On the other hand, a precise position
of such a resonance in the band is not really im-
portant.
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The solutions of the Schrodinger equation at the
sampling points which span the width of the valence
band should also yield a change in energies of all
occupied states included in the sample. Hence the
problem of self-consistency is inseparable from
the problems associated with calculations of the
lattice distortion and total energy.

C. Total energy of a system containing a defect in

a reconstructed lattice

In a reconstructed lattice, the defect potential
becomes a complicated function of a multicenter
character. '"" The practical considerations must
take into account this fact, since we would pay a
high price for relying on symmetry to simplify
our computations; in some cases, ave must study
displacements which leave us with an "amorphous"
block of the material to deal with. Since we have
independent means of solving the Schrodinger
equation for bound states, and since only a few
points in the Brillouin zone seem sufficient to
carry out the sums over the occupied states in the
valence band'" "the most attractive proposition
is to turn to the direct-matrix problem in Eq. (2.4).
It is very convenient to be able to set up the ma-
trix elements of the potential V in the wave vector
space, where the multicenter character of V pre-
sents no difficulties. ' With thirty points in the
Brillouin zone and including the eight lowest bands,
the computer returns 30 x 8 eigenstates which are
linear combinations of 30 x 8 unperturbed eigen-
functions. The integrals over the valence band are
then constructed from these data, giving the elec-
tronic charge density and the band-structure con-
tribution to the total energy, i.e. , 2+E,.(occ).
Since in summing over all occupied states we count
the electron-electron interaction twice, we must
subtract j V„pdTonce in the expression for the
total energy. The procedure of carrying out a
self-consistent pseudopotential calculation of
charge densities is formally the same as that for
the large-unit-cell scheme of Louie et al. ' From
a practical point of view, our scheme is much
simpler to execute and a very general one, so that
a defect complex of agcy zinc-blende lattice can be
studied with only minor modifications of the com-
puter program. Although the localized states in
the gap are also returned in the calculations, their
position on an absolute scale must be subject to an
error due to the dispersion of the kind discussed
earlier. ' However, the relative changes, i.e. ,
splittings and shifts due to small alterations in the
potential may be well represented. As pointed out
earlier, ~ the localized wave functions do not change
as significantly in such a process as one might
expect in the spirit of the effective-mass theory.

The changes in the energy of the individual
"sampling" states in the valence band, due to the
presence of a localized potential V, are typically
of the order of 1% or less for the sample of 30
points, and should give a good representation of
the change in the electron energy. It should be
understood that here we are, really interested in
the change in the total energy of the system asso-
ciated with the presence of a defect, e.g. , a va-
cancy, i.e. ,

SEE= 2 P 5E„,— V,5p dr+ 5E,, , (2.23)

where 5E„„Dprefer to the changes in one-elec-
tron energies and charge densities and V, is the
potential. related to the electron rearrangement.
The sum is over all occcupied states. 6E,, is the
energy of the bare ions.

In order to evaluate 6E~, we require the poten-
tial V at the sites of the displaced ions in the re-
constructed lattice. From Fig. 1 we can see that
at about the nearest-neighbor distance, the poten-
tial is a small fraction of its value at the maxi-
mum. The problem of finding a meaningful esti-
mate of V far from the defect is a formidable one
since the calculation at the long-wavelength limit
is strongly model dependent. Furthermore, the
charge density and the "bare" pseudopotential
must be converted from the wave-vector space
into the real one, hence enforcing an additional
error. The question of representing long-range
forces has been discussed at some length in a
similar context. "'"'" The magnitude of the po-

r(A)

-2—
V(Ry)

FIG. 1. Average self-consistent vacancy potentials,
from Louie (Ref. 9) (1.) and the present calculation (P)
described in Sec. III.
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tential at smal. l k is not important throughout the
calculation of bound states because of the domi-
nant role of the short-range interaction. How-
ever, 6E~ cannot be satisfactorily computed with-
out a good appreciation of V(r ) at large r.

