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In an earlier article we discussed the formalism for evaluating the average electron-momentum density in a
random binary alloy by using the average-t-matrix approximation to. treat the disorder and muffin-tin
potentials to represent the constituent atoms. The present paper considers the application of this formalism to
Cu,_,Ni, over a range of alloy compositions. The characteristic effects of disorder on the spectral momentum
density < p(B, E)> are delineated. In discussing the momentum density < p(p) > we focus on how this
quantity changes as x increases from O to 1 and the Ni d band develops from a virtual bound state below the
Fermi energy into a transition-metal d band interacting the Fermi energy. Our detailed predictions in this
regard should be amenable to experimental verification by two-dimensional positron-annihilation experiments.

1. INTRODUCTION

Recent theoretical work on the electronic struc-
ture of disordered metals has focused largely on
the properties of the muffin-tin model.»? The
motivation for this stems from the fact that the
one- and two-band tight-binding model Hamilto-
nians are too simple to represent the currently
available experimental information concerning the
electronic spectrum of transition- and noble-metal
alloys. In this connection, two of the most com-
monly used approximation schemes have been the
average-t-matrix (ATA) and coherent-potential
(CPA) approximations. Both belong to the class
of the so-called single-site approximations. How-
ever, of the two, only the CPA treats the disorder
self-consistently, and is to be preferred. The
attractiveness of the ATA stems mainly from its
simplicity in application to realistic models.

We emphasize that the calculation of the momen-
tum density (p(p)) in a disordered alloy entails a
significantly greater effort than calculation of the
more familiar average electronic density of states
(o(E)y. Even in a perfect crystal, to compute the
momentum density a knowledge of both the elec-
tronic energy levels and the corresponding Bloch
wave functions is required. By contrast, the elec-
tronic density of states is determined completely
in terms of the Bloch energy levels alone. This
physical difference manifests itself in the fact that
in order to evaluate {p(p)), in addition to
the on-the-energy-shell matrix elements, the de-
tailed momentum dependence of the off-the-energy-
shell matrix elements of the atomic scattering op-
erators of the constituent atoms is required.® The
{p(E)) calculation, on the other hand, proceeds in
terms of only the on-the-energy-shell elements.
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Indeed, - although detailed studies of the electronic
densities of states in a variety of transition- and
noble-metal alloys have been carried out using the
ATA,*7 and more recently the muffin-tin CPA,8-1°
no corresponding calculation of the momentum den-
sity exists at the present time. Some momentum-
density work within the framework of the one-band
tight-binding model Hamiltonian has, however, ap-
peared recently.!! 12 ‘

In briefly summarizing some of the relevant ex-
perimental techniques, we note that for dilute
alloys the concentration dependence of specific
Fermi-surface radii and the damping of the cor-
responding electronic states is measurable via de-
Haas-van Alpen experiments.’®'* The changes in
the energies of some of the transitions as a func-
tion of alloy composition have been monitored via
optical-reflectivity measurements.'® Photoemis-
sion experiments, especially in their current angu-
larly resolved form, measure the bulk electronic
density of states, provided surface and matrix-
element effects are neglected.'®!” Under similar
simplifying assumptions, soft-x-ray emission al-
lows the determination of the component charge
densities associated with the constituent atoms in
an alloy.'® The densities of states at the Fermi
energy are obtainable from specific-heat and mag-
netic-susceptibility measurements.

Of particular interest to us here are the Compton
scattering’® and positron annihilation techniques?°-2?
which measure the momentum density in a cryst-
al. Since these experiments do not require long
electronic mean free paths, they have the advant-
age of being applicable to concentrated alloys.

Both techniques serve not only to determine Fermi-
surface radii, but also to provide detailed informa-
tion about the electronic wave functions that is not

2912 © 1979 The American Physical Society



19 ELECTRON MOMENTUM DENSITY INDISORDERED... 2913

available from most of the other current experi-
ments on disordered alloys. In comparing the two
techniques it is noteworthy that positron spatial
distribution effects complicate the interpretation
of the experimental positron annihilation profiles.?
By contrast, Compton profiles do not involve these
difficulties of interpretation, but suffer instead
from problems of resolution: the usual experimen-
tal measurement implies an integration over two
of the three momentum components and, in addi-
tion, the resolution attainable in+y -ray Compton
scattering is at least an order of magnitude lower
than for positron annihilation in metals. In this
regard, the positron annihilation experiments
especially offer attractive possibilities due to the
high resolution possible in two-dimensional angu-
lar correlation machines.?%2425 Spin-polarized
measurements in magnétic materials are also
- possible via this technique.?6-28

In an earlier article the ATA formalism for the
momentum density in disordered muffin-tin alloys
was discussed.® In considering the application of
this formalism to Cu,_Ni, the present paper em-
phasizes the characteristic effects of disorder on
the electron momentum density in an alloy. Our
detailed predictions with regard to the momentum
density in Cu,_Ni, should be amenable to experi-
mental verification by high-resolution two-dimen-
sional angular correlation experiments. The prob-
lem of extending the muffin-tin CPA to obtain mo-
mentum densities, and that of including the effects
of the positron spatial distribution in these calcu-
lations, will be taken up elsewhere.

