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Effects of anisotropy on ultrasonic cyclotron resonance
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A general expression for the wavelength-dependent magnetoconductivity, valid for arbitrary k-dependent
electron energy and relaxation time, is given. . The effects of a small cubic anisotropy in the relaxation time
l/7 = {l/70){1 + w K,) and in the energy band E = ak ' —bk' —qk "K4, where K~ is tne Kubic harmonic
of the fourth order, on the transverse-acoustical Doppler-shifted cyclotron resonance are studied. The
acoustical attenuation is found to be dependent on a strictly anisotropic contribution term I, , in addition to
the usual dependence on the generalized conductivity 6, which contain implicit dependence of anisotropy.
Special attention is paid to the anisotropic effects on the absorption edge. The relaxation-time anisotropy on
the magneto-acoustical dispersion is significant only in the domain where ql is small. An expression for the
helicon-phonon dispersion relation is obtained. A graphical presentation of the .results of numerical
computations for the sound attenuation and dispersion versus magnetic field in potassium is given.

I. INTRODUCTION

The attenuation of ultrasonic waves in metals
increases with decreasing temperature. At high
temperature, dislocations are the dominant cause,
while at low temperatures interaction with conduc-
tion electrons may dominate. The mechanical mo-
tion of the lattice produces an. internal electric
field, which drives conduction electrons into col-
lective motion. This electron current tends to
nullify the very cause producing it. Due to the
short but finite response time of the conduction
electrons, a small residual electr'ic field is nec-
essary to maintain the quasibalance of currents.
That part of the self-consistent interaction repre-
sented by this electric field, therefore, enters
into the picture of irreversible energy transfer
from the acoustical wave to the electron system,
as is the case for instance in ultrasonic cyclotron
resonance. At the superconducting temperature,
the attenuation decreases suddenly if the metal
under goes trans ition to supe rc onducting state, and
otherwise the attenuation continues to increase.
The magnetic field dependence of the attenuation of
ultrasonic and electromagnetic waves in metals at
low temperature is valuable in studying the Fermi
surface. Many papers have been published along
this line or on closely related subjects. ' " How-
ever, a free-electron model, or an isotropic en-
ergy band, and a constant relaxation time wire
adopted in most of the explicit theoretical treat-
ments. The effects of anisotropy on cyclotron
resonance have been of some interest recently. "'"
In the present paper we examine the anisotropic
effects of the energy band and the relaxation time
on the ultrasonic cyclotron resonance. The at-
tenuation of the shear ultrasonic wave, for an iso-
tropic energy band and a constant relaxation time,

is given by

n(q, ~, H) ~ Re [(1/G) —1 j,
where G =&/&„& is a Fourier component of the
conductivity tensor, &, is the dc zero-magnetic-
field conductivity, H is the applied static magnetic
field, and 9 and ~ are the wave number and the
frequency of the acoustical wave. In the present
work, we take a system of normal nonmagnetic
cubic metal at low temperature. A shear ultra-
sonic wave is propagating along the [001] direc-
tion, and a, sta. ic magnetic field is applied along
the direction of wave propagation. This geometry
is appropriate for the case of Doppler-shifted cy-
clotron resonance- and helicons. Throughout the
work we assume (i) a magnetic-field-independent
relaxation time, (ii) an effective single-band Ham-
iltonian based on Bloch scheme, and (iii) closed
cyclotron orbits on the Fermi surface. We take
the classical linear approach. Acoustical and
electric fields are treated as classical vectors.
The conduction electrons are handled by a linear-
ized Boltzmann equation.

We assume the relaxation time in the form

1/7'(k ) =(1/v )(1+wK,), (2)

where 1/T, is a constant, &» is the Kubic harmonic
of the fourth order

Ii .= (1/k»)(k»+k»+k» ) ——, (3)

=»(3+cos4q) sin»&+cos»& —5

and ~ is a small parameter. We take the effective
Harniltonian" derived by WEB method in momentum
representation
ff =F. (k) -ff"

8 dr ~ 6r . ~ BQ.
=g(k)». —+—~ V kk-m —u-i Z, ' C;.

d t dt dl, „, dr,.
(4)
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where hk is 5K+ (e/c) (A+ a), k K is the crystal
momentum, and —& is the charge of the electron,
and u is the lattice displacement vector. The de-
formation potential C;; is

c;, = J( d r[u'z['r; (,:)
0 0 Rg=0

i Buk g Buk BV„

where V, is the unperturbed periodic potential, Rg
is the gth lattice displacement, uk is the periodic
part of Bloch-like wave function, and integrations
are over a unit cell. In the present study we dis-
regard the deformation-potential term and assume
that the ion current, the current associated with
the lattice motion, is fully represented by J =+e
x Bu/St for a monovalent metal. We take the un-

perturbed energy band of cubic symmetry

E(k) =ak' bk4 q 4k', (6)

in atomic units, and & and g are the small param-
eters. For the free electron model a= & and &

= g =0, and a = m/~ and b =g =0 for a band where
E =k'k2/2 m+.

