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Generalized Wannier functions for a model impurity in a one-dimensional lattice
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The generalized Wannier function formalism is used to calculate the impurity perturbed electronic structure
of a one-dimensional lattice. A comparison is made between this approach and the exact results. It is found

that very satisfactory accuracy can be achieved using simple trial functions with only one variational

parameter.

I. INTRODUCTION

Since their introduction, the Wannier functions
have been proven to be very useful and convenient
as an alternate set of functions, equivalent to the
Bloch functions, in describing the electronic
structure of periodic systems. However, the
crystalline periodicity is often interrupted by the
presence of an impurity or a surface. To obtain
the digenfunctions in the case of highly localized
perturbations, one often uses the well known
Slater-Koster theory' in which the impurity wave
function is expanded in terms of the Wannier func-
tions of the perfect lattice. These form a complete
set only if all bands and all lattice sites are taken
into account. Yet, as several calculations' ' have
shown, the convergence in bands may be rather
slow and, because of computational limitations,
difficult to reach.

Recently, Kohn and Onffroy~ introduced the gen-
eralized ~annier functions (GWF) as an alternate
basis for describing the perturbed crystals. These
functions are constructed from localized trial
functions centered at each lattice site through a
variational procedure which minimizes the total
energy of the considered band. ' The principal
advantage of using this procedure is that the cum-
bersome eigenvalue problem can be avoided and
the directly obtained GWF are equivalent to the
eigenvectors in describing the perturbed system
such as its charge density or its density of states.
The eigenfunetions may be obtained from these
GWF by solving a one-band Slater-Koster-type
equation, ' which in this case, is exact.

For a one-dimensional crystal perturbed by a
point defect, Kohn and Qnff roy~ have demonstrated
that the GWF have exactly the same exponential
localization as the perfect Wannier functions and
that they approach the latter exponentially for sites
distant from the defect. Gay and Smith" have
applied this formalism to a one-dimensional sys-

tern with a surface. They have found that the GWF
decay rapidly to the bulk Wannier functions and
hence may be constructed with a good accuracy
using trial functions which do not depart signifi-
cantly from their bulk behavior, even in the vicin-
ity of the surface. In this paper we perform a
similar test calculation on a model one-dimension-
al lattice with a perturbation localized in the unit
cell. This is to simulate a localized defect in a
real crystal. There are many examples of such
short-ranged defects: Isoelectronic impurities
and vacancies in semiconductors as well as color
centers in alkali halides. The calculation of shal-
low impurity states in semiconductors, taking into
account the central cell correction, involves also
perturbations strongly varying in the unit cell. '
It seems therefore of interest to perform such a
model calculation in order to gain some guidelines
for future work in these problems.

In Sec. II we briefly summarize the GWF form-
alism in the context of our one-dimensional model.
The results of the calculation with an evaluation
of their accuracy in comparison with the standard
one-band Slater-Koster theory are given in Sec.
IQ. We then give in Sec. IV the main conclusions
of our work.

II. APPLICATION OF THE GWF FORMALISM

TO A MODEL CALCULATION

In this section we briefly summarize the GWF
formalism with special emphasis on its application
to a model one-dimensional lattice perturbed by a
localized potential. ~ The Hamiltonian of this crys-
tai is given by (unless otherwise specified, atomic
units have been used throughout the paper):

dII=—,+ Vo(x)+ v(x),

where V,(x) is the one-dimensional periodic po-
tential and v(x) the localized perturbation.

19 29'&9 1979 The American Physical Society



2940 J. P. ALBERT AN 0 L. LIU l9

We shall be only interested in the perturbed
states associated with the lowest band. The N
perturbed states (where N is the number of cells
in the lattice) are given by the solution of the
Schrodinger equation

Hy, (x) =.E~qr ~(x) . (2)

The GWF formalism is based on the fact that there
exists a unitary transformation connecting these
states y,. and a set of localized orthonormal func-
tions a„so that the ground state of the system may
be described equivalently by the following two de-
terminants (assuming noninteracting spinless elec-
trons):

C = (iVr )-~&2det ling(x&) I ..
c =(x!) 'I'detla„(x, ) l

.
The QWF are then constructed from the energy
variational principle, ' based on the fact that the
total energy of the perturbed band,

(8)

(4)

E= ax H ax
attains its minimum value when the a„ form the
correct set of GWF. This minimization procedure
must be carried out with trial functions a„which
are orthogonal. They are constructed from local-
ized atomiclike functions g„(x) centered at each
lattice site which are orthogonali:zed by the sym-
metric orthogonalization procedure of Lowdin':

a„'(x) = Q S„~g ~'g, (x),

v(x)=ho'd'[I+ cos(2wx/d)], lxl ~-,'d,

v( )=0, lxl &-,'d, (10)

where X may be varied in order to produce
different depths for the perturbed well at the

where S is the overlap matrix

. =&g.( )lg ( )&.