An outline of the present paper follows. To make
the discussion self-contained, some of the relevant

(pB,E))= —%Im{(E +50* =p%) + (47 °N(E +i0* = p3)~2 Z Y, (D) [((t,(p, ph—
&

Here k=vE, L=(,m) is a composite index which
includes both the orbital and magnetic quantum
numbers, and % is the reduced wave vector cor-
responding to the momentum P. The Lth spherical
harmonic associated with the unit vector X is de-
noted by Y, (X), andB(T{,E) is the matrix of the
usual KKR structure functions. The quantities
(t(p, q)y are the momentum matrix elements of
the average ¢ matrix

formulas are outlined in Sec. II. The numerical
considerations involved in handling the off-the-en-
ergy-shell matrix elements of the A(B) scattering
matrix ¢, ,,(p,VE)forp # VE are delineated. Inour
presentation of the results of our calculations in
Sec. 11, the spectral momentum density {p(D, E ))
is considered as a function of E for a range of al-
loy compositions. The integrated momentum den-
sity (p(P)) in Cug ,sNi, 55, With P along the (110) di-
rection, is compared with the corresponding cal-
culations for Cu and Ni crystals. As the Ni con-
centration is increased, the Fermi energy in
alloy eventually drops below the top of the Ni d
band, and hole ellipsoids develop around the point
X in the Brillouin zone. Owing to symmetry con-
straints, the appearance of X-hole ellipsoids does
not cause a break in the momentum density around
the point X. Nevertheless, we show that these hole
pockets can be observed as dips in {p(p)) at higher
momenta along appropriately chosen directions in
momentum space.

II. THEORY

The configurationally averaged electron momen-
tum density in the disordered alloy A,_ B, is given
by

E,
(@)= [ TaBo(d,E) (2.1)
as an integral of the spectral momentum density
{(o®,E)) up to the Fermi energy E.. As discussed

in Ref. 3, for the ATA applied to the muffin-tin
Hamiltonian

(t,(ﬁ, K»(t;(Ksp))\e ,

tk, k))y S
{y(p, ) e e G P
* @, (k, 1)) [t )™ 'B(k’E)]\me] YL'(P)} .
(2.2)
=1 =x)t, +xt 5, (2.3)

and are related to the corresponding matrix ele-
ments of the A and B scattering operators ¢,(p,q) -
and ¢,4(p,q) (¢,, tg, and () are diagonal matrices
in angular momentum space). The on-the-energy-
shell matrix elements ¢, ,,(k, k) are given in terms

~of the customary scattering phase shifts 5{®(E):
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B (i, k) = = k7! sing X Blexp(i 54 P). (2.4)

In contrast, the evaluation of the off-the-energy-
shell matrix elements £,5,(p, k) and ¢,.5,(p, p)
for p #« is more involved. The relevant equations
discussed in Ref. 3 for E>0 are

HO (p, k) =H®)(x, p)

=P (p, E)eotsy P11 (x, k), (2.5)
ImA® (p, p) = [sf‘ﬂ’(p, E)] cotpi®
x Ret4 B (k, k). (2.6)
Here

Rm
sfw>(p,E)=-Kf dr v (p7)

0

XVAB ¢ )R{P  ,E) (2.7

is given by an integral involving the regular solu-
tion R{®(r,E) of the radial Schrodinger equation
for the muffin-tin potential VA® (y). In Eq. (2.7),
R,, denotes the radius of the muffin-tin sphere and
j, the Ith spherical Bessel function.

Equations (2.5)—(2.7) show that the p dependence
of 1}'®(p, k) and Im#{®(p, p) arises through the
quantity sM®(p,E). If p—k, t4®(p, k) must re-
duce to #(®(x, k), which in view of Eq. (2.5) im-
plies the equality

s{“B)(x, E) =tans{ B (E). (2.8)

The limiting behavior (2.8) for the quantities
s{®(p,E) can be displayed explicitly by rewriting
Eq. (2.7) as

sM®)(p,E) == kR2[j,(pR,),RP R, E)]

Rm
—K(E—pz)f arv%,(pr)R,r,E).
(2.9)

Here, [j,,R,] denotes the Wronskian of j, and R,.

