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The Born-von Karman model of lattice dynamics of diamond structure has been extended to include up to
12th-neighbor interactions. Applications to Ge and Si using eighth-neighbor interactions have been carried
out. We obtained very good fits to the experimental values of phonon dispersion curves and elastic constants.
However, in agreement with the conclusions of Herman, a reasonable fit can only be obtained using at least
up to fifth-neighbor interactions. The special significance of the fifth neighbor is attributed to its structure.
With the fitted force constants, we have calculated the phonon density of states using the high-resolution
Gilat-Raubenheimer method. The calculated Debye temperatures and specific heats compare well with the

experimental values.

I. INTRODUCTION

The theory of lattice dynamics can be traced
back to 1907, when the theory of specific heats
was published by Einstein.' The diamond struc-
ture was given great emphasis from the very be-
ginning. Einstein originally applied his quantized
oscillator model for specific heats to diamond.
Diamond was one of the first crystal structures to
be investigated by Born® using the celebrated theo-
ry of lattice dynamics developed by von KArman
and himself. Various extensions of their work ap-
peared in later years,*® and the model is known as
the Born-von Karman model (BKM).

During the late 1950’s the development of slow
neutron scattering techniques pioneered by Brock-
house® made it feasible for the first time to obtain
detailed information on the spectrum of lattice vi-
brations in a crystal. In addition to this, many
optical measurements, such as infrared and first-
and second-order Raman scattering, also give
precise values of phonon frequencies at symmetry
points of the Brillouin zone. Phonon frequencies
at any point in the Brillouin zone can now be mea -
sured with an accuracy of better than 1% by many
groups. Nilson and Nelin have obtained the most
complete and accurate neutron scattering measure-
ments for germanium, "8

In this paper we would like to report a detailed
study of the lattice dynamics of germanium and
silicon using Born-von Karman model. Although
many other models®** have been proposed and the
experimental data of Nilson and Nelin have been
analyzed using some of these models,'*!? to our
knowledge no complete BKM study on their data
has been reported. . '

In Sec. II we extend the formulation of the Born-
von Karman model to include up to 12th-neighbor
interactions. The complete dynamical matrix and
equations for dispersion curves along major sym-
metry axes in the Brillouin zone are discussed in
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this section. In Sec. III we describe the procedure
for fitting the theoretical expressions to the mea-
sured phonon dispersion curves and elastic con-
stants to obtain the force -constant parameters.
Section IV uses the fitted force constants to cal-
culate the phonon frequency distribution using the
Gilat-Raubenheimer method. In Sec. V we use
the phonon density of states to calculate the speci-
fic heat and Debye temperature to compare with
experimental values. Finally, in Sec. VI, we
discuss briefly the results and conclusions of the
present study.

II. DYNAMICAL MATRIX AND DISPERSION EQUATIONS

The Born-von Karman model (BKM) of the lat-
tice dynamics of diamond lattices has been studied
previously by many investigators. In p:irticular,
Smith* has the complete and detailed formulation
for interactions up to second-neighbor atoms, and
Herman® has extended this to sixth neighbors.
Lax,'® by proper choice of the origin of coordi-
nates, has obtained much more simple forms of
dynamical matrices up to fourth-neighbor interac-
tions. He also obtained complete analytical ex-
pressions for the dispersion curves in the major
symmetry directions. '

There are only 12 independent matrix elements;
among them only four elements are needed. All
others can be obtained by cyclic permutation:

RE -, DRE _, pRE . DRY _ pRE . DR¥
Dll D22 D33 ’ Dlz D23 DSI . (1)

The dispersion curves and phonon density of
states can be obtained by solving the secular equa-
tion

|D(§) - Mw?|=0, ()

where M is the atomic mass of Ge or Si and [ is a
6 X6 unit matrix. Since the details of the dynami-
cal matric elements are available elsewhere,*
we shall not repeat them here.
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III. FITTING TO THE MEASURED ELASTIC CONSTANTS
AND DISPERSION CURVES

In order to determine the force-constant param-
eters, a nonlinear least-square fitting of the the-
oretical expressions to the measured elastic con-
stants and dispersion curves must be used. We
have adapted the nonlinear least-square fitting
method of Marquardt’ for this purpose. The
Marquardt method, which combines analytical ex-
pansion method of linear least-square fitting and
a gradient search method, has the advantage of
achieving rapid convergence. The detailed de-
scription of the Marquardt method can be found in
a book by Bevington. '®

