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Normal modes of vibration of nuclei in fcc nonmonovalent transition-element nickel have usually been
investigated by lattice-dynamical approaches in which the Cauchy discrepancy (C» —C44) has been attributed
to the bulk modulus of the conduction electrons (i.e., C» —C44

—— K,). The authors consider here an
approach in which it is assumed that there are also noncentral-force contributions that combine with the
electron gas to break the Cauchy relations of elasticity. For this purpose, the angular interactions are taken
from the Clark, Gazis, and Wallis approach and volume forces have been taken from the Krebs scheme,
using an appropriate value of the screening parameter taken from the Bohm-Pines plasma theory which
takes into account the electron correlations. The frequency versus wave-vector dispersion relations along
symmetry directions [$00], [((0], and f(($] in the reciprocal space of Ni are computed from the solutions
of the secular equation along these directions. The frequency distribution has been calculated with the
Blackman's root-sampling technique for a discrete subdivision in eave-vector space. Below 8/10, where the

\

sampling technique gives an. inadequate description of the normal modes of vibrations, a modified Houston's
spherical six-term integration procedure is employed. Results obtained with the above combination of various
interactions are discussed in the light of previous calculations, and the present values are found to yield
comparatively better agreement with experiments.

I. INTRODUCTION

In a quantum-mechanical treatment of the elastic
constants of monovalent metals, Fuchs' found that
the extensional elastic constants C», C»', and the
bulk modulus 3(C„+2C») involved the same cen-
tral forces as the shear constants plus a volume-
dependent part due to the kinetic and potential en-
ergies of the electron gas. Therefore, instead of
the Cauchy relations C» ——C,4 of central-force
cubic lattices, one should have C» —C44=B, as
discussed by De Launay (where B, is the bulk
modulus of valence electrons). However, this
concept (C» —C« ——B,) is valid only for an essen-
tially spherical Fermi surface and will not hold
for multivalent cases. If we overlook the fact that
the approximate concept, C» —C44= B„which
arises out of Fuch's work, may be a too simple
and too poor an approximation, we must naturally
consider noncentral forces to be partially respon-
sible for the deviation from the Cauchy relation.
Such a noncentral character could originate from
the nonsphericity of the 3d charge distribution. "
We know that the cubic field in metals removes
the fivefold degeneracy and destroys the sphericity
of the 3d-band electrons and that the d-band charge
distribution gives rise to noncentral interatomic
forces,"but the main question is to examine
whether these forces are significant in magnitude.
Gupta and Tripathi' recently considered the in-
fluence of angular forces on the crystal dynamics
of noble metals and it emerged that the contribu-
tion of the angular-noncentral- force interaction is
nearly 100' that of the central one. Thus it may be
inferred that these interactions play an important

role in the lattice-dynamical description of fcc
s true tur es.

The lattice dynamics of Ni has been investigated
by several workers, ' ' but .the study has been
mostly confined to phonon dispersion only. It is
evident that almost every model gives a good fit
to experiments only for small values of the phonon
wave vector. In these calculations the results
achieved with the De Launay' and Sharma and

' Joshi' models are open to question. Unfortunately,
as pointed out by Lax, ' these schemes violate the
symmetry requirements of the lattice. Though the
calculations assuming Krebs' idea' consider the
above requirement, the model neglects complete-
ly the influence of angular vibrations on the crys-
tal dynamics of solids. From previous work' it is
evident that they are important and it is therefore
suicidal to think that such interactions are too in-
significant in magnitude to cause theoretically
measurable effects. In this direction, the recent
statement of Upadhyaya' regarding angular forces
appears to be inadequate. The discrepancy of
various theories' ' with experiment at higher val-
ues of (reduced wave vector) f cannot be attributed
to the long-range nature of forces in the case of
Ni due to the fact that in this crystal the short-
range interaction is by far the most important
one. ' Indeed, the elastic constant C44 which deter-
mines to a large extent the magnitude of the short-
range interactions is much higher for Ni than for
other fcc metals, whereas the deviation from the
Cauchy relation, which affects the magnitude of the
long-range interaction is comparatively small.
Moreover, the earlier calculations have demon-
strated clearly that the consideration of the elec-
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tron- ion matrix element does not affect the phonon
spectrum of Ni to a great extent. Therefore, we
must look for an additional interaction (i.e. , angu-
lar) so as to get a better fit with experiments. In
the present paper we report a calculation of the
lattice dynamics of Ni in which the deviation from
the Cauchy relation is considered to arise from
angular interactions in addition to the usual cen-
tral and volume forces. The angular forces are
taken from the Clark, Gazis, and Wallis (CGW)
model" and the volume forces are borrowed from
Krebs. ' A similar approach has already beck fol-
lowed by Shukla et al. ' and the present authors
to study the various dynamical properties of cubic
crys tais.