[ The derivation of Eq. (2.9) is outlined in Appendix
B.] In Eq. (2.9), for p®2=E, the second term does
not contribute, and the validity of relation (2.8)
then follows by recalling the Wronskian identity
[4,(kr), m,(kr)]==1/kr? and the fact that the norma-
lization of the wave function R{®(r,E) in Egs.
(2.7) and (2.9) is implicitly given by R{®R _,E)
=j;(kR,,) —tang®n, (kR ), where n, denotes the jth

spherical Neumann function. We note in passing
that Eq. (2.9) applies for E >0 as well as for E<O0.
It is noteworthy that the on-the-energy-shell ma-
trix elements #® (k, k) are usually computed via
the logarithmic derivatives of the A(B) radial wave
functions R{®'(R ,E), which amounts to using only
the first term in Eq. (2.9) for p =¢. For this rea-
son, the form (2.9) has a practical advantage over
(2.7), as it is guaranteed to yield the proper limit-
ing behavior (2.8), which, as discussed below, is
essential for the cancellation of the free-electron
poles in Eq. (2.2) for (p(p,E)). In addition, Eq.
(2.9), in contrast to (2.7), does not involve the
potential VA®)(y) in the integrand and, therefore,
allows the evaluation of the off-the -energy-shell
matrix elements corresponding to shifts in the
muffin-tin zeros of the A and B atomic potentials
more conveniently. Such constant shifts are neces-
sary within the framework of semiempirical mod-
els including charge transfer in transition- and
noble-metal alloys.“? Finally, we note that the in-
tegral in the second term in Eq. (2.9) varies suffi-
ciently smoothly that its computation for a general

'p and E can be carried out efficiently via numeri-

cal interpolation in a table of values of this inte-
gral over a suitable mesh in p and E space.

In perfect crystals it is well known that the sym-
metry of the lattice can force the contributions of
many energy bands to vanish in specific regions
of momentum space. Reference 29 discusses the
details of this selection rule, and presents tables
showing which energy bands give nonzero contribu-
tions at various momenta P in the cubic lattices.
We emphasize that the results of Ref. 29 are di-
rectly applicable to the present case because the
average Green’s function, and hence the spectral
momentum density, in a disordered alloy posess-
es the symmetry of the point periodic lattice.
Thus, in the first Brillouin zone (i.e., for =-12),
only the bands belonging to the totally symmetric
representation (e.g., A;, T,, and A,) will give a
nonvanishing contribution to {p(H,E)). This con-
sideration will be found useful in the following dis-
cussion.

III. RESULTS

To understand the nature of the momentum den-
sity in an alloy, we consider first the spectral
momentum density {p@®, E ))-

The apparent free-electron poles in expression
(2.2) do not lead to singular behavior of (p(B,E))
in the vicinity of E=p?. [The proof of this state-
ment uses, among other things, the fact that
&, (p, )/t (k, K))~1 for p~x and, as noted above,
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implies that care be taken in the numerical com-
putation of (¢,(p, «)).*] In the perfect-crystal lim-
it, the term in large parentheses in (2.2) (the
term proportional to 5,;.) can be shown to give a
vanishing contribution. Our experience with
Cul_,Ni,; suggests that this term may generally be
expected to yield only a small smooth contribution
even in the alloy. The structure in (p(p, E)) there-
fore arises primarily through the inverse matrix
[(t(k, k)™ = B(k, E)]"!, or equivalently via the com-
plex energy zeros of the secular equation’ °

Il<¢(k, &)yt = B(k, E)||=0. (3.1)

For a perfect A(B) crystal (¢(k, k)=t g, (x, k), and
Eq. (3.1) reduces to the familiar KKR equation and
yields the usual Bloch energy bands. In a disor-
dered alloy these energy bands become complex,
the imaginary parts of the energy representing the
damping of perfect Bloch states due to disorder.
Such complex energy bands have been obtained in
the ATA® and the CPA! for a variety of transition-
and noble-metal alloys, and have been useful in

. discussing many aspects of their electronic spec-
trum. -

Equation (2.2) shows that, for a given reduced
wave vector k, the contributions to (p®,E)) will
be nonzero only for =k +K, where K, is a vec-
tor of the reciprocal lattice.>® As noted above, at
points of high symmetry contributions of certain
energy bands to (p(H,E)) can be suppressed in
specific regions of momentum space owing to the
symmetry of the average alloy.’! For this reason,
in illustrating the behavior of (p(p,E)) in Fig. 1 we
have chosen k =k,=(0.166, 0.415, 0.664)2r /2, which
is a general point in the Brillouin zone. Figure 1
shows that the normal contribution to (p(B,E)) as
well as the Umklapp contribution corresponding to
the (1, 1, 1) reciprocal-lattice vector as a function
of E consists of peaks of finite width. The energy
location of these peaks is seen to be well corre-
lated with the real parts of the complex energy
solutions of Eq. (3.1) for k=k,, which are marked
along the horizontal axis in Fig. 1.