In Sec. II, we give the constitutive equation. A

general expression of the conductivity for the case
of cubic relaxation time and an isotropic energy
band based on Chamber's method is discussed. We
found it more convenient to use the Jones-Zener
method of iteration, '4 for a system of anisotropic
energy band, when the geometry is q ~[ H. In Sec.
III, the acoustical attenuation and dispersion are
discussed.

II. CONSTITUTIVE EQUATION

The constitutive equation is obtained by salving
the linearized Boltzmann equation for the band and

the relaxation time discussed in Sec. I.
In the presence of an acoustical excitation the

Boltzmann equation

sf dr dk sf"Vf+—V~f =
Bt dt dt 8t ~~i

where the effective Hamiltonian H is given in Eq.
(4). The perturbation term H~' represents a
real-metal effect of the sound wave and vanishes
for the free-electron model. The electron con-
servation during collision is expressed by
fd'k(&f/&t) ~~

=0. The electron velocity is

k+ =V+ kH ( )
dt (9

The "momentum" change contains an extra term

e(E +—x H)
Qr . ()

dt dt (10)

neglecting the magnetic field associated with the
internal electric field. The extra term, &H('), is
due to the presence of an acoustical wave.

We choose &f to represent the deviation from the
instantaneous equilibrium under the influence of
the sound wave

With this choice the linearized equation is

e
+i (q v ~) —(vxH) V- f '

7 C k

sf ~ . (~) 1 ~ au
eE v+i uH ' ——k' —. (l2)Bt

A different choice, such as f =f ~' (&) +f~'~, in

place of Eq. (11)with corresponding change in the
linearized equation, will equally well describe the
problem. Alternatively one might have introduced
a strain dependent momentum as (I+iqu) ' [K+ (e/
c) A+ (e/c)aJ from the onset with corresponding

instead of the vector k defined as in the pres-
ent paper.

The solution of the above Eq. (12) can compactly
be written in Chamber's form as

should be modified in accordance with the colli-
sion-drag effect"'6 in the relaxation-time approx-
imation,

sf 0(f)) t
g «g ~ ««j «/ «/ u 1 «q u gr

f &'~ = IJ dt' ev' E —s(q v —v)(k —mv ) ———,k —exp —
II dt —„+iq'v

because the spatial trajectory of the electron is unaffected by the electric field and by the acoustical field
in the linear approximation.

Following standard procedures" one can write, in the absence of an acoustical wave, the conductivity

dk, dt v t dt'exp — dt" t" v t'
0
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(15)

where
T T

dt dt ' v(t)v(t')
0 0

where Q is introduced as (I) =1/&+z(q' v —(v) and
the cyclotron period T(E, tz, ) is T = 2)z/(v, = (ft'v/eH)
(sA/sE), , By separating the aperiodic part from
Q, one can write Q =( (I) ) + ((I) —( Q) }where ( Q)
= (1/T) J, dt. Q(t) is the average over a cyclotron
period. Then the factor v(t)v(t ') exp [—f2 «"((I)"
—((I)))] is periodic in both t and t' with the com-
mon period &. Performing a double Fourier ex-
pansion of this factor, we obtain

e2
0' = dk, m+

2)z%' ' ~, „((t)) il (2-),
'

with cosI9=&, and ~„ is the Bessel function of &th
order. The dc conductivity 00 is independent of .
When w =0, &,„(0)=~„„, and the usual expression
is obtained. In the high-field limit one may take
only the & =0 term, and it shows the relaxation
time averaged aver the cyclotron period enters in-
to the conductivity. However, this may not be the
case for a weak magnetic field. Besides the &4
in the denominator of the integrand of Eq. (17), we
note the first contributing term is proportional to
i8 2.