The assessment of 6E~ is an essential part of
our task. In allowing for lattice reconstruction,
we have only the change in 6E~ to guide us as to
where the minimum-energy configuration occurs.
Fortunately, in the case of a single vacancy in
silicon, the formation energy Ef is already known
(-5 eV)." If we compute the first and second terms
in (2.23), 5E, , can be evaluated to give the experi-
mental E& and hence the "effective-screening" qz
at the nearest-neighbor distance. This semiem-
pirical value of the screening constant q& can then
be used —in the limit of small displacements —in
order to find changes in DE~ associated with vari-
ous modes of reconstruction.

III. NUMERICAL RESULTS

We have carried out a self-consistent pseudopo-
tential calculation concerning the localized states
associated with a vacancy in silicon, following the
methods outlined in Sec. II. In this section, we
will describe our numerical results. An assess-
ment of the work, a comparison with existing the-
ory and experiment, and discussion will be given
in Sec. IV.

We first consider the average vacancy potential
shown in Fig. 1 (P) and apply the Green's-function

formalism of Eqs. (2.1) and (2.14) to calculate the
bound states in the gap. T'his calculation is exe-.
cuted in the same manner as those described ear-
lier. Vile employ a sample of .41 general points in
the, th irreducible segment of the Brillouin zone.
The vacancy potential is spherically symmetrical
and positioned at the perfect-lattice site from
which an atom was removed. The point group of
the site is T„andwe recover a threefold-degen-
erate state in the forbidden gap. The g, state is
approximately 1 eV below the valence-band edge.
No attempt was made to locate this state accurate-
ly. The position of the t, state is shown in Fig. 2,
as a function of the number of bands included in
the expansion (2.2). The effect of scaling upon the
position of the bound state in the gap is shown in
Fig. 3. Here s=1 corresponds to running the pro-
gram with the potential of Fig. 1(P).

With our choice of the complete set of functions
g, the lowest t, state is exactly "p like" for a
spherically symmetrical potential V, i.e. , the
convergence only depends on the number of func-
tions g associated with a spherical harmonic of
/=1. The best result is shown in Fig. 4.

A sample of 27 points was chosen to represent
the volume of the Brillouin zone as uniformly as
possible and the linear equations of (2.4) were set
up employing the eight lowest bands. The input
band structure was derived from the best empirical
pseudopotential as was the case in the Green's-
function calculation. With the potential of Fig.

07

&06

FIG. 2. Energy of the
threefold degenerate T& state
in the gap, measured from
the top of the valence band
of the perfect crystal, as
a function of the number of
bands included in the ex-
pansion of the wave func-
tion. All remaining para-
meters entering the cal-
culation remain unchanged.
The method of the calcula-
tion is outlined in Sec. II,
Eqs. (2.1) and (2.15). The
vacancy potential is shown
in Fig. 1 (P).
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FIG. 3. Effect of scaling the vacancy potential of Fig.
1 (P) upon the energy of the t2 state as calculated using
the Green's- function method.
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FIG. 4. Bound-state energy as a function of the num-
ber of the localized functions g (Sec. II). Ten bands
were used in Eq. (2.3).

l(P), the threefold-degenerate (t,) state appears
at 0,89 E, above the valence-band edge. The qual-
ity of sample used in the calculation is indicated
by plotting the density-of-states histogram in Fig.
5. Our tests strongly support the results obtained
from studies on similar systems, indicating that
the choice of the sample has no —or very little—
effect upon the self-consistent procedure of com-
puting the potential V(r ).

The self-consistent potential consists of the
bare-model potential V, of Animalu and Heine, ""
represented by an analytic fit, ' and the potential
Ve associated with Dp pvacancy pyerfect' Through-

4-

0
I I I I I I I I I I I I I I I I I I I

-12-10-8 -6-4 -2 0 2 4 6 8 eV

FIG. 5. Perfect-crystal density of states used in the
direct-matrix calculation described in Secs. II and III.
The full-scale pseudopotential calculations give results
shown in the inset (solid line —nonlocal pseudopotential,
dotted line —local pseudopotential) from J. R. Chelikow-
sky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).

out the calculations it'is assumed that only one
electron is available to fill the bound states in the

gap, i.e. , three "dangling electrons" are accounted
for. As in the method of Louie et gl. , the charge
"accountancy" is automatically taken care of by
correct normalization, incorporated into the com-
puter program which performs the sums over the
occupied states via our sampling technique.

