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15 MARCH 1979

Raffaele Resta*
Department of Physics, Purdue University, 8'est Lafayette, Indiana 47907

(Received 17 August 1978)

The static dielectric response of a doped semiconductor at nonzero temperature is studied here in the
simple homogeneous and isotropic model. The present approach generalizes the model dielectric responses

proposed by Penn and by the author accounting for free-carrier screening, or equivalently it generalizes the

Dingle model of carrier screening accounting for the microscopic dielectric behavior of the medium. The
effect of the present model response in the screening of a point-charge potential is explicitly shown and

discussed against quite different solutions recently proposed for this same physical problem.

I. INTRODUCTION

The physical problem which is discussed here
is the dielectric response of a doped semiconduct-
or at nonzero temperature to an external static
disturbance.

The dielectric behavior of a covalent undoped
semiconductor at zero temperature is at present
well understood. Simple model dielectric func-
tions are available, ' all of which are obtained
for the isotropic and homogeneous solid. It turns
out that such a simple model is able to reproduce
remarkably well the results of more realistic ap-
proaches. 3 The kind of charge responsible for this
zero-temperature dielectric screening is mainly
the charge of the valence electrons involved in
crystal bonds.

On the other hand, in a doped semiconductor at
nonzero temperature, beside the above charge,
a different kind of charge contributes to the
screening of an external field: the charge of the
free carriers, either electrons in the conduction
band or holes in the valence band. Under suitable
conditions, not to be discussed here, the carriers
behave as free particles whose mass is different
from the electron mass. The dielectric screen-
ing due to the free carriers has been studied long
ago by Dingle, ' under the hypothesis that the con-
tribution of the valence electrons could be simply
schematized with the static dielectric constant
e(0) of the pure semiconductor. If the external
disturbance is a static point charge, one finds
within the Dingle theory a field which is exponen-
tially screened in a typical length R~ depending on
the impurity concentration, on the temperature,
and on the carrier-effective mass.

The purpose of the present paper is to develop
a theory which includes on the same grounds the
dielectric response of the valence electrons and
that of the free carriers. The model dielectric
response which is presented here can thus be seen
as the generalization to the doped case of the

homogeneous and isotropic model semiconductor";
or alternatively it can be seen as the generaliza-
tion of the Dingle theory5 to a medium having a k-
dependent dielectric function e(k).

In Sec. II the dielectric behavior of the valence
charge is studied and a generalized Poisson equa-
tion is derived. In Sec. III it is shown how to ac-
count for the free carriers in screening, and an
explicit form for the dielectric response is given.
In Sec. IV the screened potential of a point charge
is explicitly shown. In Sec. V a very recent differ-
ent approach to this same physical problem is dis-
cussed.

II. MICROSCOPIC POISSON EQUATION IN A DIELECTRIC
AT ZERO TEMPERATURE

The basic quantities for the description of the
response of an insulator are the external field D,
generated by the external charge, and the screened
field E, generated by both the external and polar-
ization charges. Their relationship is written

E=e 'D.

For an isotropic medium, and over a macroscopic
distance scale, &

' is a constant equal to the in-
verse static dielectric constant I/e(0). More
generally, Eq. (1) should be interpreted as an
operator relationship ' involving the linear re-
sponse ~ ':

E(r) = dr' & (r, r')D(r') . (2)

If one assumes to be dealing with an isotropic and
homogeneous system, Eq. (2) becomes

E(r) = dr' c (ir —r' i)D(r ) .
When Eq. (3) is Fourier transformed to k space,
the convolution product becomes an algebraic one,
and we obtain

E(k) =D(k)/&(k),

which generalizes straightforwardly the macro-
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scopic Eq. (1). The function c(k) for a homogen-
eous and isotropic model semiconductor has been
the object of considerable work. ' As a general
feature, c(k) is greater than 1 and finite for any k.