The experimental data used in the fitting process
for Ge are those of Nilsson and Nelin.” We se-
lected 70 evenly distributed points of the ex-
perimental dispersion curves along the A, A, and
¥ directions, with five points from each branch.
To these data the Raman frequency and the experi-
mental values of the elastic constants'” were
added, raising the total number of fitted data to
74. For Si the experimental results were taken
from the measurements of Nilsson and Nelin'®
and of Dolling and Dowley'?; the former data are
more accurate, whereas the latter are more com-
plete. We used both sets of data in the fitting
process. Wherever an overlap existed, we have
chosen the more accurate data. For Si we fitted
a total of 79 experimental data, including the
Raman frequency and the elastic constants.'” In
Table I we list the best results of the fitting for
Ge and Si. Since the experimental data for Ge are
very accurate, with a sixth-neighbor fit we did not
obtain a result which is within experimental uncer-

tainty; therefore, an eighth-neighbor fit was used.
The variation of the fitting | Av|fit is reduced by

a factor of 2 by using eighth-neighbor fit. For

Si, the data are not as accurate; a sixth-neighbor
fit is sufficient. In Table I we also list the average
variations of the fitting and the corresponding ex-
perimental frequencies, and compare with the
average experimental uncertainty 'Au{exp and
Raman frequencies vp.

For both crystals, no satisfactory fit could be
obtained using interactions out to fourth-order
neighbors, which contain 12 force -constant (FC)
parameters. It was found that the introduction of
thr third-neighbor interactions did not improve
the quality of the second-neighbor fit substantially.
Furthermore, fourth neighbors made only a mar-
ginal contribution. Nevertheless, as soon as the
fifth-neighbor parameters were introduced, it be-
came possible to obtain satisfactory fits. This is
in accordance with the conclusions of Herman,®
who, however, has used a considerably less ac-
curate and incomplete set of data available at the
time. The critical importance of the fifth neighbor
can be traced to its special arrangement of atoms.
The atoms in the second, third, and fourth neigh-
bors are evenly distributed in all directions,
while the fifth-neighbor atoms group behind the
atoms in the first neighbor. Therefore, the fifth-
neighbor atoms can supplement the deficiencies
in the description of the interactions by only first-
neighbor atoms, that cannot be corrected by the
atoms in second through fourth neighbors. The
special significance of the fifth-neighbor interac-
tions in the BKM can also be seen in the table of
FC parameters; the fifth-neighbor constant A" is

TABLE I. Best fitted force constants for Ge and Si (10% dyne/cm).

Ge Si Ge Si
o @ 4.2197 4.5714 w 0.0374 0.0147
B 3.7528 4.2027 6o X' —0.0243 —-0.0237
© 0.2349 0.3158 v 0.0288 0.0559
9o A —0.5332 —0.6543 5" 0.0242 —0.0055
v 0.4166 0.5108 & —0.0472 —0.0097
6 0.1966 0.2658 7o e 0.0013
" 0.0831 0.1241 Aq —-0.0150
30 N —0.3371 -0.2620 v, . =0,0138
v —0.0481 —0.1797 o, ~0.0382
& —0,1677 -0.1563 Hg —0.0525
4 g —0.1544 —-0.0736 ge Ag —-0.0198
X’ 0.3798 0.1339 Vg —0.0493
u 0.1552 0.1512 B4 0.0147 e
s A 0.6007* 0.7455*  |Av| fit ® 0.0362 THz 0.0580 THz
v 0.0958 0.1057 | Av| exp 0.0327 THz 0.0425 THz
& 0.1760 0.2494 Vg 9.12 THz 15.00 THz

2| Av| fit=~1%ﬁ; | v@pie— V(@Degp |«
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particularly large for Ge and Si.

In Fig. 1 we plotted the theoretical dispersion
curves of germanium corresponding to the sets of
force constants given in Table I. The experimen-
tal points are those of Ref. 7. The size of the
experimental points are plotted according to the
experimental errors quoted. We can see that,
with the exception of £,(0) branch, for which the
calculated values are slightly higher than mea-
sured values, all other branches are fitted within
the experimental accuracy. Our fitting to the ex-
perimental points using BKM is better than the
fitting of other models reported. '°** However, the
number of FC parameters involved in BKM is very
large —29 for the eighth-neighbor fit (Ge) and 21
for the sixth-neighbor fit (Si).

IV. CALCULATION OF THE PHONON DENSITY OF STATES

There exist many different methods and inter-
polation formulas for calculating phonon density
of state. These are described in considerably
detail by Maradudin et al.?® With large and fast
computers available many of these methods can
give sufficiently accurate calculations of the den-
sity states. However, among these methods the
fastest and most accurate method is probably the
analytical integration method of Gilat and Rauben-
heimer.?' This method divides the irreducible
sector of the Brillouin zone into many subzones
and diagonalizes the dynamical matrix at the center

of each subzone. The frequencies near the sub-
zone centers are then obtained by analytical inter-
polation. Thus it is equivalent to a much larger
number of diagonalization. The detailed descrip-
tion of the method can be found in the original
paper of Gilat and Raubenheimer.?' One important
feature that we have adopted in the program is a
theorem concerning complex matrices.