The valence charge density, along several di-
rections from the vacancy site, is presented in
Figs. 6-9. The curve A corresponds to the per-
fect-crystal charge-density distribution. The
charge density in the presence of the vacancy po-
tential of Fig. 1(P) is used to construct a new,
spherically symmetric potential for V~, . As ex-
pected, this potential was similar to that in Fig.
1(P). The final charge-density distribution ar-
rived at in this manner is shown in curves B,
Figs. 6-9. The effect upon the bound state in the

gap amounted to bringing the energy down by 0.2

eV. However, it can be seen from our figures
that the charge-density distribution is highly an-
isotropic. In particular, the departure from
sphericity is characterized by removing more
charge from the bond. We have, therefore, con-
structed a nonspherical potential which accounts
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100—

00—
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m
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FIG. 6. Valance charge
density (excluding that due
to the occupied state in the
gap), along the (111) dir-
ection (towards the near-
est-neighbor silicon atom).
(&) dotted line, perfect
crystal; (8) dashed Hne,
unreconstructed vacan-
cy {spher ical potential) ~

(~) dash-dot line, final
result corresponding to
the minimum-energy con-
figuration (point &, Fig.

14).

I
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for the computed charge distribution and which can
be fed into our program thanks to the fact that ma-
trix elements are computed in the wave-vector
space. The calculation was then allowed to con-
verge to achieve self -consistency and the result- '

ing charge density is shown in Figs. 6-9 (C). Ai-
though the departure from sphericity represents
only a small correction to the ave~age vacancy po-
tential, and its impact on the overall valence
charge-density distribution is almost negligible,

the position of the bound state in the gap is greatly
affected and the energy level is reduced to a posi-
tion 0.21 eV above the valence-band edge. The
modulus squared of the wave function associated
with the bound state in the gap is plotted in Figs.
10-12. Since the wave function is localized along
the "dangling bond" and does not seem to change
much with the change in the potential, such a large
effect upon the bound-state energy in the gap is
only to be expected. %e now proceed to find a

50-

Vl

FIG. 7. Valence charge
density along the (111)
direction. Notation as in
Fig. 6.

0 3
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60-

40

~ 20

FIG. 8. Valence charge
density along the (100)
direction. (A) dotted I. ine,
perfect crystal; (8) dashed
line, unreconstructed vac-
ancy (spherical potential);
(C) dash-dot line, unre-
constructed vacancy (non-
spherical potential); (D)
solid line, final result
corresponding to the
mini. mum-energy con-
figuration (point A,
Fig. 14).

r (au)

solution to the vacancy problem in the presence
of lattice reconstruction. We will consider three
modes of reconstruction, as illustrated in Fig. 13.
The group-theoretical. analysis shows the effect
of an axial field upon the t, level. '~ We will study
in great detail the displacements of the tetragonal
type (D,~) and "sample" the plane defined by direc-
tions 1 and 4, as shown in Fig. 14. The position
of the "perfect" (111)direction connecting the

vacancy site with that of the nearest-neighbor
atom @nd the experimentally observed axis shifted
by V' towards (100) are also shown. We carry out
self-consistent calculations, in exactly the same
manner as before, allowing for displacements of
the nearest-neighbor atoms along the lines 1, 2,
3, and 4. We plot the final positions of the bound
states in the gap in Fig. 15. As expected, in the
tetragon'al field, the threefold-degenerate state

60-

~ 40

cf

~ 20-

C$

FIG. 9. Valence charge
density, along the tetra-
gonal displacement direc-
tion connecting two near-
est-neighbor silicon atoms.
Notation as in Fig. 8.

r (au)
4
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30-

PIG. 10. Charge density
associated with the three
fold-degenerate localized
states in the gap.