In a covalent semiconductor at zero temperature,
the polarization charge physically responsible for
the screening mechanism is mainly due to valence
electrons. They are not completely free to move,
and prescriptions have been given to account for
their limited polarizability, either in k space, as
in the Penn model, ' or in r space, as in the Resta
model. The behavior of the valence electrons
here is supposed to be fully accounted for by the
dielectric response. Now suppose that some ex-
ternal charge is introduced in the dielectric. Start-
ing with the Maxwell equation

V ~ D =4vp, „, , (6)

the potential y of the screened field E can easily be
shown to obey the generalized Poisson equation

v'y(~) = —4w dr' e '(~r —r' ~)p,„,(r'). (6)

III. DIELECTRIC RESPONSE OF A DOPED
SEMICONDUCTOR AT NONZERO TEMPERATURE

In a doped semiconductor at nonzero tempera-
ture, free carriers are present, and in fact the
macroscopical behavior at a given temperature
is the one of a conductor. Beside the valence
charge, already accounted for by the zero.-temp-
erature microscopic e(k), one has inside the solid
two other kinds of charges: static impurity ions
and free carriers. It is important to point out that
the carriers can also be considered "external" in

So the:microscopic Poisson equation in a model
dielectric is an integro-differential one. One re-
covers the macroscopic limit with the obvious
identification

& '(~r —r'
~)

—~(r —r')/~(0). (7)

In the literature on the subject, ' a dielectric
function of a different kind is often dubbed "spatial
dielectric function" and is indicated by &(x). This
has become customary, but is somewhat; mislead-
ing. It is important to stress here that e '(x)
x I/&(x). The function &(r) is useful only for point-
charge disturbances, and operates locally on the
unscreened potential, ' while the linear response
& ~(x) is a, much more fundamental quantity, and
operates through a convolution product'" on any
unscreened potential or field, as in Eq. (3).

The linear response e '(r) is not displayed in the
original literature on the isotropic and homogen-
eous model semiconductor. '2 Within the model of
Ref. 2, & ~(x) has a very simple explicit form,
which is reported here in Appendix A.

P;(r) + P,(r) = -[~(0)/4mB,']cp(r), (9)

where RD is known as the Dingle screening length, '
and can be calculated with the use of Fermi-Dirac
integrals as a function of the carrier-effective
mass m, the temperature T, and the impurity
density n&. In the classical Boltzmann limit the
Dingle length goes to

RD - & (0)xT/4mn;, (10)

where v is the Boltzmann constant. Note that it
becomes independent of the effective mass. A
typical value for RL) at room temperature in n-
doped silicon at a donor concentration of 5&10~'
cm is R&=60.

Now we are ready to substitute (9) in (8), and (8)
in the integro-differential equation (6) to obtain
the generalized Dingle equation

v'v(~) -s,'~(0)fa ~' ~ '(
[
~ - ~' ()e(~' )

= -47t dr' & r - r' p„„r'
The meaning of this equation is more transparent
in k space, since it becomes

tk'+ItD~~(0)/~(k)19 (k) =«pfres(k)/~(k) ~ (12)

This means that the doped semiconductor at non-
zero temperature responds to a static perturbation
as a medium whose effective dielectric function is

the sense of Sec. II, since their motion is quasi-
classical and their interaction is instantaneously
screened by the valence electrons through the di-
electric function e(k).' We call the impurity-ion
charge density p&(r) and the carrier density p,(r).
Finally, suppose that this doped semiconductor is
perturbed by an external charge (a really external
one, this time! ) which we call p,„„(r).So the kind
of charges to be considered "external" in the sense
of Sec. II and to be inserted in Eq. (6) are in all
three:

p, t(r) =p.(r)+ pf(r)+ pf...(r),
although p, and p, actually belong to the doped
semiconductor.