To treat the case of anisotropic relaxation time
and anisotropic energy band, as given in Eqs. (2)
and (6), we introduce the Fermi momentum and
the Fermi velocity by

&&exp —i l +, t —t'

and

k~= — dQk E Q (is)

(i6)

which. gives

G, =— dx(1 —xz)
(17}

(J„[i(w /16((), T,)(1 —x')']P
1».wK»+zqv~T x —z(v, T + i(4n+1)~, T

+i A

K4 2m
d(t)K, (9, (p) =SP»(cose),

This expression is valid for arbitrary k-dependent
energy band and relaxation time. The explicit
evaluation of A for the anisotropic relaxation time
of Eq. (2), and an isotropic energy band has been
made, with the result

(A, ), = P IZ„(at( ) I
a. .

v~ = — dQv E,Q
E=Ep

(19)

26E 3' 3'
g g2 ]0g2 2g 4 ~ (21)

When the band is anisotropic and q is parallel to
H, as in the present circumstance, we found that
the direct calculation of the electron current using
the solution given in Eq. (13) is less convenient
than solving the linearized equation [Eq. (12)J by
the Jones-Zener method. By writing f '"=-,(Sf '"l
SE}(X,+X ), we found

where E~ is the Fermi energy and ~ is the ele-
ment of solid angle in k space. Thus the electron
density is n =&„'/3)z' and v~/k~ = (a/zn) [1 —(2b/a)Izz],
for small anisotropy. The cyclotron frequency is

&,= (eHvz, /&tzz, )(1+ (SzI/2a)tz~(cos'0 —1)] (20)

and the cyclotron mass is

eE~ 1 m Bu+—(1».wZ )+i ((tv, —(v) 1—
m+ 70 4 yn+ bt

w —1 1, I I
(2) a2 32ta a 2 ((t) alta (») * alta (»)at ((t)aal ~t )

eE k,' 1 3
am ((t)alta, ((t) aatta, )

Ã BQ~

aa. at li' ((t) + aiat. ((t) + atat.)
j

t-t a, „, 2- ~(~ 2am, /la

)6 st ' ' ((t) +i (d, ((t)) + 3z(v,
(22)
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In this equation (@)= (1/&o)(l +wK, ) +i (qv, —&u)

and F-&=F-, &~„etc. With this solution, we cal-
culate the electron current ] = —(e/4&') jd'k(dr/
d&)f where dr/d& is as given in Eq. (9). The non-
vanishing contribution is ) = —(e/4m'} J d'k vf ~'i.

By writing

(H) = G, (—H), A (H) =A „(-H), and L (H)
=-L, (-H). The L, vanishes for a constant re-
laxation time and an isotropic energy band, and
it depends on both ~ and g.

III. ULTRASONIC CYCLOTRON RESONANCE

we obtain

(23) With the constitutive equation, Eq. (23)-(26),
one needs to consider the sound wave equation

((v,v /v')(vr/k)), „
~L9 sin~

(1/T) „y Equ~ —14) —l(dz

30' =Be2-
+

- 0.

3 '
d& . ", 1+(nk/ a)(3c so'0 ——', +-,'R, )

0 4 I +wZ~+i(qv, —(u —(u, )T

u, = — dq) u(E, A)
/s-

cos ~ I +—&2 ——&2 cos 0+—k & .6q 2q 2 q 2—
F 5g F g F 2 F 4 ~

A, is given by

A, =1 —
k (1 —L,}

F

VF
+—nz +I

(24)
In thiS equation, &0 =ne'Touz/kr is the dc zero-
field conductivity. The bars and ( )„ indicate the
azimuthal average at the Fermi surface, for in-
stance

(27)

where»&is the density of metal and ~is the
mass of an ion. F is the force density acting on
the ions, that is the force acting on the ions per
unit volume of metal. This equation can be re-
written

(c'q' —&u') J,=-i (e&u/M)F, .