A complex energy level in an alloy that possess-
es a large imaginary part may not lead to a dis-
tinct peak in the spectral function. Thus, for ex-
ample, in Fig. 1(a) for Cu, ,sNi, 5 (i.€., x=0.25),
in the energy regime of the Ni resonance, several
closely spaced complex levels with imaginary
parts comparable to their spacing are seen to give
just one broad peak around 0.55 Ry. We emphas-
ize that the real and imaginary parts of a complex
energy level in the alloy determine only the posi-
tion and width of the corresponding spectral peak,
and contain no information about its weight. The

~only general statement that can be made with re-
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FIG. 1. Spectral momentum density in Cuy.Ni, as a
function of energy at (a) p=ky= (0.166, 0.415, 0.664)
(2r/a) and (b) p=ky+ &y =1.166,1.415,1.664) (21/a),
where a=6.8309 a.u. is the Cu lattice constant. The real
parts of the complex energy solutions of Eq. (3.1) cor-
responding to k=k; are shown as ticks along the horizon-
tal axis for various compositions. Note that the vertical
scale on the right-hand set of figures is ten times smal-
ler than for those on the left-hand side.

gard to the weights is that if an energy level re-
mains unsplit on alloying (for example, levels
such as X, Ly, and '} in Cu,_Ni ), then its total
spectral weight, i.e., the quantity 350k +K,,E),
remains approximately equal to unity, as in the
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perfect crystal. However, each of the levels such
as 'y 5, T'y,, X,, and X, leads to two distinct lev-
els of the same symmetry in the alloy, one of
which may be viewed as having its origin in Cu-
like d states and the other in Ni-like d states. In
this case, the total weights of the two levels in the
alloy are roughly proportional to the concentrations
1 —x and x of Cu and Ni atoms.'° The preceding
discussion of the weights is only meant to be qual-
itative, and significant deviations from this behav-
ior can arise in specific instances owing to the
modulating influence of the factor (¢,(p, x))/{t,(k, «))
in expression (2.2).

Figure 1(a) shows the characteristic changes in
the normal contribution to {p(D, E)) over the entire
range of constituent compositions. For 1 at.%

Ni (x =0.01), the spectrum is very nearly that of
pure Cu, with sharp §- function-like peaks. Even
in this case, however, the peak at 0.55 Ry is
strongly damped owing to the nascent Ni impurity
level. As more Ni is added (x =0.25), a broad
structureless impurity peak appears around 0.54
Ry, which with increasing Ni concentration devel-
ops into the Ni d bands [see x =0.5-0.99 in Fig.
1(a)]. For x=0.99, the Ni d bands are seen to
yield nearly §-function-like peaks, except that the
lowest energy levels around 0.45 Ry are still
strongly perturbed by the Cu-impurity states.

Figure 1(b) shows that the Umklapp contribution
to (p(®,E)), aside from being an order of magni-
tude smaller (note scale), generally follows the
same trend as a function of Ni concentration as
the normal contribution does in Fig. 1(a). As
noted above, for a given alloy composition, the
structure in (p(k +K ,E)) is controlled by the same
complex energy levels at reduced vector & for all
K,. However, differences in the relative weights
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FIG. 2. Momentum density along {110) in Cug,q5Nig, s,
Cu, and Ni crystals.

of the peaks and the overall shape of the {o(p, E))
curves in Figs.1(a)and 1(b), for afixed x, are expec-
tedbecause (p(k+K,, E)) measures the nth Bloch-
like component of the electronic states inthe alloy
and is therefore different for various reciprocal-lat-
tice vectors K,.

Having delineated the nature of the spectral func-
tion in the alloy, we discuss the experimentally
measurable momentum density (p(p)) obtained from
{(p(D,E)) by an integral in energy [cf. Eqs. (2.1) and
(2.2)].* Figure 2, which compares (p(p)) along
(110} in Cug, ,sNi, ,5 With corresponding results in
Cu and Ni crystals, shows that the Fermi momen-
tum breaks in the alloy curve are rounded off ow-
ing to the damping of the electronic states at the
Fermi energy. As the Ni concentration increases,
the Fermi momentum breaks move to take into
account the shrinking of the Fermi surface, and
the 3d-band contribution in the momentum range
between 0.7 and 1.2 a.u. expands. The latter effect
is a result of the growth of the Ni 3d bands, which
possess acharge density that is more concentrated
in T space (in comparison to Cu) and thus more
diffuse in the momentum space.

