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Hyperfine-field distribution in Fe3Si, ,Al„alloys and a theoretical interpretation
4
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In Fe,Si, „Al„alloys with small x the Si and Al nuclear magnetic resonances are 31.5 and 16.1 MHz,
respectively. The concentration dependences of the frequencies of these resonances are linear, the Si
resonance shifting to lower frequencies, the Al resonance to higher frequencies. Both the magnitudes and
concentration dependences of the Si and Al internal fields are in agreement with the predictions of a simple
model which Jena and Geldart, following the approach of Daniel and Friedel, have found successful in

calculating the fields of sp elements in Heusler alloys, A positive sign is predicted for the Si internal field,
and a negative sign for the Al field. Magnetization and lattice-parameter data required for the comparison of
experiment and theory are also reported.

I. INTRODUCTION

In this paper we present experimental results
for the hyperfine fields in the alloy system
Fe3Si, „Al„over the entire range of Al substitutions,
extending previously published results for x & 0.25.'
We find a systematic concentration dependence of
the internal fields of the sP elements Al and Si.
Finally we show that the measured magnitudes and
the signs of these fields are in reasonable agree-
ment with those predicted by the model of Jena and
Geldart, a model which has been successful
in cal'culating the magnitudes and signs of the in-
ternal fields of sP elements in both Fe, Co, and
Ni hosts and in Heusler alloys.

Fe~Si has the DO, crystal structure but can be
viewed as a Heusler-like alloy with the 42& struc-
ture and the formula Fe(A, C)2Fe(B)Si.3 Both the
A, C and B sites, the transition metal sites, are
occupied by Fe; while the D sites, the sP sites,
are filled by Si. See Fig. I for a more complete
description of these sites. In Fe3Si both the B and
the A, C sites carry moments which not only differ
in magnitude (2.2pa and 1.35', a, respectively),
but also react independently to transition-metal
impurity substitutions. In this paper, the effect
of sP impurities on the sublattice moments is in-
vestigated and the model of Jena and Geldart is

applied for the first time to a system with two in-
dependent sublattice magnetizations.

II. PREVIOUS EXPERIMENTAL RESULTS ON Fe3 Si AND

Fe3 Al

A continuous range of similar bcc solid solutions
form in the Fe&Si& „Al„alloy system over the entire
range of x. The end points of this range Fe3Si and
Fe3Al have been extensively studied. A summary
of some relevant crystallographic and magnetic
properties is given in Table I. Comparison of
these two alloys shows that though essentially sim-
ilar, significant differences exist.

The lattice parameter, 0.104 A larger in FesAl
than in Fe3Si, is a linear function of x for the en-
tire series of alloys with a =5.653+0.140x.

The local moments and internal fields are quite
comparable in the two compounds. On the Fe(B)
sites the values are 2.2p, & and -335 kOe, respec-
tively, suggesting that this site is similar to Fe
in Fe metal. Both the moments and internal fields
of Fe on theA, C sites are somewhat larger in

Fe,Al (1.45', s and —234 kOe) than in Fe~Si (1.35', a
and —218 kOe). The Al and Si atoms carry essen-
tially 0 moment and have internal fields of 26 and
37 kOe, respectively. The sign of the Si field is
positive, "while that of the Al field is unknown.

The alloys used in this work were prepared by
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FIG. 1. Unit cell of the I 2& crystal. structure. The
B and A, C sites are occupied by Fe. The D sites by Si
and/or Al. The inset shows the nearest neighbors for
each of these sites.

methods described elsewhere. ' In short, alloys
with 0 &x & 0.12 were heat treated like Fe3Si, and
those with 0.12 & x & 1.0 like Fe3Al. All of the sam-
ples were analyzed by x-ray diffraction. Some
samples with large x had very small amounts of a
second phase. Since the spin-echo spectrum for
alloys with large x is completely dominated by a
broad Al spectrum, the presence of such a second
phase will not materially affect the NMR results.
The lattice parameters shown in Fig. 2 were ob-
tained from this x- ray data.

The magnetization of all samples was measured
at room temperature with a vibrating sample mag-
netometer. Thesedata show some scatter (thought
to arise from varying amounts of, crystallographic
disorder in the alloys and, in some cases, also
from the presence of the second phase), but in gen-

eral the magnetization increases linearly with x.
Spin-echo spectra (plots of normalized echo am-

plitude versus frequency) at 1.3 K are shown in
Fig. 3 for some representative Fe3Si& „Al„alloys.
Resonance due to Fe(B), Fe(A. , C), Si(D), and
Al(D) nuclei occur in these spectra. In the x =0
sample, Fe3Si, the resonances due to Fe(B),
Fe(A, C), and Si(D) nuclei are at 46.6, 30.0, and
31.5 MHz, respectively. All of the lines are very
narrow in frequency because of the homogeneous
environments characteristic of alloys with a high
degree of long-range atomic order.