Now p„„(r) is supposed to be given; p;!r) too,
being the fixed impurity ions. The real problem
is to find p, (r). The carriers a.re completely free
to move, and a relationship between their density
p,(r) at a given temperature and the electrostatic
potential is provided by statistical mechanics.
This point has been worked out by Dingle, 5 starting
from the Fermi-Dirac dist. ribution function and
making some suitable approximations. His basic
result, from the point of view- of the present paper,
can be restated as the assumption of a linear re-
lationship of the kind (in atomic units k =1, m, =1,
8 =1):
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e, f(k) = e (k) + e(0)Rgk+ . (13)
I21

For large k, e„,(k) =1, and this means that per-
turbations rapidly varying in r space are essential-
ly unscreened. On the other hand for small k,
&,ff (k) diverges like k, as expected in a conduct-
or. Moreover, this divergence has a coefficient
which is proportional, at least in the classical .

limit of Eq. (10), to the impurity concentration
and to the inverse temperature. %'hat a nice re-
sult.
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IV. GENERALIZED DINGLE POTENTIAL

Suppose now that pf„, is simply a point charge

p„„(r)=Q5(r) .
I .. I

I0
I

l00
I

!000

The solution of (ll) with the correct boundary con-
ditions is easily found in k space from (12)

p(k) = 4vQ/[k'c(k) +RP& e(0)j .
Given a model e(k}, the antitransform of (15)yields
straightforwardly the generalized Dingle potential.
The standard Dingle treatment is exactly recovered
in any of the preceding Eqs. (11}-(15),when the
substitution (7) is made, or equivalently E(k)- e(0).
So the standard Dingle potentials is, from (15)

q~(r) =Q exp(-r/R~)/e(0)r . (16)

On the other hand, the usual screened potential
for the undoped semiconductor is obtained from
Eq. (15) by simply taking the R~ -~ limit. If use
is made of the "spatial dielectric function" e(r),
defined as is customary in the literature, '2 the
Fourier transform of Eq. (15) is written

The present generalization, Eq. (15), can be used
to demonstrate the two limiting cases discussed
above for k-0 and k- ~. Therefore the antitrans-
form of Eq. (15) is expected to behave like Eq. (16)
for large r and like Eq. (17) for small r. More- .

over, since the typical r over which E(r) varies"
is much smaller than any physical value of RL),
a reasonable guess for the antitransform of Eq.
(15) is

q(r) =Q exp(- r/R~) /c( r)r. (18)

The numerical antitransform of Eq. (15) in silicon
has been performed for A~ =30 and R~ =60, with
&(k) taken from Ref. 2. Technical details about
this antitransform are given in Appendix B. The
results turned out to be extremely close to the
approximate analytical expression (18). The ratio
y(r)/pn(r) obtained in silicon for Rn =30 is dis-
played in Fig. 1. Its approximated analytical form
is, from Eq. (18),

q(r)/q, (r) = ~(0)/~(r); (19)

as is easily seen, it is exactly coincident with the
numerical result in the drawing's scale. The two
other curves shown in Fig. 1 are discussed in Sec.
V.

Results of the kinds obtained in Eqs. (18) and (19)
were expected on physical grounds: in fact the
carrier screening acts over a much larger distance
scale than the valence screening; therefore for
short distances one has essentially the potential
of the undoped semiconductor, while for distances
larger than the single-bond length one has the
Dingle potential.

V. RELATIONSHIP WITH DIFFERENT THEORIES

The same physical problem discussed in Sec. IV
has been recently tackled by Csavinszky in a ser-
ies of papers ' based on a completely different
formalism. In his first paper he proposed a
potential p(r} which has not the correct behavior
at small r (dashed line in Fig. 1). This is ack-
knowledged in Ref. 8, where the way to overcome
this drawback is outlined and an approximate y(r)
having the correct limiting behavior is explicitly
given (da.sh-dotted line in Fig. 1). In this last
case, the analytical form of y(r) proposed by
Csavinszky turns out to be identical to Eq. (18);
but the exponential function has a decay length
which is quite different from A& and the whole
result is physically very far from the one found
here (see Fig. 1).