/
/
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I (111) direction
II (T11) direction

III (100) direc tion

(&), (&), (C), and (&) have
the same meaning as in
Fig. 8. Note the overLap of
(B) and (&) dot-doubledash
Line.

splits into a singlet, marked I, and a two-fold-
degenerate state, marked II. The totally symmet-
ric displacements, inward (direction 4) and out-
ward (direction 3), are also shown. We have car-
ried out a less systematic sampling of the other
parts of the above-mentioned plane with results
confirming the trend shown in Fig. 15. Finally,
we compute the change in the total energy of the
system, following Eq. (2.23). Since the value of
the effective-screening constant qz is determined
by demanding that the formation energy E& is close
to the experimental value, we choose Ef-—5 eV

and find e&= 19, at the perfect-crystal nearest-
neighbor distance. The final result, i.e. , the
change in the total energy along the direction
chosen in Fig. 14, is shown in Fig. 16. If the ef-
fect of 6E, , is omitted, the absolute minimum oc-
curs for a symmetric outward displacement, of
about 0.1V of the nearest-neighbor distance from
the perfect-atom positions.

The trigonal displacement was also considered.
We carried out several calculations, displacing
the nearest neighbors as indicated in Fig. 13. The
results are similar to those obtained for tetragonal

30-
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FIG. 11. Final (case D)
charge distribution asso-
ciated with the onefold-
(dotted line) and twofold-
(dashed line) degenerate
localized states in the gap,
along (ill) (curve I) and
(111)(curve If).
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FIG. 12. Charge density associated with the localized
state in the gap (C) along the line of the tetragonal
distortion connecting the nearest-neighbor silicon atoms.

displacements. The trigonal field leads to a split-
ting of the t, state which is also indicated in Fig.
13. The gain in the total energy appears to be
smaller than that shown in Fig. 16. However, a
systematic examination of the trends was not per-
formed.

IV. DISCUSSION

It is not the prime purpose of this calculation to
establish precise positions of the bound states in

the forbidden gap. Neither the accuracy of the in-
put ("local"-model potentials) nor the precision
with which we are prepared to execute our calcu-
lations seem adequate for such a task. However,
we must ensure that the most important terms in

-01 00 0.1

y in units af al2/4

FIG. 14. Plane involving the vacancy and its two near-
est neighbors is shown in the inset. The directions 1,
2, 3, and 4 are thus defined, with respect to the perfect-
lattice (13.1) direction. The tilt of 7' is also shown. The
positions A and B correspond to the minimum energy
(A) and minimum gradient (AB) poi.nts. a is the lattice
constant.

the Hamiltonian have been correctly accounted for
so that the overall features yielded by the numeri-
cal experiment bear comparison with reality. For
it is the aim of this calculation to reveal the nature
of physical processes underlying the formation of
localized states. Strictly speaking, we wish to
capture the "signature" of the defect. One of the
most important factors here is the symmetry of
the system under consideration. In particular, we
would like to understand the magnitude of the ef-

//////////

gQP

2t

lp

~//r'//////
FIG. 13. Tetrahedral

(Tz), trigonal (C3„),and
tetragonal (D&) configura-
tions of the nearest-neigh-
bor silicon atoms are in-
dicated. The localized
levels associated with the
vacancy in a given envir-
onment are indicated sche-
matically.

1
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feet of lattice distortion and formulate the relevant
questions in quantitative terms.
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FIG. 15. Effect of the distortions 1—4 defined in Fig.
14 upon the localized levels in the forbidden band gap.
I, II, and III refer to the onefold-, twofold-, and three-
fold-degenerate states, respectively. The displace-
ments are measured in the units of the perfect-crystal
nearest-neighbor distance, 4 a&3. The behavior of the
lowest state along the path AB is shown in the inset. The
~= 0 point refers to the self-consistent solution before
reconstruction. The results are discussed in Secs. III
and IV.

r l

02 ~
Q)t3

L ET(eV )

FIG. 16. Change in the total energy 4Ez of the sys-
tem containing a positively charged vacancy (Vs~), for
displacements defined in Fig. 14.