In the spectra of alloys with small additions of
Al (0 ~ x ~ 0.25) an additional line is seen at about
16.1 MHz. This line is due to Al nuclei on the D
sites. Comparison of these spectra shows that all
of the lines get progressively broader and develop
satellites of increasing intensity as x increases.
The relative intensities of the main lines and cor-
responding satellites are approximately the prob-
abilities of the different near-neighbor environ-
ments produced by a random substitution of Al for
Si on the D sites.

For small increases of x the Al(D) resonance
shifts to higher frequency while the Si(D), Fe(B),
and Fe(A, C) reson'ances shift to lower frequency.
See Figs. 4 and 5.

For larger values of x (0.25 &x ~ 1.0) the intense
Al resonance mixes with the weaker Fe(A, C) and
Si(D) resonances making them impossible to sep-
arate. The linear concentration dependence of the
Al(D) internal field holds in this region. Since the
Si resonance cannot be isolated from the Al and
Fe(A, C) signals the internal fields of Si(D) have

.not been determined for the region 0.25 & x & 1.0.
The resonant frequencies of Fe(B) in this region
are almost constant with xwhile that of Fe(A, C)
must go through a shallow minimum and then in-
crease to its value in Fe3Al. The Fe fields in
Fe,Al are known through Mossbauer experiments. '

TABLE I. Listing of crystallographic and magnetic properties of Fe3Si and Fe3A1 for pur-
poses of comparison.

Fe3Si Fe3A1

Crystal structure

Lattice constant

Magnetic structure

Curie temperature

Moments

Internal fields

DO3 (Heusler, Ref. 6)

5.653 A (Ref. 6)

Ferro (Ref. 5) .

840 K (Ref. 5)

Fe(B) = 2.2@~ (Refs. 4, 12, 13)
Fe(A, C) = 1.35pz
Si- Op~

Fe(B) = 338 kOe (Refs. 7, 11)
Fe(A, C) =218 kOe
Si(D) =37 kOe

DO3 (Heusler, Ref. 6)

5.793 A (Ref. 6)

Ferro (Ref. 5)

713 K (Ref. 5)

Fe(B) =2.2' (Ref. 14)
Fe(A, C) =1.45'
Al- Op~

Fe(B) =330 kOe (Refs. 8, 10)
Fe(A, C) =234 kOe
Al(D) =26 kOe
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FIG. 2. Concentration dependence of the lattice para-
Ineter of the Fe3Si~ „Al„alloys. The data are from this
work.

FIG. 4. Concentration dependences of the resonant
frequencies of Al(D) and Si(D) nuclei in Fe3Si& „Al„
alloys.
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See Fig. 5. The values of the Fe internal fields in
Fe3Si and Fe3Al are consistent with the values of
their Fe moments. The Fe(B) moment is 2.2p, s
in both alloys. The Fe(fl, C) moment is O. lp, s
larger in Fe3Al than in FesSi. Since the internal

fields of Fe atoms in these alloys are very nearly
proportional to their atomic moments, with 1p, ~
equivalent to about 21 MHz or 150 koe the near
equality of the Fe(B) fields and 2-MHz shift in the
Fe(A, C) fields seems explained. We are unable to
say, at the present time, whether the small
changes in internal fields between Fe3Si and Fe3Al
are due to small changes in the local Fe moments
or to some other mechanism, perhaps connected
with the reduction of the number of conduction
electrons by Al substitution. ~

: The change in the magnitude of the eAl fields
seems linear with concentration with v» —16.1
+13x. It should be noted that because of the broad
asymmetrical distributions for large x the Al
fields are plotted as the center of gravity of a
spectrum rather than a peak value. The Si fields
are given by vs&

—31.5 —3.5x at low Al concentra-
tions and an extrapolation to higher concentrations
is made. It will be shown later that this behavior
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FIG. 3. Spin-echo spectra, plots of normalized echo
amplitude vs frequency, of Fe3Si& „Al~ alloys for the
concentrations indicated.

FIG. 5. Concentration dependence of the resonant
frequencies of Fe(A, C) and Fe(B) nuclei in Fe3Si& „Al„
alloys.
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can be explained if the sign of the Al internal field
is assumed to be negative, opposite that of Si, and
if the negative contribution due to conduction elec-
trons increases as conduction electrons are re-
moved from the system by replacing Si with Al.