II. MODEL

The system in which the vibrations take
place consists of point ions having their equilibri-

um positions at the lattice points and an electron
gas surrounding the ions. The assumption of point
ions is valid for most of the simple" and cubic
transition metals" excepting group-IB metals.
The phonon frequencies in the harmon. ic approxi-
mation are given by the secular equation

I D, „(q) —M(d'. , 6„„l
= 0,

where

D „(q) =D'„'(q)+D„'„'(q) .

Here D (ql are the elements of the dynamical ma-
gV

trix, q is the wave vector confined to the first
Brillouin zone (BZ), M is the mass of the ion, and

~&,. is the normal-mode frequency of wave vector
q and branch index i.

8D„=2 e+ —,y, +y, 2 —C, C, +C, +4 s', —~2 2cosaq, —cosaq, —cosaq,

(2)

n

((=( &n —,. . Is,s. s&Q I ', ,'n'(lt(s& lsd- .' n. s*((&I".
&)

( 16y1) t (q+ G), (q+ 0),

In the above equations a, p and y„y, are central
and angular force constants taken up to second
neighbors, r, is the radius of the Wigner-Seitz
sphere, the electronic force constant is written
a A =K,v,k'„where K, =4(re'Z Z„/v', k', is the bulk
modulus of the electron gas. The g'(x) function
known as the overlap integral or interference fac-
tor follows from the Wigner-Seitz model for the
band structure and is given by

3 (sins —s nnss(

)
'

g x

k', = k', (sp )f(t),

k, (sp &

= 0.353(r,/a, )' ~'k~,
(4)

Equations (2) and (3) involve summation over all
the reciprocal-lattice vectors 4 which are obtained
from the structure of the crystal. C, =cos(-', aq, ),
s, =sin(2a(f, ), k, is the Bohm-Pines" screening
parameter which is given by

f(t) =—+ ln l(1+t)/(I —t) l; t =k/2k~
1- t2

Here a, is the Bohr radius. In the calculations the
value of k~ is defined in the free-electron approxi-
mation with k~=(3&'n, )'~', where n, =2.4/a' for Ni
assuming only 0.6 conduction electrons per atom.
This is reasonable since in Ni ten electrons have
to be distributed over the 3d and 4s bands, and
since the value of the magnetic moment indicates
that there are 0.6 holes per atom in the 3d band. "
The function f(t) goes to unity for t -0 and has a
logarithmic singularity at t = l. In Eqs. (2) and (3)
the electron-ion interaction part of the dynamical
matrix in the limit of very long waves produces
an additive stiffness for the longitudinal modes
without affecting the transverse ones. It is anal-
ogous to the procedure adopted by Bhatia,
de Launay', and Sharma and Joshi" to explain the
Cauchy discrepancy in cubic metals. In the long-
wavelength limit the force constants involved in the
dynamical matrices of fcc metals can be related to
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the measured elastic constants and the two zone-
boundary frequencies. The resulting expressions
are

aC„=2@ + 4P+ 32y, / a'+ 16y,ja'+ 4A/a'k', ,

aC„=c{—16y, /a' —By,/a'+ 4A/a'0', ,

aC4~ = Q + By2/a

m'm p' = n+ By, /a'+By, /a',

m'm v ~
= 2c{+P+By,/a'+AC.

the first Brillouin zone. Since a number of points
in the first Brillouin zone are symmetrically
equivalent, vibration frequencies are calculated at
points lying within the irreducible trihedral angle
of the reciprocal space of a cubic crystal. For
sampling purposes, the number of frequencies
falling into a certain frequency interval are counted
and from these values a frequency distribution is
plotted which is drawn with arbitrary unit for
G(v). After obtaining the frequency distribution,
the lattice specific heat at constant volume, C„,
can be computed from the following relation:

(6)

v~ and v~ represent the longitudinal and transverse
zone-boundary frequencies in the [f/'] and [$00]
directions: C is the electronic contribution at the
zone boundary in the [ggg] direction. The elec-
tronic contribution at the zone boundary of the
transverse branch in the [$00) direction ha. s been
neglected owing to it being very small. The effect
of this contribution is found to be negligible on
integra. ted properties. The solutions of Eqs. (5)
determine the unknown force constants in terms
of elastic constants and zone-boundary frequen-
cies. The calculated force-constant values are
given in Table I. These force constants are sub-
stituted to find the roots (frequencies) of the sec-
ular determinant for selected values of phonon
wave vectors.

III. NUMERICAL COMPUTATION

The frequency distribution function has been
calculated with the Blackman root-sampling tech-
nique for a discrete subdivision in wave-vector
space. The only wave vectors of interest are those
lying within the first Brillouin zone. This method
can give an accurate spectrum when the number of
frequencies falling in a sr@all frequency interval is
fairly large. In order to get a fairly large number
of frequencies the translation vector of the recip-
rocal space was divided into 20 equal parts so as
to get a grid of 8000 equally spaced points inside

where x=h/'k~T, k~ is the Boltzmann constant,
e is the vibration frequency of the phonons, and g
is plank's constant divided by 2m. The sampling
technique was used at moderate temperatures
down to,o since G(v) calculated by this method
can not be very accurate in the low-frequency
range and because of the coarseness of the mesh
in the vicinity of the origin. Below —" 8, C„,has
been caj.culated from the following relation:

C, ={. 2, g J J Z{*{q'dqdG.
0 D

Here v is the crystal volume, p is the polarization
vector, 0 is the solid angle in wave-vector space,
and E(x) is the Einstein specific-heat function given
by E(x) =x'e*/(1 —e")'. ln evaluating C„ from Eq.
(7) the integration over q is performed numerically
and the integration over the solid angle 0 is car-
ried out by using the modified Houston spherical
six-term integration procedure" as elaborated by
Betts et a/. " In this method the integrand which
is invarient under the operations of the complete
cubic symmetry group is expanded in Kubik har-
monics and the series is averaged analytically
over the complete solid angle. The use of Hous-
ton's method for evaluating the integral

J= I(B,Q)d&

by a six-term approximation leads to the formula

TABLE I. Calculated force constants of nickel. J= —— -m(117 603I„+76 544' + 17 496Ic

Parameters calculated

& (10 dyn/'cm)

P (10 dyn/cm)
p& (10 dyn/cm)
&2 (10 dyn/cm)

A. (10 dyn/cm)

Nickel

31.4030
0.8657

—0.7502
1.5277

44.0378

+ 381 250I~ + 311040IE

+ 177 147I~).

'The subscripts A, B, C, B, E, and I refer to the
values of the integrand I(B, Q) along the directions
[100], [110], [111], [210], [211], and [221], re-
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spectively. The dynamical matrix giving the an-
gular frequencies for the normal modes of lattice
vibrations is solved for these symmetry directions
and the solutions are used for the evaluation of the
integral over q.

IV. RESULTS AND DISCUSSION

Birgeneau ef al. ,
"and Dewit and Brockhouse"

have measured experimentally the frequencies of
the normal modes of lattice vibrations in nickel at
296 'K along the major symmetry directions, using
the technique of neutron spectroscopy. However,
the above observed data are not in good agreement
with the time-of-flight measurements of Houtecler
and Van Dingenen, "especially near the zone bound-
ary. These discrepancies could not be accounted for
by normal experimental errors, so a reasonable
explanation is still lacking; tentatively, this could
be attributed to an-incorrect subtraction of the
socle under the high-energy one-phonon peaks.
For comparison, the experimental points from the
observations of Birgeneau et al. and Hautecler
and van Dingenen are plotted in Fig. 1 ~~ong with
the theoretical curve calculated from our assumed
approach. To test the usefulness of this approach,
it is of interest to compare our present computa-
tions with those calculated by earlier workers, "'
using various approximations and theories to cal-
culate the phonon spectra of Ni. Basically, all