A. Localized states

Both the Green's-function and direct-matrix
calculations indicate a t, state in the lower part
of the gap. In this study, no effort will be made
to narrow the errors by using Eqs. (2.17) and
(2.19) so that the position could be identified ac-
curately. It transpired that the overall charac-
teristics of the defect, i.e. , the localization and
form of the wave function as well as the effect of
lattice distortion, are insensitive to such details.
Although our computer power is far from being
exhausted by the demands posed by overall con-
vergence requirements, there is very little hope
of finally settling this matter at the present stage.
This is well demonstrated by the effect of intro-
ducing nonspherical potentials. Although there is
a systematic shift between the absolute positions
of the levels predicted by the Green's-function and
direct-matrix methods, both schemes show in very
much the same way that the position of the level
in the gap is sensitive to the changes in the non-
spherical part of the vacancy potential. This term
is very difficult to compute with precision because
it represents only a small part of the total poten-
tial and suffers most from inadequacies in the
numerical procedures. As we have mentioned
earlier, the nonspherical part of the potential is
related to the changes in the charge density lo-
calized on the bond between the vacancy and its
nearest neighbors. It is borne in mind that dif-
ferences in predicted absolute positions of the
levels in the gap between self-consistent calcula-
tions of similar convergence properties may be
largely due to differences in technical details of
handling the nonspherical part of the potential.
We have carried out a number of calculations de-
signed to test whether this ambiguous element has
any effect upon the ovexa/l pictor. e emerging from
Figs. 14-16. This pattern of the splittings, and
their relationship to the form of reconstruction,
is remarkably insensitive not only to the strength
of the average potential but also to the method of
handling the angular forces. However, we are
aware that the task of accurately locating bound
states with respect to the band edges is of general
importance since it enables us to assess the elec-
trical properties of the materials. In particular,
it is of interest to characterize the various charge
states of the defect. We will. present a detailed
study of the position of localized states in a sepa-
rate publication.
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8. Minimum-energy configuration

We have noted a most surprising insensitivity of
our predictions of the form of lattice reconstruc-
tion to the details of the potential and also, for
that matter, to any other details of the calcula-
tion. The change in the band-structure contribu-
tion to the change in the total energy, 5E~ —5E, , ,
always favors an outward symmetric displacement.
Although the magnitude of the displacement does
vary depending on the form and strength of the po-
tential, the predicted change in the position of the
nearest-neighbor atoms appears around 10%%uo-15%%uo

of the nearest-neighbor distance in all cases. The
effect of &E,, favors inward displacements and does
alter the position of the minimum-energy point.

As we can observe in Fig. 16, the difference in
the energy minima identified along directions 2-

and 3 is very small. On the other hand, the path
with a very small energy gradient, indicated in
the inset of Fig. 15 (see also points A and B in
Fig. 14), corresponds to a very marked change in

the position of the bound state. Unfortunately, the
actual position of the absolute minimum shown in
Figs. 14-16 cannot be taken too seriously because
it depends critically upon the semiempir i', l fac-
tor 1/ez and the absolute magnitude of 5E, , .

The formation energy E& is one of the most im-
portant characteristics associated with defects
l.ike vacancies. As we remarked earlier, all three
terms in Eg. (2.23) are of the same order of mag-
nitude, i.e.„-10eV and 5E~ is the result of com-
petition between these terms. The experimental
data for formation energies of single vacancies in
diamond-type semiconductors indicate" Eg V«)
-4-5 eV, Ez(Vo,)-2-3 eV. It is difficult to see
how we could achieve an accuracy of 0.1 eV in de-
termining E&, i.e. , the accuracy which would en-
able us to compare the results for silicon with
those for germanium. On the. other hand, our pre-
liminary calculations on other types of defects,
e.g. , interstitials, show that the differences in E&
are larger than 1 eV. The calculations carried
out on defects in diamond" "seem to point in the
same direction. It seems that comparisons of
E&'s for sufficiently different defects in a given
material, i.e. , their assessment on a relative
scale in, say, silicon, shoul. d be possible with our
present means.