In our test calculation V,(x) has been chosen to
be a Mathieu potential

V,(x) = a'd'[I —cos(2'/d)],
where the parametrization of Gay and Smith' has
been adopted:

d= It,
o' = —,'2(1/t4) .

Here d is the lattice constant, l a parameter gov-
erning the strength of the potential, and t a scaling
parameter introduced in order to produce realistic
values for energies and lengths. We then super-
impose to this potential a perturbation given by

origin. Positive values of A. produce repul-
sive perturbations which pull out a state from
the top of the considered band while negative val-
ues result in a state split off from the band bottom.
The connection between these model Mathieu po-
tentials and real crystals has been extensively dis-
cussed by Slater. " The potential minima are the
atomic sites and the appropriate "atomic orbitals, "
i.e., the approximate solutions of the Mathieu
equation in the vicinity of the minimum, are the
harmonic oscillator wave functions. These offer
thus a simple and natural choice for the set of
trial functions g, . As we are only interested in
the lowest band, these trial functions are the
simple "s"Gaussians:

g, (x) = (Mn, /g'") exp[-2n', (x l)'],
where n, are the variational parameters.

III. CALCULATIONS ANB RESULTS

The test calculations are carried out for two
different choices of parameters for the Mathieu
potential. We shall label them as the TV abd S po-
tentials after Gay and Smith. v The chosen para-
meters are: 5=1, t= 5 for the W potential and
l = 2'~4, t = 5 for the 8 potential. These values
give rise to a nearly free-electron character for
the lowest band. The interaction between the wells
is stronger with the W'potential and results in a
wider band than in the case of the S potential. We
shall first assign the values of —0.4 and+0. 4 for
the perturbation parameter A. in association with
the 8' and 8 potentials, respectively. These model
potentials are shown in Figs. 1 and 2.

We first consider the unperturbed lattice and
construct its Wannier function a„. Because of the
periodicity, all the sites and thus all the g, are

)
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FIG. 1. Illustration of the "W" model impurity poten-
tial with X=-0.4. The band edges {solid lines) and im-
purity state (dotted line) are shown on the right of the
figure .
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FIG. 2. Illustration of the "S"model impurity poten-
tial with X=+ 0.4. The band edges (solid lines} and im-
purity state {dotted line) are shown on the right of the
figure.
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equivalent. The variational calculation involves
thus only one parameter, i.e., the width of the
identical trial Qaussian functions. Once the Wan-
nier functions of the perfect lattice are obtained
from these "optimized" g „we construct the QWF
of the perturbed crystal, allowing the widths of the
Qaussians to depart from their unperturbed value.
As the GWF are expected to approach the unper-
turbed Wannier functions for sites distant from
the perturbation, it is only necessary to vary the
widths of the Qaussians centered in the vicinity
of the defect site. In fact we found that only the
central cell Qaussian needs to be varied, the
others keeping their original value. Hence, the
damping of the QWF to the unperturbed Wannier
functions is very rapid and is completed by the
third site for the W potential (X= —0.4) and the
second for the S model potential (X=+0.4). We
plot in Fig. 3 an example of QWF which is com-
pared with the unperturbed Wannier function. We
have also chosen several other values for the para-
meter A. and in each case found that only the cen-
tral cell Qaussian needs to be varied. The opti-
mized values for the widths of the central cell
Qaussian are given in Table I. We have also aug-
mented the variational scope of our trial func-
tions by taking a linear combination of "s" and "P"
Qaussians for the g, centered at the first neigh-
bors of the defect. (Because of the inversion sym-
metry there is no p component on the site of the
defect. ) However, we found that this does not low-
er the energy minimum and that these functions
had to keep their unperturbed value. The fact that
only the central cell Gaussian is affected by even
a strong perturbation is very encouraging for ex-
tending the present calculation to more realistic
systems. In particular, extending this work to
three-dimensional crystals may be computationally
feasible if only the defect centered trial function

10

D I STA N C E (a.u)

FIG. 3. Illustration of the central site GWF for the
"$" model potential with A, =+ 0.4. This GWF is com-
pared with the unperturbed Wannier function {open cir-
cles).

TABLE I. This table gives for the ~ and S potentials
the widths of the central cell Gaussian for different val. —

ues of the perturbation parameter &. The other Gaus-
sians keep their corresponding unperturbed width (& = 0).