these approaches are simply an extension of the
Born-von Khrmhn's phenomenological approach
which is correct within well-defined and reasonably
good approximations yielding a set of interatomic
force constants having a direct intuitive signifi-
cance and, therefore, of interest. It is evident
that both the Krebs' and the CGW" schemes agree
with each other's results. As compared to other
models, our results are comparatively in much
better agreement with the observations. Since
the present scheme represents a modification of
both the Krebs and the CG% models, this study is
especially interesting for these approaches. How-

ever, as far as the CGW scheme is concerned, it
was originally developed by Clark, Gazis, and
Wallis to study surface physics and therefore no

attempt was made to incorporate the influence of
valence electrons on the ionic lattice. The infor-
mation extracted from De Launay's model' shows
disappointing agreement with experiments.

Tchernoplekov et al."and Mozer et al."have
used the incoherent-inelastic-neutron-scattering
techniques to measure directly the frequency dis-
tribution function of nickel. Birgeneau et al. '
have also calculated the frequency spectrum of
nickel within the Born-von Karman theory by fit-
ting four-neighbor force constants to their experi-
mental phonon dispersion curves obtained from in-
elastic scattering of neutrons at 296'K. In Fig. 2

we have shown the experimentally measured
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alpng with pur thepretj. cal pne. Ex-
perirnental specific heats of nickel have been re-
ported by Eucken and Werth" and later on similar
observations of this crystal have also been carried
out by Busey and Giauque. " Measurements of the
latter authors are in close agreement with the re-
sults of Eucken and Werth in the whole tempera-
ture range considered for the experimental study
of specific heats of nickel. Results of both these
groups extend almost up to the same range of tem-
perature and are plotted in Fig. 3 along with our
theoretical curve. Since the specific heat is very
in. sensitive to the details of the spectrum, calcula-
tions have been compared with experiments in

terms of the equivalent Debye temperature Q
which is perhaps the most sensitive property to
test the validity of any approach. In order to es-
timate the lattice specific heat, the electronic and
spin-wave contributions have to be subtracted
from the experimental heat capacities. The coef-
ficient of the electronic specific heat of nickel is
available from the work of Clausius and Schachin-
ger, "and Rayn. e and Kemp. ' Rayne and Kemp
have analyzed the data of Busey and Giauque" an. d

found the electronic-heat-capacity coefficient to
be 7.05 mJ/K'mol and the spin-wave contribution
to the heat capacities to be 8.8 x 10 'T' ' J/Kmol.
These workers have remarked that "owing to its
large electronic heat capacity, it is not possible
to determine the value of 0 for nickel with any
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FlG. 3. Debye temperature of nickel as a function of
temperature.

great accuracy. " Further, there is an attendant
uncertainty in the electron. ic heat capacity due to

the unknown impurity content of the specimens
used in measurements. We have subtracted here
the electronic and spin-wave contributions to the
specific heat from the recent measurements of
Bayne and Kemp. George and Thomson" have re-
cently reported the C„data of nickel using a dif-
ferent technique. They have directly utilized the
experimental results on temperature-dependent
saturation magnetization. Their values for 9 are
in agreement with those obtained by Rayne and

Kemp for temperatures T &150 K, but are signifi-
cantly higher than. these values for 200& T&300 K.

A perusal of Figs. 1—3 show that the present
phenomenological scheme, attributing the Cauchy
discrepancy to both angular (noncentral) and vol-
ume interactions, produces a reasonable picture
of the observed crystal dynamics of nickel and it
therefore justifies the adequacy of the present
formalism. In conclusion, we can say that the
present approach, while taking into account the
effect of the electron gas in a rather primitive
way, predicts reasonably well the dynamical pro-
perties of Ni indicating thereby that angular forces
play a significant role in the crystal dynamics of
Ni. The contribution of these noncentral forces is
estimated to be about 9/q in magnitude as com-
pared to the total interactions taking place in the
ionic lattice of Ni. Though the present study is
confined to the lattice dynamics of Ni only, simi-
lar results are obtained for other fcc metals also.
As compared to complicated pseudopotential cal-
culations, the present phenomenological scheme
appears to be a convenient choice for the lattice-
dynamical description of nickel.
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