C. Comparison with the existing theoretical and

experimental evidence concerning the vacancy in silicon

It is instructive to visualize the defect in a sim-
pler way, derived from the defect-molecule mod-
el." We remove the central atom and keep the
electronic structure of the rest of the lattice with-

out alterations. The dangling electrons should oc-
cupy the t, and g, localized states. As expected,
all existing calculations predict the symmetric a,
state to occur deep in the val.ence band. Hence,
the remaining dangling electrons occupy tbe t,
state. With only one electron in the t, state, we
are left with the 'V,', charge state, with two we have

the neutral state V'„., etc. The t, state is localized
on the nearest-neighbor atom. If we now allow for
both electronic and lattice relaxation, the three-
fold-degenerate t, state may undergo a Jahn-
Teller splitting. The Vs, state is paramagnetic
and the ESH results indicate that the electrical
level position is close to the valence-band edge.
The analysis"" of the ESR signal reveals that
about 66%%uo of the corresponding wave function is
localized on the four nearest neighbors. The Si"
hyperfine interactions indicate a tetragonal dis-
tortion involving a tilt of 7.2 from the perfect
(111)direction toward (100). The application of
external stress changes the energy of the level and

it was estimated that the level rises at a rate I'
= 2.9 eV/A.

It is worth mentioning that the parameter I is
deduced from the experimentally determined
change in the energy of defect reorientation 6E,.
by assuming DE, =l."Q, w. here Q is the amplitude
of the lattice displacement of the particular mode
under stress. Since it is difficult to know Q in the

distorted lattice, the coefficient i" seems rather
uncertain. However, the results outlined above
do offer a sufficiently clear picture and many at-
tempts have been made to explain it. It is not our
intention to review the numerous contributions
made by a number of authors during the last dec-
ade. However, we note that for an unrelaxed va-
cancy all existing calculations yield an s-like state
in the valence band and a p-like (t,) state in the
forbidden gap. Because of the formidable conver-
gence problems discussed in Secs. I-III, it seems
futile —at least at this stage of development —to
enter a detailed argument concerning the assess-
ment of the methods on the strength of their pre-
diction of E, . If we estimate the position of the t,'.2
state, combining our results obtained from the
Green's-function and direct-matrix methods, we
arrive at E, (Vs,) =E„+0.2 eV, where E„is the

'2
energy at the top of the valence band. Both the
uncertainty in the convergence in bands and our
inability to handle unambiguously the nonspherical
potential are significant sources of error. These
problems are not peculiar to our method, although
they may take on a different numerical form de-
pending on the scheme employed. Certainly, the
pseudopotential band structure above, say, the
tenth band, becomes quite unreliable and because
of the many-fold nature of the convergence pro-
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cess (bands, points, plane waves, and the poten-
tial), it is doubtful whether the slow convergence
seen in Fig. 2 is "real. " As for the potential,
there can be no unique way of separating a non-
spher ical. potential into mathematically treatable
units. Therefore, the most important aim of any
calculation concerning the vacancy- is to establish
the form of the lattice distortion. This has been
attempted in a few earlier calculations. Larkins
carried out a number of computations and gave a
thorough account of his efforts. Unfortunately, the
symmetric relaxation predicted was so large that
it made the vacancy formation energy nega-
tive."'" The calculations of Yip" predict an
outward relaxation of about 13' of the nearest-
neighbor distance, in accord with the work of
Messmer and Watkins on diamond. ' Since they
did not include the effect of ion-ion interaction
in their assessment of the final configuration,
their prediction is in line with our results de-
scribed in Sec. III. Messmer and Watkins' pointed
out that much of the observed tilt in the hyperfirie
spectra may not be due to Jahn-Teller distortion
but merely a result of the proximity of the local-
ized state to the valence band. Our results suggest
that the precise position of atoms depends very
much on the magnitude of 5E,,.