‘Figure 3 shows that in Cu, ;Ni, ; the Fermi en-
ergy Ep lies above the top of the Ni 4 bands at the
point X in the Brillouin zone. However, by the
time the Ni concentration increases to 75 at.%,

E; drops below the X, level, leading to the appear-
ance of X-centered hole ellipsoids in the alloy.

Note that the crossing of the d bands will not re-

FIG. 3. Complex energy bands near the point X, along
the direction I'— X in the Brillouin zone in Cuy;Nij ; and
Cuy,95Nig,q5. The vertical length of the shading equals
two times the imaginary part of the complex energies.
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FIG. 4. Momentum density in Cuy,ysNip 75 and Cuy sNij 5
along the line joining the reciprocal-lattice points
(1,1,0) and (1,1, 3) in momentum space.

sult in a break in the momentum density at the
points X in the first Brillouin zone. In fact, due
to reasons of symmetry noted above, the momen-
tum density of the entire T, ;-A -X, band is strict-
ly zero in the first zone. The d hole ellipsoids can
only be observed in suitably chosen Umklapp con-
tributions. Figure 4 is illustrative in this respect
and shows that, compared to Cu,;Ni, ;, the pres-
ence of the 4 hole ellipsoids in Cu, ,;Ni, » yields
an extra dip in the momentum density around the
momentum vector (1, 1,2). [The break in (p(®))
around 1.6 a.u., which is present in both curves

in Fig. 4, is due to the intersection of the Fermi
energy with the s -p-like A, band.] The experimen-
tal observation of this dip via Compton scattering
or long-slit positron annihilation measurements is
unlikely owing to the limited resolution of these
methods. Two-dimensional positron annihilation
measurements,?"242 however, should be able to
see this dip and other similar structures in the
momentum density and, thereby, allow us to learn
a good deal about the nature of electronic states

in disordered alloys.
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APPENDIX A: DETAILS OF Cu AND Ni MUFFIN-TIN
POTENTIALS

The Cu and Ni potentials used in the present
paper have been used elsewhere in connection with
the ATA and CPA electronic spectrum in Cu,Ni,_,
and Cu,Zn,_.*%!° In particular, these potentials
are | dependent, and have been obtained by the re-
normalized-atom technique.?? '

The Cu potential is the same as was used for
several density-of-states calculations in the ATA
work in Ref. 5 and in all of the more recent CPA
work in Ref. 10. This potential was denoted V§}
in Ref. 5, and differs from another potential V{"
which was also used in the earlier CuNi and CuZn
ATA work in that the Cu d band in V§} is moved to
an energy approximately 0.06 Ry higher than in V{4
This was done in Ref. 5 because V{}gives better
agreement with relevant experimental data per-
taining to the placement of Cu d bands with respect
to the Fermi energy in crystalline Cu.

Aside from minor differences the Ni potential in
the present work is the same as was used in the
earlier ATA® and some of the CPA work'® on CuNi.
All calculations in the present paper use the fcc
lattice structure with a crystalline-Cu lattice con-
stant of 6.8309 a.u. and a muffin-tin zero of
—-0.834 15 Ry.

APPENDIX B: DERIVATION OF EQUATION (2.9)

The function R, (r,E) [suppressing the super-
scripts A(B)] satisfies the radial Schrodinger equa-
tion

R +@/rR\+[E-Vlr) - 11 +1)/7*]R,=0.  (B1)

The corresponding differential equation for j,(pr)
is

7+ @)+ p% = 1+ D/, =0. . (B2)

It is identical to Eq. (B1) with E=p? and V() =0.

Conversion of the form (2.7) for s,(p,E) into
(2.9) involves substitution of V()R ,(r,E) from Eq.
(B1) into the integrand in Eq. (2.7) and two partial
integrations to transfer the derivatives of R, to
§,(pr), followed by the use of Eq. (B2) to simplify
the final expression.

The integral in Eq. (2.7), in contrast to that in
Eq. (2.9), involves the potential V(r) in the inte-
grand, which stresses the region near the nucleus
where the product of j, and R, oscillates rapidly.
For this reason, Eq. (2.7) is not as convenient for
computational purposes as Eq. (2.9). The manipu-
lations discussed above, in effect, allow us to
eliminate V(r) from the integrand in (2.7) and may
be useful in evaluating similar integrals in other
connections.
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