III. CALCULATION OF Si AND Al INTERNAL

Jena and Geldart, following the approach of Dan-
iel and Friedel have proposed a model for calcula-
ting the hyperfine fields of the sP elements in
Heusler alloys and the ferromagnetic hosts Fe,
Ni, and Co. In this model the spin density used
to calculate a, hyperfine field is found by solving
Schrodinger's equations with a square-well poten-
tial for the nonmagnetic ions. The model's applica-
tion to Fe,Si, „Al„alloys will be outlined and the as-
sumptions and approximations necessary will be
discuss ed.

The ferromagnetic host is considered to be a
lattice of magnetic moments and a homogeneous
electron gas, split into a majority (0} and a min-
ority (0) spin band by the localized magnetic mo-
ments (primarily due to d electrons) at the Fe(B)
and Fe(A, C) sites. Although this system contains
two diff erent magnetic moments, for the purpos es
of this, calculation, it will be treated by assigning
the average sublattice moment (1.6l), B) to each Fe
site. The Fe moments split the conduction band
into two subbands. A band splitting parameter ~
is determined empirically by requiring that the
hyperfine field of Si in Fe3Si calculated from the
Jena-Geldart model equals the measured value.
Once chosen, & is allowed to scale with the mea-
sured magnetic moment per Fe atom of the alloys,
p, (x). This scaling leads to a value &/EF(x)
=0.26', (x)/()B, where EF(x) is the Fermi energy,
and

P (X) —
(2 (4)) Fe(B)(X) + 6P Fe (A, C)(X)]

The spin -independent Fermi wave vec tor of the
system in the free-electron approximation is given
by

k'/3F' =n„
where n, is the sP electron density of the system.
In calculating np, Al and Si atorris are assumed to
donate three and four sP electrons, respectively,
to the conduction band. To estimate the contribu-
tion from the. magnetic ions, it is assumed that'

the d electrons are localized compared to sP elec-
trons and that there are 5 electrons in the spin-
down state Z&k. The value of Z„4 at both Fe sites
is then obtained for each alloy from the measured
values of their magnetizations.

d d~)B, AC ) Fe(B)gAC/l" B ~

The sP electron contributions to the conduction

band from the B and A, C sites are

[Z»]B,AC 6 (Zd~ +Zd~)BRAC'

In Fe,Si, [Z»]B and [Z»]Ac are 0.2 and —0.65 elec-
trons, respectively, yielding

Z,„B(—0.65) + 4(0.2) + 4(4)
n p Qg

where &I., Za» and ~p are the lattice constants,
the average number of electrons per unit cell and
the volume per unit cell in the alloy.

The eff ec tive impurity potentials of the nonmag-
netic ions Si and Al are simulated by an effective
charge Z*.

—Zval Zav ~

where Z„l is 4 for Si and 3 for Al, and Z„equals
npQp.

The effective potentials are represented by a
spin-dependent square well (approximating a pseu-
dopotential), whose range, a=3.65a„ is that of
a typical screening potential of the ion. The depth
of the well for each spin is self-consistently fixed
by requiring that the Friedel sum rule"

Z'* =—Q (2l + I)5([kF]
l

be satisfied. The Z'* are the induced screening
charges, and 5& is the partial-wave phase shift.
It is assumed that the screening is essentially
complete within the unit cell. A square-well po-
tenti. al is chosen for simplicity since for this po-
tential, the solutions to the Schrodinger equation,
and therefore the electron densities per spin, are
analytic. The analytical expressions are useful in
analysis of the systematics of hyperfine-field data.
Because of the approximate nature of the poten-
tials, the systematic trends and the signs of the
fields obtained from theory are more reliable than
the calculated magnitudes of the fields.

The hyperfine field at Al or Si is computed from
the formula

&hd =-. ((PBa (k-F)P, (0),

where o.'~(kF), the core enhancement factor, is ob-
tained by orthogonalizing the plane wave of wave
vector k~, to the occupied atomic core orbitals of the
ion under consideration. This enhancement factor,
computed for various values of k~ appropriate to the
compositions of the alloys, is a slowly varying func-
tion of x.

P(0) =nb(0} —nk(0) is the net electron spin den-
sity. The electron density per spin n'(0) is
calculated by solving the Schrodinger equation with
the spin-dependent square-well potential. The
parameters entering this potential are the width of
the square well, the depth of the square well, the
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