We have remarked in Sec. III on the nature of the
splitting of the t, state under the influence of axial
fields. Previous calculations revealed that this
splitting is small and relatively insensitive to the
details of the potential; This is well supported
by our resul. ts although it must be observed that
the splitting i s sensitive to the mode of atomic
displacement (Fig. 15). Unfortunately, no direct
evidence is available as far as the splitting is con-
cerned since the stress experiments merely indi-
cate the change in the position of the ground state
with respect to the valence band. If, as a result
of the application of stress, the nearest-neighbor
atoms moved from their minimum energy at pos-
ition A, Fig. 15, along the line indicating the low-
est energy gradient, then the level in the gap
rises at a rate of -2 eV/A (Fig. 15). This com-
pares well with the rate quoted by Watkins —2.9
eV/A —considering the uncertainties involved.

The traditional approach to the determination
of the electronic structure of defects and their
energy levels in the forbidden gap is based on the
one-electron theory. It begins with the one-elec-
tron eigenstates of the perfect-crystal Hamilton-
ian and attempts to construct the self-consistent
description of the system in terms of a linear
combination of these functions. The cluster ap-
proach is normally based on some form of one-
electron molecular -orbital method. The assump-
tion has been made that many-electron effects

are small and can be ignored. In the case of a
vacancy in a diamond-type semiconductor, such a
simplification may be challenged since several
highly localized particles are likely to be involved.
Indeed, Coulson and Larkins ' concluded that no
substantial reduction in the many-electron effects
should take place as a result of delocalization of
the atomic states when immersed into a solid.
However, the calculations of Watkins and Mess-
mer, "based on the self-consistent-field Xn scat-
tered-wave method of Johnson, Slater, and
Smith, 4' do indicate that as the cluster becomes
more representative of a solid, the delocalization
of the eigenstates reduces the many-electron ef-
fects. Although it remains uncertain to what ex-
tent this result cari be regarded as final and of
general validity, it does provide the much needed
support to the one-electron theory.

V. SUMMARY AND CONCLUSIONS

We have performed a self-consistent pseudopo-
tential calculation of the electronic states of a
single vacancy in silicon. The bound states were
studied using both the Green's-function formula-
tion and the direct-matrix method. The latter also
yields the valence charge density and enables us
to carry out the calculation of the change in the
total energy of the system.

We argue that the convergence properties of the
bound-state calculation are different from those
of the calculation of the sums over electron ener-
gies and wave functions involving the valence-band
states in the presence. of the defect. We propose
that it is reasonable to exploit the technical re-
lationships by splitting the computational proce-
dure into several stages and tailoring the methods
of dealing with them so as to allow for the most
tractable solution of the problem. To position a
bound state with an accuracy adequate for a quan-
titative comparison with experiment. e.g. , +50
meV on an absolute scale, still seems to be an
impossible task. We have seen, in this and other
calculations, that the energy of the level measured
from the relevant band edge is a small number re-
sulting from a cancellation process of large con-
tributions. Both the "bare" and the electron po-
tentials contain errors which are difficult to quan-
tify. Probably this is not where the most fruitful
contact with experiment should be expected, al-
though scope still remains for more exhaustive
computational endeavors. , Technically, the most
ambiguous aspect of the computational process
lies in the fact that the potential fed into the cal-
culation is not spherically symmetric. However,
the relative changes in the binding energy w'hich

only involve corrections to the bulk of the localized
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potential should be much easier to calculate. The
changes in the valence charge density due to the
effects of the defect potential and lattice recon-
struction vary smoothly and do not appear to be
very sensitive to the details of the procedure em-
ployed. All results are sensitive to the symmetry
of the lattice reconstruction, although the actual
displacements of atoms are within -0.1 A. The
most serious obstacle in the path of our efforts to
compute changes in the total energy of the system
is our inability to estimate the long-range prop-

erties of'the localized potentials.
We found that the positively charged vacancy has

a localized state at the valence-band edge. The
lattice reconstruction consists of a symmetric
(outward) dispiacement of the nearest-neighbor
atoms and a tetragonal displacement whose pre-
cise magnitude is difficult to estabiish. The tots, l
displacement is about 0.1-0.2 A. The net reduc-
tion in the total energy associated with the lattice
reconstruction is about 1 eV.
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