The reasons for the disagreement are pretty
clear. Starting from the macroscopic Eq. (1),

r {a.u. )

FIG. 1. Ratio of the generalized Dingle potential to the
standard Dingle potential in silicon for R&=30. Crosses:
numerical antitransform; solid line: Eq. {19);dashed
line: Ref. 7; dash-dotted line: Ref. 8.
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Csavinszky proceeds by assuming an algebraic
product of spatial functions [see Eq. (A2) of Ref.
7] and uses the dielectric function K(~). The gen-
eralization of Eq. (1}proposed here on the grounds
of linear response theory is completely different,
as discussed. in detail in Sec. II. As a matter of
fact, the whole conception of a Penn-model semi-
conductor as a "medium with spatially variable
dielectric constant ' is misleading, for the
linear case at least. Going just beyond the linear
response theory, as has been recently done by
some authors, ' the concept of "spatially variable
dielectric constant" could perhaps be useful.
Within the linear theory, a homogeneous and iso-
tropic model semiconductor~' is actually -a med-
ium with a. k-dependent dielectric constant, and
this means that the response of the valence elec-
trons to an external perturbation is nonlocal in
.r space, as in Eqs. (2), (3), and (6).

ACKNOWLEDGMENTS

& ~(r) =-V2y(x)/4m. (As)

The screened potential of a point charge is expli-
citly found in I. From Eq. (I-14}one has

V'p(r) =0, ~& R.

Combining Eqs. (I-9) and (I-10):

(A4)

& "(r)= 5(r) -= — e(R -r), (A6)
4m& 0 r

where 8 is the Heaviside distribution.
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The proof of (AV} is straight;forward, once paid
attention to the fact that in this limitng process the
product qR must be kept constant, in order to con-
serve Eq. (Al).

APPENDIX B: NUMERICAL ANTITRANSFORM OF

THE SCREENED POTENTIAL

The Fourier antitransform of Eq. (15) is

APPENDIX A: EXPLICIT EXPRESSION FOR e ' (r) 2Q
"

k sinkr dk
gy Oe(k)k'+e(0)Rg ' (Bl)

p.,~(r) =5(r);,
then Eq. (6) becomes

(A2)

An explicit expression for the linear response
e ~(r) of a homogeneous and isotropic model semi-
conductor can be obtained very simply in the frame-
work of Ref. 2. This paper (and its equations) will
be referred to as I in the following.

The main quantities of the theory are the inverse
Thomas-Fermi screening length q and the screen-
ing radius R, which is found as the root of

sinhqR/qR = e (0) .
An explicit expression for dk) is given in Eq. (I-
21). The Fourier antitransform of I/z(k) can be
performed analytically to obtain c ~(r). This is
straightforward, but tedious. Better insight is
obtained in deriving the same result through the
generalized Poisson equation introduced here as
Eq. (6}. Suppose p„, is simply a point charge

2Q
" 1

a(k)k'+ e(0)R~~

1
k sinkxdk, (B2)

where the difference between g (r) and p(r) is an
integral which is easily performed analytically.
Now the integral in (B2) can be evaluated numer-
ically, being its convergence much faster. When
&(k) is taken from Ref. 2, the integrand in (B2) is
of the order of k+ for large k.

The numerical evaluation of P(x) has been per-
formed with the use of a standard fast-Fourier-
transform routine, ~2 and y(r} has been recon-
structed simply by addition of the analytical dif-

Put in this form, it is not suitable for numerical
treatment since the integral is not absolutely con-
vergent. Convergence is improved with a simple
trick. Consider the expression
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ference. Excellent convergence has been reached
for either RD =30 or RL) =60 using 2 points and
a k step of 0.001. As a result, one obtains a tab-
ulation with an r step of 0.38 in an execution time

of 17 seconds on a CDC 6500-1 computer. The
ratio p(x)/pQr) obtained is quite good until the
absolute value of y(r) becomes =10 ', that is up
to x = 200 for R& ——30 and r = 400 for RD =60.
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