Lax has shown that due to invariance under time
reversal a complex matrix canbe transformedtoa
real matrix by a unitary transformation.’® Let

L] 11 H S
V2 | -ii| D= o* x|
then
Re(H+S) Im(S-H)
D'=uDu ‘=

Im(S+H) Re(H-S)

is a real matrix. Thus instead of diagonalization
of a complex 6 X6 matrix, we need only diagonal-
ize a 6 X6 real matrix. This reduces the computer
time greatly. It takes less than 4 min of computer
time on the IBM 370/168 to run a complete density
of states calculation with a 3000 diagonalization of
the dynamical matrix. .

The results of our density of state calculation
are shown in Figs. 2 and 3. The gross features
of the density of state curves are similar to those
of Tubino et al.'® using valence force model and of
Weber!!using bound charge model, as well as to

FIG. 1. Phonon disper-
sion curves of Ge (at 80 °K);
the experimental points are
from Nilsson and Nelin
(Ref. 7). The solid curves
are calculated from an
eighth-neighbor fit (Table I)
of Born-von Karman model
to the experimental data.
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FIG. 2. Phonon density of states in Ge as a function of
frequencies calculated with an eighth-neighbor Born-
von Karman model (solid curve). The phonon density of
state obtained by Nelin and Nilsson (Ref. 8) using ex-
tended sampling of neutron data is also included (broken
curve).

those of Nelin and Nilsson® using extended sampling

method of experimental data. However, our re-
sults represent considerable improvement in the
numerical accuracy. Comparison with the shell
model calculation'® shows that there are dis-
crepancies with the shell model result, especially
in the acoustic part of the density of state curve.
For the low-frequency portion of the density of
state curve, the relative heights at various sin-
gular points agree with each other for the above-
mentioned three calculations and with the second-
order Raman spectrum,®* %> while the shell model
gives different relative peak heights.
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FIG. 3. Phonon density of states in Si as afunction of
frequencies calculated using a six-neighbor Born-von
Karman model.
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FIG. 4. Debye temperature of Ge as a function of ab-
solute temperature. The solid curve is the result of
BKM. The dotted curve is with anharmonic correction.
Experimental points are those of Flubacher et al. (Ref.
26).

V. COMPARISON WITH THE MEASURED SPECIFIC
HEAT DATA

The measurements of the specific heats of Ge
and Si by Flubacher et al.?® are also very ac-
curate, which provides a stringent test for the
phonon density of state calculations. In Figs. 4
and 5 we plotted the experimental values of Debye
temperature as a function of temperature and
compared them with the prediction of BKM using
the density of state curve shown in Figs. 2 and 3.
The calculated Debye temperature agrees with the
experimental values to within 1% at all tempera-
tures; at high temperature a systematic deviation
from experimental values exists. This is ex-
pected, since BKM does not take into account the
anharmonic effect.

The correction of the specific heat due to anhar-
monic effect can be evaluated if the temperature

700

650

600

8,(°)

550

500

450

0 100 200 300
T(K)

FIG. 5. Debye temperature of Si as a function of abso-
lute temperature. The solid curve is the result of BKM.
The dotted curve is in the anharmonic correction. Ex-
perimental points are those of Flubacher et al. (Ref. 26).
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dependence of the phonon frequencies are known.?’
Since in BKM the phonon frequencies and the elas-
tic constants are expressed in terms of the same
set of force-constant parameters, the tempera-
ture dependence of phonon frequencies can be esti-
mated from the temperature dependence of elastic
constants. We have calculated the anharmonic
correction to the specific heat using the tempera-
ture dependence of elastic constant measured by
McSkimin. ' The dotted curves in Fig. 4 and 5
show the Debye temperatures with anharmonic
corrections.

VI. DISCUSSIONS AND CONCLUSION

As shown in Sec. III, BKM is capable of obtaining
very good fit to the accurately measured phonon
dispersion curves as well as the elastic constants.
Such a good fit is not achieved in previous at-
tempts using different models. '*'" For example,
the valence force model’® and bond charge model*®
have difficulties, that is, either elastic constants
or a particular branch of phonon dispersion curve
cannot be well fitted. There are a few parameters
that are particularly important in obtaining a good
fit in the BKM. For example, the second-neighbor
parameter X accounts for the large difference be-

tween longitudinal and transverse modes in the A
direction, while the fifth-neighbor parameter 1"
contribute strongly to the elastic constant C,,,

and does not contribute significantly to other elas-
tic constants or dispersion curves.

In conclusion, we have used Born-von Karman
model to obtain very good fit to the measured
phonon dispersion curves. The calculated Debye
temperature agrees very well with the measured
values. The agreement with other model calcula-
tions as well as with the second-order Raman
spectrum are also very good. Since the errors
introduced by the numerical analysis are negligi-
ble, our calculated phonon density of state pre-
sented in Figs. 2 and 3 should represent the true
phonon density of states of Ge and Si to a very good
accuracy.
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