~ potential
Q.,d/~

S potential
nod/vr

+0.6
+0.4
+0.2

0
-0.2
-0.4
-0.6

0.47
0.54
0.62
0.69
0.75
0.80
0.85

0.53
0.64
0.72
0.78
0.84
0.89
0.94

'has to be varied. The rapid decay of the GWF to the un-
perturbed behavior may be seen by comparing the ma. -
trix elements (a, ~HIa, ) with the ones obtained using
the unperturbed Wannier functions. These com-
parisons are made in Tables II a.nd ID for two
extreme cases. From these tables, it appears
that by the third site the QWF have regained their
unperturbed behavior.

In order to study the accuracy of our calcula-
tions, we have calculated the energy and the wave
function of the impurity states and compare them
to the exact results obtained by numerically in-
tegrating the Schrodinger equation. In the GWF
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TABLE II. Matrix elements of the Hamiltonian between
GWF' (second column) and unperturbed Wannier functions
(third column). The first column gives the number of the
considered site (see Fig. 1). This is the case studied
where the damping of the GWF to the unperturbed Wan-
nier functions is the least rapid. (W potential, A, =+0.6).
Results are in electron volts.

0
1
2
3

5

5.6289
4.4134
4.2300
4.2235
4.2228
4.2227

6.0834
4,2470
4.2237
4.2227
4.2227
4.2227

~ 05.
C5

CL

formalism, the perturbed band states can be ob-
tained by solving a one-band-type Slater-Koster
equation. ' However, it is much simpler in our
case to obtain these directly by solving the Schro-
dinger equation (2) for a cluster of atoms sur-
rounding the defect. We expand the eigenfunctions
in terms of the QWF:

Vy=+Cni n (12)

and rewrite Eq. (2) as a matrix equation in terms
of the expansion coefficients C:

Q (a„~H
~
a„,)C„,)- E)C„~ .

n'
(13)

TABLE III. Matrix elements of the Hamiltonian be-
tween GWF (second column) and unperturbed Wannier
functions (third column). The first column gives the
number of the considered site (see Fig. 2}. This is the
case studied where the damping of the GWF to the unper-
turbed Wannier functions is the most rapid (8 potential,
X=-0.2). Results are in electron volts.

&a.'l&lao&

We have found that taking a cluster of 40 sites is
more than sufficient to produce converging results.
The impurity wave functions so obtained are plot-
ted in Fig. 4 for the W potential with A. = -0.4 and
Fig. 5 for the S potential with X=+0.4. We also
give in Figs. 4 and 5 the results obtained by ex-
panding the impurity wave function in terms of
the unperturbed Wannier functions (one-band
Slater-Koster theory). From Figs. 4 and 5 one
can see that even with simple trial functions, we
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can obtain reasonable accuracy and that the QWF
formalism improves the standard Slater-Koster
results.

IV. CONCLUSION

In this study, we have calculated the QWF of a
one-dimensional crystal pertrubed by an impurity
localized in the unit cell. These QWF are found
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FIG. 4. Impurity state wave function for the W model
potential with X= —0.4. The exact wave function (solid
line) is compared with the ones obtained with the GWF
formalism (open circles) and the Slater-Koster one-band
theory (solid points). The corresponding energies are,
respectively, 2.020, 2.077, and 2.170 eV.

3.3708
4.3659
4.3783
4 ~ 378.5

3.3743
4.3785
4.3785
4.3785

FIG. 5. Impurity state wave function for the S model
potential with X=+ 0.4. The exact wave function (solid
line) is compared with the ones obtained with the GWF
formalism (open circles) and the Slater-Koster one-band
theory (solid points). The corresponding energies are,
respectively, 6.577, 6.661, and 6.778 eV.
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to decay rapidly to the unperturbed Wannier func-
tions when one goes away from the defect site.
We have shown that, even for fairly strong per-
turbations, the construction of these GWF irivolves
only the optimization of the atomiclike trial func-
tion centered on the defect. We have also shown
that the use of the GWF formalism can improve
the calculated energy and wave function of the im-
purity state over the one-band Slater-Koster so-
lutions. All these results are very encouraging
for extending this type of calculations to three-

dimensional crystals. For example, the calcula-
tion of deep impurity states in semiconductors has
to be done self-consistently in order to take into
account the polarization of the host lattice by the
defect. The GWF formalism is especially well
suited for this purpose because these functions
give directly the charge rearrangement near the
defect. Owing to the accuracy achieved here with
simple trial functions end only one variational
parameter, it is felt that such calculations may
be computationally feasible for a realistic system.
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