We take F as the difference between the total Lor-
entz force acting on the metal and the force acting
on the conduction electrons"

1~ ~ ~ d f f drF=—))+J)x H- —
II

d' ) )xf) . (28)c dt 4n' g dt

The second term contains the free-electron mass
and represents the rate of change of "true"mo-
mentum of the electrons. The calculation of this
term is

d3I, r
d3y

where G, =o', /&, and

fl

d~ sin'~
4

wK„iq(eH/c)(v-~kr/aT„ )(', cos28 —'„-)

1 ywIY +i (q u, —(u - (u, )7

(26)

d2r 8 Gr dk cL r—+—'V+—~ Vdt2 et dt dt '" at (29)

andf =f ' (H)+f~') =f'~(E) H~')bf '/bE f"
Explicit evaluation gives

where d'r/dt' is the acceleration of the electron
which is"

m mvF . 0 nzv~ . p m . B mvFF = — i —+ — () +/)+ r ne —neL +i —o E + r -i —A + +i — 1 — ~ L Jc eT + + k ' c + ' k c ' e7 c +
0 g 0 F

n" mLF ]. 2 46 6q+ —g2v2 $ g +—k2 —+ 3$ — J'E 7 F g 5 + (30)

Inverse Laplace transforms are used in evaluating
the terms that contain f 0 (E) in the integrand.
When Eq. (30) is substituted in Eq. (27), one ob-
tains the acoustical dispersion relation and at-
tenuation a&. In the domain where tke quasibal-
ance of current holds

m mvF eH mv~

+ i
~

—g —21.„—1 (31)
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m mvFu, = —, — Re —{1—2I {—1), {32{i'd kF c ~, G,

where

m, 2, 4& 6qc2 =c2 —— VF~ 1 —GL+ —~z —+3~ ——
52% i 7 a 5

suits given in Ref. 18. However, these results
differ from the result given in Ref. 19 since no
"diffraction" force is explicitly included.

From Eq. (31) we obtain fhe fractional change
of the velocity of the acoustical wave

mv~ ejg mvF

is the modified sound velocity and eH/&&& is the
ion cyclotron frequency. The attenuation is de-
pendent on the term L, /G, , which is a strictly
anisotropic contribution, in addition to the gener-
alized conductivity dependence, as in Eq. (1). Of
course, G& is affected by the anisotropy. For the
case of an isotropic energy band and a constant re-
laxation time, one can reduce Eq. (32) to the re-

(33)

after neglecting the term (~&/iVl)(1 —rnv~/kz) com-
pared to unity.

From the constitutive equation, the Maxwell
equations and the acoustical equation, we obtain
the helicon-phonon dispersion relation

g ~ 2 ~oG- ~ 2 1+ ~ 1 —
I

—
k Mc & 2

— —1 —2L —1

1 —I. — 1-z—7 1 —„]&+j 1 ——1 —I '. 34

In the above, all calculations from Eq. (18') are
performed to the first order in the anisotropic
parameters ~ and 'g.

One notes that the imaginary part of the denomi-
nator of the integrand of G, , A„and I, vanishes
at 9'v, —+ —+, =0. This equation can be rewritten
&(~) —y =0, where y(H) =eH/qk~c+~/qv~ and
F(&) =&[I+(0/2&)&~(3 —7&'+&,)j. When F(&) is a
monotonically increasing function of &, as in the
case of the alkali metals, it has its maximum val-
ue at & =1. In the region of magnetic field for
which the equation 9v, —+ —, =0 has a solution,
the only solution is that of F(&) =y. The denom-

inator of the integrands has a strong minimum at
this point for the case of Q~ ~&1, where ~ =vF&, is
the electron mean free path. The absorption edge
occurs at y(H„) =1 —Bq&~/5&. The absorption edge
is related to the Gaussian curvature & of the Fer-
mi surface at the point where its normal is paral-
lel to the magnetic field by I/~& = —(1/2&)(&A/
t{&,),„... In the region where the electron mean free
path is large compared to the sound wavelength,
the attenuation and the dispersion are insensitive
to the relaxation-time anisotropy. The effect of
relaxation-time anisotropy is significant when the
mean free path is comparable to the wavelength.

I.Q
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FIG. 1. Ultrasonic attenuation vs magnetic field (cubic
band).

FIG. 2. Ultrasonic attenuation vs magnetic field near
absorption edge (cubic band).
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FRACTIONAL SOUND VELOCITY CHANGE

E S S ETCFED

By making measurements at very different values
of frequency (i.e. , q&) it should evidently be pos-
sible to separate the band and relaxation-time
anisotropie s.

The acoustical attenuation versus magnetic field
below the absorption edge is graphed in Fig. 1

using potassium band parameters + =1.16, & =0.85,
and &~ =0.396. The attenuation near the absorption
edge is graphed in Fig. 2. The velocity change,
[Eq. (33)], is shown in Fig. 3.
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